
University of Notre Dame

Aerospace and Mechanical Engineering

AME 30314: Differential Equations, Vibrations and Controls I

Third Exam

B. Goodwine
December 8, 2010

ID Number: SOLUTIONS

NAME:

• Do not start or turn the page until instructed to do so.

• You have 50 minutes to complete this exam.

• This is an open book exam. You may consult the course text and anything you
have written in it, but nothing else.

• You may not use a calculator or other electronic device.

• There are three problems. Problems 1 and 2 are worth 35 points and Problem 3
is worth 30 points.

• The second part of Problem 1 requires some thought. It may be best to save
that for last (so that you have plenty of time to savor the experience).

• Your grade on this exam will constitute 15% of your total grade for the course.
Show your work if you want to receive partial credit for any problem.

• Answer each question in the space provided on each page. If you need more
space, use the back of the pages or use additional sheets of paper as necessary.

• If you do not have a stapler, do not take the pages apart.

Great minds discuss ideas; Average minds discuss events; Small minds discuss people.

–Eleanor Roosevelt



1. Consider a vibrating string described by the one dimensional wave equation

ρ
∂2u

∂t2
(x, t) = T̂

∂2u

∂x2
(x, t),

where ρ = 2, T̂ = 4, L = 3, u(0, t) = 0, u(L, t) = 0 and

u(x, 0) = 0,

∂u

∂t
(x, 0) =

{

1, a < x < b

0, otherwise,

where 0 < a < b < L. This models an impact on the string along the length of the string
between a and b.

(a) Determine the solution. (25 points)

(b) Figure 1 illustrates sin(nπx/L) (left) and cos(nπx/L) (right), for n = 1 and n = 10.
Consider the two cases

i. a = 0.45 and b = 0.55

ii. a = 0.1 and b = 0.2.

In which case will mode 1 be larger? In which case will mode 10 be larger? Explain your
answer by specifically referring to features from the plots in Figure 1. (10 points)
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Figure 1. Plots of sin(nπx/L) (left) and cos(nπx/L) (right)
for Problem 1 with n = 1 and n = 10.

Solution:

(a) This is the usual wave equation, so the solution is given in the book, for example in
Section 11.1.4, by

u(x, t) =

∞
∑

n=1

[

sin
nπx

L

(

an sin
αnπt

L
+ bn cos

αnπt

L

)]

2



where

an =
2

αnπ

∫ L

0

g(x) sin
nπx

L
dx

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx.

Since f(x) = 0, bn = 0. Evaluating the sin coefficients with α =
√
2 and L = 3 gives

an =

√
2

nπ

∫ b

a

sinnπx3dx = −
3
√
2

n2π2

(

cos
nπb

3
− cos

nπa

3

)

.

So

u(x, t) =

∞
∑

n=1

3
√
2

n2π2

(

cos
nπa

3
− cos

nπb

3

)

sin
nπx

L
sin

αnπt

L
.

(b) The difference between a and b is the same in each case. Hence, the size of the Fourier
coefficient will be largest when the slope of cos is largest.

• For the first mode, the slope is largest in the middle and small near the ends, hence
the first mode will be largest for case (a).

• For the tenth mode, the slope in the middle is small and the slope between x = 0.1
and x = 0.2 is fairly large. Hence, mode 10 will be largest for case (b).
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2. Consider the one-dimensional wave equation with damping

∂2u

∂x2
(x, t) =

∂2u

∂t2
(x, t) + b

∂u

∂t
(x, t), (1)

where u(0, t) = u(L, t) = 0 and

u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x).

(a) Assume a solution of the form u(x, t) = X(x)T (t) and determine the ordinary differential
equations that X(x) and T (t) satisfy.

(b) Determine the solutions for X(x) T (t).

• You only have to find a solution for X(x) which satisfies the boundary consitions.
You do not need to work exhaustively through all the possible cases.

• Also assume light damping that satisfies (bL)2 < 4π.

(c) Write the solution u(x, t) as an infinite series, which satisfies Equation 1 and the boundary
conditions.

(d) Determine an expression for any constants that appear in your solution from the previous
part.

(e) Indicate in your solution the feature that corresponds to adding damping and why it
would have an effect that would be expected from damping. Does the damping affect the
lower or higher modes more?

Solution

(a) Assuming u(x, t) = X(x)T (t) and substituting gives

X ′′(x)T (t) = X(x)T ′′(t) +X(x)T ′(t) ⇐⇒
X ′′(x)

X(x)
=

T ′′(t) + bT ′(t)

T (t)
= −λ

where λ is a constant. Hence

X ′′(x) + λX(x) = 0, T ′′(t) + bT ′(t) + λT (t) = 0.

