













- 3 (a) an ability to apply knowledge of mathematics, science, and engineering
- 3 (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- 3 (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- 3 (d) an ability to function on multidisciplinary teams
- 3 (e) an ability to identify, formulate, and solve engineering problems
- 3 (f) an understanding of professional and ethical responsibility
- 3 (g) an ability to communicate effectively
- 3 (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- 3 (i) a recognition of the need for, and an ability to engage in life-long learning
- 3 (j) a knowledge of contemporary issues
- 3 (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

7











### **Standard 1 – The Context**

Adoption of the principle that product, process, and system lifecycle development and deployment --Conceiving, Designing, Implementing and Operating -- are the context for engineering education

Description: A CDIO program is based on the principle that product, process, and system lifecycle development and deployment are the appropriate context for engineering education. Conceiving--Designing--Implementing--Operating is a model of the entire product, process, and system lifecycle. The Conceive stage includes defining customer needs; considering technology, enterprise strategy, and regulations; and, developing conceptual, technical, and business plans. The Design stage focuses on creating the design, that is, the plans, drawings, and algorithms that describe what will be implemented. The Implement stage refers to the transformation of the design into the product, process, or system, including manufacturing, coding, testing and validation. The final stage, Operate, uses the implemented product or process to deliver the intended value, including maintaining, evolving and retiring the system. The product, process, and system lifecycle is considered the context for engineering education in that it is part of the cultural framework, or environment, in which technical knowledge and other skills are taught, practiced and learned. The principle is adopted by a program when there is explicit agreement of faculty to transition to a CDIO program, and support from program leaders to sustain reform initiatives.

*Rationale:* Beginning engineers should be able to Conceive--Design--Implement--Operate complex valueadded engineering products, processes, and systems in modern team-based environments. They should be able to participate in engineering processes, contribute to the development of engineering products, and do so while working to professional standards in any organization. This is the essence of the engineering profession.

20

### Standard 2 – Learning Outcomes

- Specific, detailed learning outcomes for personal and interpersonal skills, and product, process, and system building skills, as well as disciplinary knowledge, consistent with program goals and validated by program stakeholders
  - Base them on the comprehensive CDIO Syllabus for consistency and completeness

21













## **Standard 9 – Enhancement of Faculty Competence**

 Actions that enhance faculty competence in personal and interpersonal skills, and product, process, and system building skills

28











# A Learning Context for Engineering: CDIO



🖲 cḋio"

**Conceive**: customer needs, technology, enterprise strategy, regulations; and conceptual, technical, and business plans

**Design**: plans, drawings, and algorithms that describe what will be implemented

**Implement**: transformation of the design into the product, process, or system, including manufacturing, coding, testing and validation

**Operate**: the implemented product or process delivering the intended value, including maintaining, evolving and retiring the system

<section-header><text><text><text>

Early Fall at MIT (2002)



| The CDI          | O Sy | llabus v 2.0 as Program Outcomes                                                                |
|------------------|------|-------------------------------------------------------------------------------------------------|
| 1.0 Disciplinary | 1.1  | Demonstrate a capacity to use the principles of the                                             |
| Knowledge and    |      | underlying sciences                                                                             |
| Reasoning        | 1.2  | Apply the principles of fundamental engineering science                                         |
|                  | 1.3  | Demonstrate a capacity to apply advanced                                                        |
|                  |      | engineering knowledge in the professional areas of                                              |
|                  |      | engineering                                                                                     |
| 2.0 Personal     | 2.1  | Analyze and solve engineering problems                                                          |
| and              | 2.2  | Conduct investigations and experiments about                                                    |
| Professional     |      | engineering problems                                                                            |
| Skills and       | 2.3  | - j                                                                                             |
| Attributes       | 2.4  | Demonstrate personal and professional habits that contribute to successful engineering practice |
|                  | 2.5  | Demonstrate ethics, equity, and other                                                           |
|                  |      | responsibilities in engineering practice                                                        |
| cdio             |      |                                                                                                 |

| 3.0           | 3.1 |                                                                                       |
|---------------|-----|---------------------------------------------------------------------------------------|
| Interpersonal | 3.2 | Communicate effectively                                                               |
| Skills        | 3.3 | Communicate effectively in one or more foreign languages.                             |
| 4.0           | 4.1 | Recognize the importance of the social context in                                     |
| CDIO          |     | the practice of engineering                                                           |
|               | 4.2 | Appreciate different enterprise cultures and work successfully in organizations       |
|               | 4.3 | Conceive and develop engineering systems                                              |
|               | 4.4 | Design complex engineering systems                                                    |
|               | 4.5 | Implement processes of hardware and software<br>and manage the implementation process |
|               | 4.6 | Operate complex systems and processes and manage operations                           |
| 💈 cdio        | 4.7 | Lead engineering endeavors                                                            |
|               | 4.8 | Demonstrate the skills of entrepreneurship                                            |

