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I. INTRODUCTION

In digital control applications, controllers are typically im-
plemented in a time-triggered fashion, in which control tasks
are executed periodically. This design choice is motivated by
the fact that it enables the use of a well-developed theory on
sampled-data systems. This design choice, however, leads
to over-utilization of the available communication resources,
and/or a limited lifetime of battery-powered devices, as it
might not be necessary to execute the control task every
period to guarantee certain closed-loop performance. In fact,
this observation leads to the fundamental problem of deter-
mining the optimal sampling and communication strategies,
where optimality needs to reflect both communication cost
as well as control performance.

It is expected that the solution to such problems results
in control strategies that abandon the time-triggered periodic
control paradigm. Two approaches that abandon the periodic
communication pattern are event-triggered control (ETC),
and self-triggered control (STC). In ETC and STC, the
control law consists of two elements: namely, a feedback
controller that computes the control input and a triggering
mechanism that determines when the control input has to
be updated. The difference between event-triggered control
and self-triggered control is that in the former the triggering
consists of verifying a specific condition continuously and
when it becomes true, the control task is triggered, while in
the latter at a control update time the next update time is
pre-computed.

Currently, ETC and STC form popular research areas.
However, three important issues have only received marginal
attention: (i) the co-design of both the feedback law and the
triggering mechanism, (ii) providing performance guarantees
by design, and (iii) dealing with constraints on control inputs
and states. In this presentation, we propose self-triggered
and event-triggered approaches addressing the mentioned
issues and allowing to trade guaranteed performance lev-
els with utilization of communication resources. We will
consider discrete-time linear systems and the performance
will be measured in terms of a standard LQR-type of cost.
The methods are such that an LQR cost can be chosen
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a priori, and the design approach directly guarantees this
performance level for the self-triggered and event-triggered
controllers. We will present three novel strategies that aim
at reducing the use of communication resources, at the
price of obtaining a lower but guaranteed sub-optimal level
of control performance. The first two methods are still of
an emulation-based nature, while the third approach will
be a co-design method. Although the focus will be on a
discrete-time setup, the results can easily be applied to
continuous-time linear systems as well. In the continuous-
time case, the control schemes lead to so-called periodic
event-triggered controllers with performance guarantees in
terms of continuous-time LQR cost.

II. PROBLEM FORMULATION

In this presentation, we consider the regulation of

xt+1 = Axt +But, t ∈ N, (1)

in which xt ∈ Rnx is the state and ut ∈ Rnu is the input,
respectively, at discrete time t ∈ N. In particular, we are
interested in control strategies that guarantee certain control
performance in terms of an infinite horizon cost function

J(x0,u) =
∑∞

t=0

(
x⊤
t Qxt + 2x⊤

t Sut + u⊤
t Rut

)
, (2)

based on the weighting matrices Q, R and S. Here, u =
(u0, u1, . . .). When transmission of measured states and
updates of input can occur, for each t ∈ N, it is well known
that the optimal cost for initial state x0 is given by

min
u

J(x0,u) = V (x0) =∑∞
t=0

(
x⊤
t Qxt + 2x⊤

t Su
∗
t + (u∗

t )
⊤Ru∗

t

)
= x⊤

0 Px0, (3)

where P is the solution to the discrete algebraic Riccati
equation and u∗

t , t ∈ N, is given by the feedback policy

u∗
t =K∗xt with K∗=−

(
R+B⊤PB

)−1 (
B⊤PA+ S⊤).

As already indicated, the LQR optimal control law requires
the transmission of measured states and updates of control
actions for each sample instant t ∈ N. In this presentation,
we are interested in synthesizing control laws that require
(much) less communication between sensors, controllers, and
actuators, while still providing guarantees on the quadratic
performance criterion (3). More specifically, we are inter-
ested in reducing the number of times the input is updated,
while still satisfying a sub-optimality condition of the form∑∞

t=0

(
x⊤
t Qxt + 2x⊤

t Sut + u⊤
t Rut

)
≤ βV (x0), (4)

where V (x0) denotes the optimal LQR cost as in (3) and β ≥
1 can be chosen to balance the reduction in communications
and the degree of sub-optimality.



To address this problem we propose three strategies: A
predictive approach, an event-triggered approach and a self-
triggered approach. The former two approaches are based on
emulation, in the sense that the control values are designed
irrespective of the eventual predictive or event-triggered im-
plementation, whereas the third strategy solves the co-design
problem of simultaneously synthesizing the next update time
and the next corresponding control value. Because space
limitations do not allow all three approaches to be discussed,
we only briefly describe the latter approach.

