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Abstract
Many control systems contain control inputs which

are constrained to be non–negative. Unfortunately, the
unilateral nature of such inputs makes them similar to
a drift term, and correspondingly complicates any at-
tempt to determine controllability. We present a con-
trollability test in which Lie brackets are characterized
as “good” or “bad,” from which controllability follows
from the relationship between these “good” and “bad”
brackets. This test is relatively straightforward to ap-
ply and its application is illustrated with an example.

1 Introduction
Many interesting and useful control systems have

control inputs which are constrained to be non–
negative; yet, the issue of controllability of such sys-
tems has not been fully explored. For example, a
control input corresponding to some sort of thruster
can only produce a zero or positive thrust (unless the
thrusters are arranged in opposing pairs). Similarly, a
control input corresponding to the normal force pro-
duced by physical contact clearly must also be non–
negative. Such unilateral forces arising from physical
contact naturally arise in many locomotion problems,
wherein an object, such as an animal or robot, moves
through its environment via physical contact with sur-
rounding objects.

To our knowledge, the few fundamental results per-
taining to controllability for such restricted control in-
puts appear in work by Sussmann in [1, 2] and by Lynch
and Mason in [3]. The results by Sussmann in refer-
ences [1, 2] related to the case where the inputs are
restricted to be non–negative, are low order tests, i.e.,
the Lie algebra rank condition must be satisfied by vec-
tor fields of sufficiently low order. We present a result
which is distinct to the extent that it allows the Lie al-
gebra rank condition to be satisfied by vector fields of
arbitrarily high order. However, this comes at the ex-
pense of a more restrictive condition on the first order
vector fields.

2 Unilateral Control Inputs
We will consider control systems of the form

ẋ = f(x) + hi(x)vi + gj(x)uj (1)

where i = 1, . . . ,m, j = 1, . . . , n, vi ∈ [0, 1) ∀i, uj ∈
(−1, 1) ∀j, x ∈ M , M a manifold and f , hi and gj

vector fields on M ; that is, the control inputs vi are
restricted to be non–negative.

Let U be the set of admissible controls. Given an
open set V ⊆ M , define RV (x0, T ) to be the set of
states x such that there exists (vi, uj) : [0, T ]→ U that
steers the control system from x(0) = x0 to x(T ) = xf
and satisfies x(t) ∈ V for 0 ≤ t ≤ T . Define

RV (x0,≤ T ) =
⋃

0<τ≤T
RV (x0, τ)

to be the set of states reachable up to time T. A system
is small time locally controllable (“STLC”) if RV (x0,≤
T ) contains a neighborhood of x0 for all neighborhoods
V of x0 and T > 0.

Let C be the smallest subalgebra of V∞(M) (the
Lie algebra of smooth vector fields on M) that contains
f, h1, . . . , hm, g1, . . . , gn, and let C be the accessibility
distribution generated by C:

C(x) = span{X(x) : X ∈ C}, x ∈M.

If dimC(x0) = dimM , then the system satisfies the Lie
Algebra Rank Condition (“LARC”) at x0.

For a given Lie bracket X , consider the degree of a
bracket with respect to a vector field f , hi or gj , de-
noted by δf (X), δhi(X) and δgj (X), respectively, to
be the number of times that the superscripted vector
field appears in the bracket X . Now consider the total
degree, δ(X), to be

δ(X) = δf (X) + (1 + ε)
m∑
i=1

δhi(X) +
n∑
j=1

δgj (X),

where 0 < ε � 1. This concept of degree and total
degree is presented rigorously in Section 4, but for now
we take it to mean that we can determine the degree
of a bracket by counting the number of times that a
particular vector field appears in the bracket.

Now, we will call a bracket, X “bad” if δgj is even
(including 0) for each j, δf (X) +

∑m
i=1 δ

hi(X) is odd
and

∑m
i=1 δ

hi(X) 6= 1. Otherwise, call the bracket
“good.”

