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Model Predictive Control (MPC) — the basic idea

Plan over a future horizon
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The receding horizon concept
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The optimisation problem

Model: Linear & Cost: Convex & Constraints: Convex

Then:
Convex optimisation problem (QP, LP, ...)
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The optimisation problem

Model: Linear & Cost: Convex & Constraints: Convex
Then:
Convex optimisation problem (QP, LP, ...)

Else:
Non-convex optimisation — local minima

But:
Must be solved ‘quickly’.

So:
Formulate convex problem if possible.
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Over-actuated systems
Aircraft example: 12 states, nearly 30 actuators
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Over-actuated systems
Ship roll stabilisation: fins and rudder

Cruise ship
Michelangelo
(1962)
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Over-actuated systems

e Standard MPC moves all the actuators all of the time (like LQR).
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Over-actuated systems

e Standard MPC moves all the actuators all of the time (like LQR).
e We may have preferred actuators:

e Aircraft: Ailerons normally, spoilers only if necessary.
e Ship roll control: Stabilisers normally, rudder only if necessary.

e Actuators may ‘fight" each other to get differential action.

e So we may want sparse solutions.

If control actions are expensive, we may want
sparse in time solutions — like Statistical Process Control.
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How to get sparse solutions?

‘Regularise’ by adding ||ullq (or ||Aullq) penalty term
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How to get sparse solutions?
‘Regularise’ by adding ||ullq (or ||Aullq) penalty term

= 1 is the smallest g that gives a convex problem.
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l.sso-MPC gives sparse solutions for large enough )\

Example: Unstable toy plant
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l.sso-MPC gives sparse solutions for large enough )\

Example: Ship roll control
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Figure: Solid: £;50-MPC (A = 1.8). Dashed: Standard MPC.
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Why “/....-MPC’?

e LASSO: Li-constrained fitting for statistics and data mining.
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Why “/,s,-MPC’?

LASSO: Li-constrained fitting for statistics and data mining.

e A method for variable selection —
which are the important explanatory variables?

e Has been used in ‘sparse regression’, data compression,
wavelet expansions, . ..

It's not ‘/>-MPC’ or ‘4/1-MPC'.

JNIVERSITY OF

MBRIDGE




l1s50-MPC: Anything new here?

Is control different from modelling/statistics?

« Stability
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l1s50-MPC: Anything new here?

Is control different from modelling/statistics?

e Stability
1. Dual-mode approach: Switch to regular LQR when close to
set-point. But then sparseness is lost in the terminal set.
2. Contractive terminal set approach: %y € {x: F(x) < c},
with {cx} decreasing according to LQR ‘cost-to-go’.
(F(x) is terminal cost.)
3. New terminal cost which preserves sparseness in the terminal set.
* Robustness: Add/tighten constraints to get recursive feasibility with
model xx11 = Axx + Bug + wg, wx € W.
e Offset-free tracking: Use disturbance estimator and target calculator
(modified for ¢; term).
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Conclusions

e MPC is very successful, in great demand.

e Over-actuated systems or expensive controls: £,5,-MPC.
(An example of What not How.)

e Simultaneous regulation and control allocation.

e Further developments:
* Tuning to select preferred actuators, enhance pre-existing controllers.
¢ Design to maximise region of attraction.
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