Title: Control of solar thermal plants Eduardo F. Camacho Dpto. Ingeniería de Sistemas y Automática. Escuela Superior de Ingenieros. Camino de los Descubrimientos Sevilla, Spain. Abstract: The use of renewable energy, such as solar energy, experienced a great impulse during the second half of the seventies just after the first big oil crisis. At that time economic issues were the most important factors and the interest in these types of processes decreased when the oil prices fell. There is a renewed interest in the use of renewable energies nowadays driven by the need of reducing the high environmental impact produced by the use of fossil energy systems. There are two main drawbacks of energy systems: a) the resulting energy costs are not yet competitive and b) solar energy is not always available when needed. Considerable research efforts are being devoted to techniques which may help to overcome these drawbacks, control is one of those techniques. A thermal solar power plant basically consists of a system where the solar energy is collected, then concentrated and finally transferred to a fluid. The thermal energy of the hot fluid is then used for different purposes such as generating electricity, the desalination of sea water etc. While in other power generating processes, the main source of energy (the fuel) can be manipulated as it is used as the main control variable, in solar energy systems, the main source of power which is solar radiation cannot be manipulated and furthermore it changes in a seasonal and on a daily base acting as a disturbance when considering it from a control point of view. Solar plants have all the characteristics needed for using advanced control strategies able to cope with changing dynamics, (nonlinearities and uncertainties). As fixed PID controllers cannot cope with some of the mentioned problems, they have to be detuned with low gain, producing sluggish responses or if they are tightly tuned they may produce high oscillations when the dynamics of the process vary, due to environmental and/or operating conditions changes. The use of more efficient control strategies resulting in better responses would increase the number of operational hours of the plants. The talk describes the main solar thermal plants, the control problems involved and how control systems can help in increasing their efficiency. Some illustrative examples are given.