We can now state our main result.



Proposition 2.1 Consider the control system de-
scribed by Equation 1. Assume that the system sat-
isfies the LARC and that there exist coefficients λi and
αj such that

m∑
i=1

λihi(x) +
n∑
j=1

αjgj(x) = 0 ∀x ∈ nbd(x0), (2)

where λi ∈ (0, 1) and αj ∈ R. Assume further that
any bad bracket can be written as a linear combination
of brackets of lower total degree. Then the system is
STLC at x0.

The proof of this Proposition appears in Section 5.
We note that in the proof of this result, we provide
an alternative result given by Proposition 5.1 which
is more general and thus less restrictive; however, in
practice, this more general test will be more difficult to
apply than Proposition 2.1, above.

Although technically difficult to prove, the intuition
behind the restriction expressed by Equation 2 is sim-
ple. Due to the control input restrictions, none of the
control inputs vi can be negative. However, Equation 2
can be solved for one−hi in terms of the other hj ’s with
positive coefficients and the gk’s with arbitrary coeffi-
cients. Thus, allowable control inputs (vj > 0, j 6= i)
effect the same result as a disallowed control input (one
vi < 0).

3 Example
Before we present the proof of Proposition 2.1, we

will illustrate its application with an example. Here
we consider the controllability of rigid body with
“thrusters.” Initially consider the body to be centered
about orthogonal coordinate axes, and let two thrusters
be placed at the points where the x–axis intersects the
surface of the body and two more thrusters placed at
the points where the y–axis intersects the surface. Let
the force of the thrusters on the x–axis be in the neg-
ative z–direction, and the force of the thrusters on the
y–axis be in the positive z–direction. As a fifth con-
trol input, let the thrusters rotate by a small angle, ψ
(which can be both positive and negative) about their
respective axes so that the thrusters aligned on the x–
axis rotate in opposite directions so that if they are
both “thrusting” they both contribute to a positive
torque about the z–axis, and let the thrusters aligned
on the y–axis rotate in opposite directions so that both
contribute a negative torque about the z–axis. We will
consider a spherical body with unit radius and mass
5
2 (so that the inertia tensor is the identity) as illus-
trated in Figure 1; although, for a non–spherical body,
the following controllability analysis still holds. In Fig-
ure 1, for clarity, the coordinate system is shown dis-
placed from the center of mass of the sphere, but for
the calculations, the origin of the coordinate system is
assumed to initially coincide with its center of mass.

Parameterize the configuration space for the system
SE(3) × S1 by the coordinates X = (x, y, z), which
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Figure 1. Rigid Body with Thrusters

are the displacements of the center of mass from the
fixed inertial frame, Φ = (φ1, φ2, φ3), which are the
“roll, pitch, yaw” rotations about the x– y– and z–
axes, respectively and ψ, which is the rotational angle
of the thrusters. Thus, a point in the phase space is
given by q = (X,Φ, Ẋ, Φ̇, ψ).

Now, we can write the equations of motion as


Ẋ

Φ̇
Ẍ

Φ̈
ψ̇

 =


Ẋ

Φ̇
0

−Q−1Q̇Φ̇
0

+ F · v, (3)

where Q is the local mapping which takes the deriva-
tives of the roll, pitch and yaw coordinates we chose
for our parameterization and gives the body angular
velocities, which given by

Q =

 cosφ2 cosφ3 sinφ3 0
− cosφ2 sinφ3 cosφ3 0

sinφ2 0 1

 .