(b) Assume that to satisfy the homogeneous bounday conditions, λ > 0 and hence

X(x) = c1 sin
√
λx+ c2 cos

√
λx.

The boundary condition at x = 0 gives c2 = 0. The boundary conditon at x = L gives

√
λL = nπ =⇒ λ =

(nπ

L

)2

for n = 1, 2, . . . , n. Hence, for each different n there is a solution

Xn(x) = cn sin
nπx

L
.
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Substituting λ into the equation for T (t) gives

T ′′(t) + bT ′(t) +
(nπ

L

)2

T (t) = 0.

Assuming a solution of the form
T (t) = ert

gives the characteristic equation

r2 + br +
(nπ

L

)2

= 0

so

r = −
b

2
± i

√
4n2π2 − b2L2

2L

and hence

Tn(T ) = e−bt/2 (an sinωt+ bn cosωt) ,

where

ωn =

√
4n2π2 − b2L2

2L
.

(c) Since the equation is linear, any linear combination of Xn(x)Tn(t) is also a solution;
hence,

u(x, t) =

∞
∑

n=1

sin
nπx

L
e−bt/2 (an sinωnt+ bn cosωnt)

where the constant in the solution for Xn(x) was absorbed into an and bn.

(d) At t = 0,

u(x, 0) =

∞
∑

n=1

bn sin
nπx

L

so

bn =
2

L

∫ L

0

sin
nπx

L
f(x)dx

which is the same.

Also

∂u

∂t
(x, t) =

∞
∑

n=1

sin
nπx

L
e−bt/2

[(

−
b

2
(an sinωnt+ bn cosωnt)

)

+ ωn (an cosωnt− bn sinωnt)

]

.

(be sure to use the product rule. and hence

u(x, 0) =
∞
∑

n=0

sin
nπx

L

(

−
b

2
bn + ωnan

)

= g(x).
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Multiplying by sin(mπx/L) and integraging with respect to x along the length of the
string gives

L

2

(

−
b

2
bn + ωnan

)

=

∫ L

0

g(x) sin
nπx

L
dx

or

an =
2L√

4n2π2 − b2L2

(

2

L

∫ L

0

g(x) sin
nπx

L
dx+

b

2
bn

)

where the value for ωn was substituted.

(e) The exponential decay term exp(−bt/2) makes the solution decay and is a consequence
of the damping. The rate of decay is the same for each mode.
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3. Figure 2 illustrates solutions in the phase plane of

ẍ+ 0.3ẋ− 4x+ x2 = 0 (2)

for various initial conditions.

-4

-2

0

2

4

-4 -2 0 2 4 6

ẋ
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Figure 2. Phase plane solutions to Equation 2.

(a) Determine the equilibrium points. (10 points)

(b) Determine a linear ordinary differential equation that approximates Equation 2 near the
point (4, 0). (10 points)

(c) Solve the differential equation you determined in the previous part and indicate the
manner to which it corresponds to the solutions in Figure 2. (10 points)

(a) If ẍ = ẋ = 0, then
−4x+ x2 = 0 =⇒ x(x− 4) = 0

so x = 0 and x = 4 are the equilibrium points, which corresponds to what appears in
Figure 2 as well.

(b) Near x = 4 the Taylor eeries for the nonlinear term is

x2 = 16 + 8(x− 4) + · · · . (3)

Therefore, the linear differential equation that approximates the nonlinear differential
equation near x = 4 is

ẍ+ 0.3ẋ− 4x+ 16 + 8(x− 4) = 0 =⇒ ẍ+ 0.3ẋ+ 4x = 16.
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(c) This is a linear, constant coefficient differential equaiton. The homogeneous solution is
determined by assuming an exponential solution, which has a characteristic equation

λ2 + 0.3λ+ 4 = 0

which has roots

λ = −
0.3

2
± i

√
15.91

2
,

and thus
xh = e−0.15t (c1 cosωt+ c2 sinωt)

where

ω =

√
15.91

2
.

The particular solution can be determined using undetermined coefficients. Since 16 is a
zeroth order polynomial, assume xp = A, which gives A = 4. Hence

x(t) = e−0.15t (c1 sinωt+ c2 cosωt) + 4.

These are decaying oscillations about x = 4, which corresponds to the spirals in Figure 2.
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