III. SELF-TRIGGERED LQR CONTROL

The self-triggered strategy is based on holding the current
input value as long as possible while still guaranteeing (4)
for a suitably selected β ≥ 1. In fact, the control strategy
will have the structure{

tl+1 = tl +M(xtl)
ut = ūl ∈ U(xtl), t ∈ N[tl,tl+1).

(5)

with t0 := 0, M : Rnx → N and U : Rnx ⇒ Rnu . Here
M(x) denotes the “sleep” time between two transmissions
when being in state x and U(x) denotes the set of possible
control values.

Instrumental in the co-design of the mappings M and U
will be the dissipation-like inequality∑tl+1−1

t=tl

(
x⊤
t Qxt + 2x⊤

t Sūl

)
+(tl+1−tl)ū

⊤
l Rūl+βV (xtl+1

)

≤ βV (xtl) (6)

for update time tl, l ∈ N, which can be shown to guarantee
the sub-optimality condition (4). In fact, at update time tl, l ∈
N, with state xtl we aim at finding a maximal value for tl+1

(which results in M(xtl) = tl+1 − tl) and a corresponding
value ūl ∈ U(xtl) such that (6) is satisfied.

This idea results in a self-triggered control algorithm as in
(5) with M(x) = sup{M ∈ N | x⊤SMx ≤ 0} and U(x) =
{KM(x)x}, where SM ∈ Rnx×nx and KM ∈ Rnu×nx ,
M ∈ N are predefined matrices that can be determined off-
line. This control law is well defined and satisfies the sub-
optimality condition (4).

IV. ILLUSTRATIVE EXAMPLE

To illustrate the self-triggered approach, consider a double
integrator, whose continuous-time dynamics is given by

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u =: Acx+Bcu. (7)

By exact discretization with sampling period h, assuming
a zero-order hold input between two sampling instants, we
obtain a discrete-time LTI system of the form (1), where

A = eAch and B =
∫ h

0
eAcsdsBc.

The control performance is measured by a continuous-time
infinite horizon cost function of the form

Jc(x0,u) =
∫∞
0

(
x⊤(s)Qcx(s) + u⊤(s)Rcu(s)

)
ds, (8)

where Qc =
[
1 0
0 1

]
and Rc = 1. By exact discretization

of the continuous-time cost function (8), we obtain a discrete-
time infinite horizon cost (2), which is exactly equal to (8)
given the sampled-data implementation.
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Fig. 1: Cost of implementation at (average) inter-
transmission times for different control strategies, averaged
over eight initial conditions.

We compare our self-triggered scheme based on h = 0.25
and for various values of β, with optimal LQR controllers
corresponding to various values of h. Note that the latter
approach with larger values of h results in less usage of
communication resources as well, and is, in fact, a standard
discrete-time LQR problem. In Fig. 1 the results are plotted.
This figure shows the performance with respect to the
average sampling time havg. To make a fair comparison,
the results presented are obtained by averaging over eight
initial conditions on the unit disc. Fig. 1 shows the cost
Jc of the continuous-time controller and the cost Jd(h) of
the optimal periodic LQR controller for various sampling
times h. Moreover, for β ∈ [1, 1.05, . . . , 1.95, 2], Fig. 1
shows the upper-bound of the cost for the self-triggered
implementation βV (x0), and the true cost of both the self-
triggered and event-triggered approach computed by using
simulations over a finite, but sufficiently large, horizon. From
Fig. 1 we can see that the self-triggered approach for β = 1.2
results in havg = 4.6 with true performance 2, whereas
periodic LQR control with cost 2 requires sampling at h =
1.3. So, on average, we can sample and transmit a factor
3.5 less by using the self-triggered approach. Interestingly,
the minimal inter-event time hmin for the self-triggered
controller is hmin = 1 for β = 1.2. Notice also that the
cost of a periodic LQR controller at h = 4.6 is 6.9, which is
three times larger than the cost of the self-triggered approach
at havg = 4.6. These observations demonstrate that self-
triggered control offers possibilities that cannot be achieved
by sticking to the periodic time-triggered control paradigm.

V. EXTENSIONS AND OUTLOOK

This short summary discussed only the unconstrained
case, even though extensions of the presented ideas towards
constrained linear systems are possible, see [1]. This results
in self-triggered MPC laws. Currently, we are extending the
work also in the direction of nonlinear systems and using
other performance measures.
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