If we let ê1, ê2 and ê3 represent the standard unit vec-
tors in the x–, y– and z–directions fixed in the body,
Rx and Ry represent the usual rotation matrices rep-
resenting a rotation by an angle ψ about the x–axis
and the y–axis, respectively and R represent the 3× 3
rotation matrix that takes body coordinates to spatial



coordinates, then

F =


0 0
0 0

− 5
2RRxê3 − 5

2RRxê3

Q−1((Rxê3)× ê2) Q−1((−Rxê3)× ê2)
0 0

0 0 0
0 0 0

5
2RRyê3

5
2RRy ê3 0

Q−1((Ry ê3)× e1) (Q−1(−Ry ê3)× e1) 0
0 0 1


and v = (v1, . . . , v4, u)T . We will refer to the first four
columns in the matrix on the right hand side of the
equation for F as h1, . . . , h4, the fifth column as g and
the first column on the right hand side of Equation 3 as
f , to notationally correspond to Equation 1, i.e., the
thruster forces, vj are restricted to be non–negative,
and the thruster rotation angle, ψ can be either positive
or negative.

First we must check that the system satisfies the
LARC. Tedious calculations show that the following
collection of vector fields spans TxM everywhere except
for the parameterization singularity at φ2 = π

2 :

{h1, h2, h3, g, [g, h1], [g, h2], [h1, f ], [h2, f ], [h3, f ],
[g, h3], [[g, h1], f ], [[g, h2], f ], [[g, h3], f ]} .

Now, we note that the hypothesis of Proposition 2.1
expressed by Equation 2 is satisfied because∑

j

hj(x) = 0, ∀x ∈M.

The LARC is satisfied by brackets with total degree
≤ 3 + ε, so we need to show that all bad brackets with
total degree ≤ 3+ε are spanned by brackets with lower
total degree. Note, that the only bad bracket with one
element is f(x). However, f(x) = 0 if Ẋ = Φ̇ = 0.
For brackets with three elements, we note that any bad
bracket must have zero or two occurrences of the vector
field g. If there are zero g’s, there must be one or more
h’s (since [f, [f, f ]] = 0). If there is only one h, then
it is not a bad bracket. If there are two or more h’s,
then the total degree of the bracket is greater than
3 + ε. If there are two occurrence of g, then there must
either be two g’s and one hi or two g’s and one f . In
the first case, since there is one hi, that bracket is not
a bad bracket. In the second case, we note that in
this example [g, f ](x) = 0, so that bad bracket can be
written as a linear combination of lower order elements.
Therefore the system is STLC from any position with
zero velocity.

3.1 Simulation Results
In this section we present simulation results which

demonstrate the controllability properties of the rigid
body example. The following graphs are intended to
illustrate that, after a sequence of control inputs, and
possibly after a complicated series of gyrations, the sys-
tem, to leading order, has undergone a net motion in

a particular direction. We only present results for mo-
tion in two directions, but note that it is possible to do
so for all directions in the 13–dimensional phase space.

For example, consider motion in the x–direction. We
note that ẋ = 1

2 [[g, h1], f ]− 1
2 [[g, h2], f ]. Figure 2 illus-

trates a sequence of motions that the system may un-
dergo to move in the x–direction. Note that the system
is momentarily displaced in various states other than
purely the x–direction; however, the end result is pure
displacement in the x–direction.
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Figure 2. Control Inputs for x Direction

Also, consider motion in the φ3 direction. Note that
φ̇3 = 1

5 ([[g, h1], f ] + [[g, h2], f ]). Figure 3 illustrates a
sequence of motions that the system may undergo to
move in the φ3–direction. Again, note that the system
is momentarily displaced in various states other than
purely the φ3–direction; however, the end result is pure
displacement in the φ3–direction.
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Figure 3. Control Inputs for φ3 Direction

Rather than specifically illustrate how we obtained
the sequence of control inputs used for the above sim-
ulations, we will discuss the heuristic synthesis tech-
nique we used in more general terms. This technique
is merely presented to illustrate the means by which
we obtained the control inputs for the above examples,
and is not presented as part of a rigorous theory. (A
possible rigorous approach to this synthesis problem
would be to extend the averaging results of Leonard



and Krishnaprasad [4] to the context of the problem
we are considering.)