Γ





cdio Validation of CDIO Learning Outcomes Massachusetts Institute of Technology Lead or Innovate 4.5 Practice Skillfully Faculty Industry Understand Y. Alum O. Alu 2 Participate Expose 2.5 mossional hutbure A A Design Process 24 Personal Antibut A1 Societal conte 3. Teamin 4.2 Business Cont 23 Systems Think 3.2 Communicati A.3 Conceil 4.5 Inpenenti A,OOPERATI 22Experiment





|                                                   | ABET EC2010 Criterion 3 |                         |   |      |   |   |   |   |   |   |   |
|---------------------------------------------------|-------------------------|-------------------------|---|------|---|---|---|---|---|---|---|
| CDIO Syllabus                                     | а                       | b                       | с | d    | е | f | g | h | i | j | k |
| 1.1 Knowledge of Underlying Mathematics, Science  |                         |                         |   |      |   |   |   |   |   |   |   |
| 1.2 Core Engineering Fundamental Knowledge        |                         |                         |   |      |   |   |   |   |   |   |   |
| 1.3 Adv. Engr. Fund. Knowledge, Methods, Tools    |                         |                         |   |      |   |   |   |   |   |   |   |
| 2.1 Analytical Reasoning and Problem Solving      |                         |                         |   |      |   |   |   |   |   |   |   |
| 2.2 Exper., Investigation and Knowledge Discovery |                         |                         |   |      |   |   |   |   |   |   |   |
| 2.3 System Thinking                               |                         |                         |   |      |   |   |   |   |   |   |   |
| 2.4 Attitudes, Thought and Learning               |                         |                         |   |      |   |   |   |   |   |   |   |
| 2.5 Ethics, Equity and Other Responsibilities     |                         |                         |   |      |   |   |   |   |   |   |   |
| 3.1 Teamwork                                      |                         |                         |   |      |   |   |   |   |   |   |   |
| 3.2 Communications                                |                         |                         |   |      |   |   |   |   |   |   |   |
| 3.3 Communication in Foreign Languages            |                         |                         |   |      |   |   |   |   |   |   |   |
| 4.1 External, Societal and Environmental Context  |                         |                         |   |      |   |   |   |   |   |   |   |
| 4.2 Enterprise and Business Context               |                         |                         |   |      |   |   |   |   |   |   |   |
| 4.3 Conceiving, Systems Engr. and Management      |                         |                         |   |      |   |   |   |   |   |   |   |
| 4.4 Designing                                     |                         |                         |   |      |   |   |   |   |   |   |   |
| 4.5 Implementing                                  |                         |                         |   |      |   |   |   |   |   |   |   |
| 4.6 Operating                                     |                         |                         |   |      |   |   |   |   |   |   |   |
|                                                   |                         | Strong Correlation Good |   | tion |   |   |   |   |   |   |   |

















(See The CDIO Standards v 2.0)









|                                          | Levels Of Project Complexity |            |       |               |            |  |  |  |  |
|------------------------------------------|------------------------------|------------|-------|---------------|------------|--|--|--|--|
|                                          |                              | Increasin  | g Cor | omplexity →→→ |            |  |  |  |  |
| Structure Structured Unstructured        | Activity                     | I-O        | D-    | I-O C-D-I-O   |            |  |  |  |  |
|                                          | Structure                    | Structure  | ed    | Uns           | structured |  |  |  |  |
| Solution Known Unknown                   | Solution                     | Knowr      | I     | U             | nknown     |  |  |  |  |
| TeamIndividualSmall<br>TeamLarge<br>Team | Team                         | Individual |       |               | -          |  |  |  |  |
| Duration Days Weeks Months               | Duration                     | Days       | Weeks |               | Months     |  |  |  |  |

### CDIO Standard 6 : Engineering Workspaces



Workspaces and laboratories that support and encourage hands-on learning of product, process, and system building, disciplinary knowledge, and social learning.

- Students are directly engaged in their own learning
- Settings where students learn from each other
- Newly created or remodeled from existing spaces

(See The CDIO Standards v 2.0)













| Students at the Center |                   |                          |                                                                                                                  |  |  |  |  |  |  |
|------------------------|-------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                        | STUDENT           | TEACHER                  | EXAMPLES                                                                                                         |  |  |  |  |  |  |
| Stage 1                | Dependent         | Authority,<br>Coach      | Coaching with immediate feedback.<br>Drill. Informational lecture.<br>Overcoming deficiencies and<br>resistance. |  |  |  |  |  |  |
| Stage 2                | Interested        | Motivator,<br>Guide      | Inspiring lecture plus guided<br>discussion. Goal-setting and learning<br>strategies.                            |  |  |  |  |  |  |
| Stage 3                | Involved          | Facilitator              | Discussion facilitated by teacher who participates as equal. Seminar. Group projects.                            |  |  |  |  |  |  |
| Stage 4                | Self-<br>directed | Consultant,<br>Delegator | Internship, dissertation, individual work or self-directed study group.                                          |  |  |  |  |  |  |

| Changing Roles for Instructors |                            |                                 |                   |                    |  |  |  |  |  |
|--------------------------------|----------------------------|---------------------------------|-------------------|--------------------|--|--|--|--|--|
|                                | T1<br>Authority,<br>Expert | T2<br>Salesperson,<br>Motivator | T3<br>Facilitator | T4<br>Delegator    |  |  |  |  |  |
| S4<br>Self-Directed<br>Learner | Severe<br>Mismatch         | Mismatch                        | Near Match        | Match              |  |  |  |  |  |
| S3<br>Involved<br>Learner      | Mismatch                   | Near Match                      | Match             | Near Match         |  |  |  |  |  |
| S2<br>Interested<br>Learner    | Near Match                 | Match                           | Near Match        | Mismatch           |  |  |  |  |  |
| S1<br>Dependent<br>Learner     | Match                      | Near Match                      | Mismatch          | Severe<br>Mismatch |  |  |  |  |  |
|                                |                            |                                 | Adapted           | from Grow, 77991   |  |  |  |  |  |













#### **Rating The Challenges** What are your main challenges to designing and implementing a curriculum that is centered on students and focused on outcomes? в С **CHALLENGE** A MODERATE A BIG NOT SO CHALLENGE DIFFICULT CHALLENGE Identifying and addressing the needs of program stakeholders Persuading faculty to shift their focus to an outcomes-based approach Integrating professional practice throughout the curriculum Providing relevant experiences for students in a cost-effective way Sustaining enthusiasm for curriculum reform beyond the initial stages 84