Recall that if we denote the flow of a vector field f
at time t starting at a point x0 by φft (x0), we can write

φ−g2ε · φ−g1ε · φg2ε · φg1ε (x0) = x0 + ε2[g1, g2] +O(ε3),

where φgε ·φfε denotes the composition of the two flows,
i.e., the flow along an integral curve of f followed by the
flow along an integral curve of g. Thus to “flow” in the
direction of a Lie bracket (to leading order), we simply
modulate the control inputs associated with two vector
fields to execute the sequence of flows illustrated.

Now consider, for example, the third order bracket
[f, [f, g]]. Writing this in terms of its approximation by
flows we have

[f, [f, g]] ∼
φ−fε · φ−gε · φfε · φgε · φ−fε · φ−gε · φ−fε · φgε · φfε · φfε .

All the−f terms appearing throughout the above equa-
tion are clearly problematic. However, it is actually
possible to rewrite the bracket in a manner that will
allow it to be executed. First, consider

[f, [f, g]] = [−f, [−f, g]] ∼ (4)
φfε · φ−gε · φ−fε · φgε · φfε · φ−gε · φfε · φgε · φ−fε · φ−fε .

Now, the first two −f terms do not affect the flow since
we assume that f(x0) = 0. There still is one remaining
−f flow. However, we note that it corresponds to a
set of four flows which are approximating the bracket
[g,−f ]. However, [g,−f ] = [−f,−g] and [−f, g] ∼
φgε · φfε · φ−gε · φ−fε , and when this is substituted into
Equation 4, we have

[f, [f, g]] = [−f, [−f, g]] ∼
φgε · φfε · φ−gε · φ−fε · φfε · φ−gε · φfε · φgε · φ−fε · φ−fε ,

and so the composed flow φ−fε · φfε = 0, and thus has
no effect on the net flow. Finally, to flow along the
negative direction of an integral curve of one of the hi,
we simply flow along the positive direction of the vector
field

∑
j 6=i hj.

These observations allowed us to determine se-
quences of control inputs which produced displace-
ments in all 13 states of the system, similar to the
results illustrated in Figures 2 and 3

4 Background Material
In this Section, we briefly outline the necessary

mathematical objects for the proof. In Section 5, we
present the proof for the main result. This presen-
tation is necessarily brief. Complete definitions and
more complete explanations of these can be found in
Sussmann [5] or Lewis [6]. Other algebraic material is
from [7, 8].

Denote the free associative algebra over R gen-
erated by the set of non–commuting indeterminates
X = {X0, X1, . . . , Xm+n} by A(X) and its homoge-
neous components of degree N by AN,hom(X). Let
L(X) be the free Lie algebra generated by X, and

denote its homogeneous components of degree N by
LN,hom(X).

Let Â(X) denote the set of all formal power series∑
I aIXI , where XI = Xi1Xi2 · · ·Xik for the multi–

index I = (i1, i2, . . . , ik) and let Â0(X) denote the set
of formal power series for which a∅ = 0. The exponen-
tial map is the well defined bijection

exp : Â0(X)→ 1 + Â0(X)

whose inverse is denoted by log, both of which are de-
fined by their usual series definitions.

Also, let L̂(X) ⊆ Â0(X) be the set of all formal
sums

∑∞
N=1 SN such that each SN is in LN,hom(X).

Note that the exponential map is well defined on L̂(X).
The elements of Â(X) that are of the form exp(S)
for some S ∈ L̂(X) are the exponential Lie series in
X0, . . . , Xm. The set of all such series is denoted by
Ĝ(X), which is a group. The exponential map, re-
stricted to L̂(X) is a bijection from L̂(X) to Ĝ(X).

Consider the differential equation

Ṡ = S

(
X0 +

m∑
i=1

uiXi

)
(5)

for an Â(X)–valued function t→ S(t), with the initial
condition S(0) = 1. Sussmann [5] notes that the solu-
tion to this differential equation exists and is unique,
and is given by

S(t) =
∑
I

(∫ t

0

uI

)
XI (6)

where∫ t

0

uI =
∫ t

0

∫ τk

0

∫ τk−1

0

· · ·∫ τ2

0

uik(τk)uik−1(τk−1) · · ·ui1(τ1)dτ1 · · · dτk.

The series S(T (u(·))), with t→ S(t) as above is the for-
mal power series associated with the control u(·), and
will be denoted by Ser(u(·)), where T (u(·)) is the ter-
minal time of u(·).

Let U be the set of all functions u(·) whose domain is
a compact interval of the form [0, T ] such that u(·) takes
values in Rm and is Lebesgue integrable on [0, T ]. Now,
if K is an arbitrary subset of Rm , then we can consider
Um(K), the subsemigroup of Um whose elements are
the K–valued controls. The image of Um(K) under Ser
will be denoted by Ŝ(X,K).

If V is a linear space over R, a group of dilations of
V is a mapping ρ → ∆(ρ) that assigns to every real
ρ > 0 a linear endomorphism ∆(ρ) : V → V , in such a
way that

1. ∆(1) = identity,
2. ∆(ρ1)∆(ρ2) = ∆(ρ1ρ2) ∀ρ1, ρ2,
3. V has a direct sum decomposition V = ⊕Vj such

that the subspaces Vj are invariant under the ∆(ρ),
and the action of ∆(ρ) on each Vj is given by mul-
tiplication by ραj for some αj ≥ 0.



Note that any v ∈ V can be expressed in a
unique way as a sum

∑
j vj , vj ∈ Vj . The ∆–

degree of v is the largest αj such that vj 6= 0. A
group of dilations is called strict if it has no com-
ponent of degree zero. We say that ∆ is compati-
ble with Ŝ(X,K) if ∆(ρ) (X0 +

∑m
i=1 uiXi) is of the

form T (X0 +
∑m
i=1 viXi) for some T > 0, where

(v1, . . . , vm) ∈ K, whenever 0 < ρ ≤ 1 and
(u1, . . . , um) ∈ K.

If f = (f0, . . . , fm) is an (m+1)–tuple of C∞ vector
fields on a C∞ manifold M , then define the map Ev(f)
which assigns to every element of L(X) the vector fields
obtained by plugging in each fi for the corresponding
Xi. If p ∈M , then define the map Evp(f) from L(X) to
TpM , given by Evp(f)(Z) = Ev(f)(Z)(p). If Z ∈ L(X)
is ∆–homogeneous, we say that Z is ∆–neutralized for
f at p if Evp(f)(Z) can be expressed as a sum of vectors
Evp(f)(Qi), where the Qi are elements of L(X) of lower
∆–degree than Z. We will refer to the triple (M, f ,K)
as a control system.

The class of controls is embedded as a subsemigroup
Ŝ(X,K) of the group Ĝ(X) = {exp(Z) : Z ∈ L̂(X)}.
An automorphism λ of L(X) gives rise to a mapping λ̂,
where, if Z =

∑∞
i=1 Pi, where Pi is homogeneous of de-

gree i, then λ̂(Z) =
∑∞
i=1 λ(Pi). Also, define λ# from

Ĝ(X) to Ĝ(X) by letting λ#(exp(Z)) = exp(λ̂(Z))
for Z ∈ L̂(X).

An input symmetry is an automorphism λ of L(X)
such that the corresponding map λ# maps Ŝ(X,K) to
Ŝ(X,K). A linear map λ : L(X) → L(X) is graded if
λ maps Lj,hom(X) into Lj,hom(X) for each j.

Finally, we say that an element of L(X) is totally odd
if all its homogeneous components have odd degree.

Our result will follow from the following theorem,
which is a corollary to the main result in [2].

Theorem 4.1 Let (M, f ,K) be a control system, and
let p ∈M . Assume that f satisfies the LARC at p, and
that there exists (a) an admissible group of dilations
∆ of L1,hom(X) which is compatible with Ŝ(X,K), (b)
a finite group Λ0 of graded linear maps from L(X) to
L(X) that are input symmetries, such that every totally
odd Λ0–fixed element of L(X) is ∆–neutralized for f at
p. Then (M, f ,K) is STLC from p.

5 Proof of Proposition 2.1
We will prove Proposition 2.1 as a corollary to a

more general result.
Let X = {X0, X1, . . . , Xm, Xm+1, . . . Xm+n} and

f = {f, h1, . . . , hm, g1, . . . , gn} so that Ev(f) takes X0

to f , Xi to hi for i = 1, . . . ,m and Xj to gj−m for
j = m + 1, . . . ,m + n. The f , hi and gj above corre-
spond to the vector fields in the Equation 1. Let Br(X)
be the set of “brackets” of elements from X and δi(B)
be the number of occurrences of Xi in B ∈ Br(X).

Consider the automorphism generated by σi, i =
m+ 1, . . . ,m+n where σi sends Xj to Xj if j 6= i and

Xi to −Xi. Clearly, a Λ0–fixed element of L(X) cannot
have an odd number of each X ∈ {Xm+1, . . . , Xm+n}.
Thus, we can consider only elements with an even
number of each X ∈ {Xm+1, . . . , Xm+n}, so we will
call an element B ∈ Br(X) bad if δb is even for each
b = m + 1, . . . ,m + n and δ0 +

∑m
a=1 δ

a is odd. A
bracket is good if it is not bad. Note that these defini-
tions of good and bad are slightly different than those
that appeared in the paragraph before Proposition 2.1.
This difference will be addressed later in the proof.
Let Sm denote the permutation group on m symbols.
For πm ∈ Sm and πn ∈ Sn define π(B) to be the
bracket obtained by fixing X0, sending Xa to Xπm(a)

for i = 1, . . .m and sending Xb to X(πn(b−m))+m for
b = m+ 1, . . . ,m+ n. Now define the symmetrization
operator

β(B) =
∑
πn∈Sn

∑
πm∈Sm

π(B). (7)

Now, let θ ≥ 1 be a real number, and define ∆(ρ)
by

∆(ρ) : (X0, . . . , Xm+n) 7→ (8)
(ρX0, ρ

θX1, . . . , ρ
θXm, ρXm+1, . . . , ρXm+n).

This dilation is compatible with Ŝ(X,K) by construc-
tion. Note also that this dilation makes each π a graded
linear map. The ∆–degree is given by

δθ(B) = δ0(B) + θ
m∑
i=1

δhi(B) +
n∑
i=1

δi+m(B).

The following is a slightly simplified formulation of
Theorem 4.1.

Proposition 5.1 Consider the bijection φ : X → f
which sends X0 to f , Xa to ha for a = 1, . . . ,m, and
Xb to gb−m for b = m+ 1, . . .m+ n. Suppose that the
system described by Equation 1 is such that every bad
bracket B ∈ Br(X) has the property that

Evx(φ)(β(B)) =
k∑
a=1

ξaEvx(φ)(Ca) (9)

where ξi ∈ R and δθ(Ca) < δθ(B) for a = 1, . . . k.
Also suppose that 1 satisfies the LARC at x. Then the
system described by Equation 1 is STLC at x.

Proof: Provided that the dilation defined by Equation 8
is compatible with Ŝ(X,K) and that the collection of
all π’s comprise a group which is an input symmetry,
then this is simply a restatement of Theorem 4.1. As
previously mentioned, the dilation defined by Equa-
tion 8 is compatible with Ŝ(X,K) by construction.

We need to show that the group comprised of all the
π’s is an input symmetry. Define π# by π#(expZ) =
exp(π̂(Z)) Z ∈ L̂(X), where π̂ : L̂(X)→ L̂(X) is given
by π̂(Z) =

∑∞
i=1 π(Pi), if Z =

∑∞
i=1 Pi, where each Pi

is homogeneous of degree i. Clearly, π# simply fixes
X0, sends Xa to Xπm(a) for i = 1, . . .m and sends Xb



to Xπn(b−m)+m for b = m+ 1, . . . ,m+n for each term
in the infinite series.

Now, from Equation 6, we can write

π#(S(t)) =
∑
I

(∫ t

o

uI

)
Xπ(I)

where, for I = {i1, . . . , ik}, π(I) =
{πmn(i1), . . . , πmn(ik)}, where mn is either m or
n, depending upon whether i ∈ {1, . . . ,m} or
i ∈ {m+ 1, . . . ,m+ n} respectively. However,∑

I

(∫ t

o

uI

)
Xπ(I) =

∑
I

(∫ t

o

uπ−1(I)

)
XI

since the summation is over all possible multi–indices
I. Since π−1 maps K to K, it follows that π# maps
Ŝ(X,K) to Ŝ(X,K). �

Now, the proof to Proposition 2.1 follows easily.
First, scale the coefficients λiand αj in Equation 2

so that ∑
i

|λi|+
∑
j

|αj | = 1. (10)

Now, observe that if the system

ẋ = f(x) + h̃i(x)vi + g̃j(x)uj (11)

where h̃i = λihi and g̃j = αjgj, where λi and αj are
from Equation 10, is controllable, then so is the system
described by Equation 1 (because we have effectively
further restricted the set of allowable control inputs).

Note that the definition of “good” and “bad” defined
in this Appendix is slightly different from that defined
in the paragraph before Proposition 2.1. In particular,
Proposition 2.1 required

∑m
i=1 δ

hi(B) 6= 1 , for B to
be bad, but this is not the case for a bad bracket as
defined in the Appendix. Otherwise, the definitions of
good and bad brackets correspond.

Thus, if B is a bad bracket such that
∑m
i=1 δ

hi(B) 6=
1, then Proposition 2.1 is simply a restatement of
Proposition 5.1 where, instead of requiring the sym-
metrization of a bad bracket, defined in Equation 7,
to be ∆–neutralized, each term in the sum which
defines the symmetrization must be individually ∆–
neutralized.

Now if B is such that
∑m
i=1 δ

hi(B) = 1, then β(B)
is of the form

β(B) =
∑
πn∈Sn

π(B̃)

where where the single X ∈ {X1, . . . , Xm} in B is re-
placed by X1 + · · · + Xm in B̃ by the operation of∑
πm∈Sm π(B). Recall that, by assumption,

∑m
i=1 h̃i =

−
∑n
j=1 g̃j. Thus, if we let B̂ be the bracket B̃ with the

term X1+· · ·+Xm replaced by −(Xm+1+· · ·+Xm+n),
then, we have Evx(φ)(β(B)) = Evx(φ)(

∑
πn∈Sn B̂).

Since δθ(
∑
πn∈Sn B̂) < δθ(β(B)), the hypotheses of

Proposition 5.1 is satisfied.

6 Conclusions
In this paper, we have presented and illustrated the

application of a controllability test for control systems
which may have inputs constrained to be non–negative.
Although technically difficult to prove, this result is
relatively straightforward to use in applications. We
note that the results contained herein can be improved.
Roughly, we have treated the vector fields correspond-
ing to the constrained inputs in a manner similar to
that for the drift term. Because of the hypothesis ex-
pressed in Equation 2, it seems that it should be pos-
sible to treat the constrained inputs in a manner more
analogous to that of the normal input terms.

Of course, there are many other important related
problems, not the least of which is the control syn-
thesis problem. The controllability test presented is
useful mainly as a tool for analysis. Clearly solutions
to problems such as stabilization and trajectory gener-
ation for this class of systems are extremely important
and should be natural extensions of this work. Also,
as previously mentioned, possibly averaging techniques
could be used to obtain constructive controllability re-
sults.
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