

$\ell_{asso}-MPC$ for Over-actuated Systems

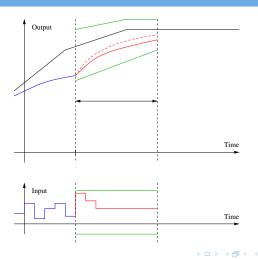
Jan Maciejowski and Marco Gallieri

Workshop on the Control of Cyber-Physical Systems Notre Dame London, 20 October 2012

Cambridge University Engineering Department

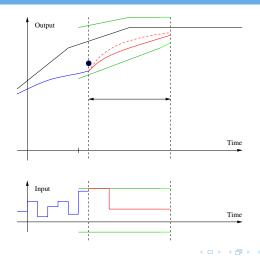
Model Predictive Control (MPC) — the basic idea

Plan over a future horizon



Model Predictive Control (MPC) — the basic idea

The receding horizon concept




```
lf:
```

Model: Linear & Cost: Convex & Constraints: Convex

Then:

Convex optimisation problem (QP, LP, ...)

lf:

Model: Linear & Cost: Convex & Constraints: Convex

Then:

Convex optimisation problem (QP, LP, ...)

Else:

Non-convex optimisation — local minima

```
If:

Model: Linear & Cost: Convex & Constraints: Convex

Then:

Convex optimisation problem (QP, LP, ...)

Else:

Non-convex optimisation — local minima

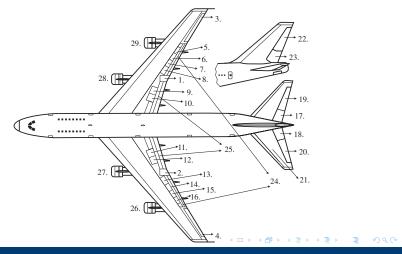
But:

Must be solved 'quickly'.
```

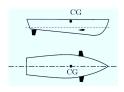
```
If:
    Model: Linear & Cost: Convex & Constraints: Convex
Then:
     Convex optimisation problem (QP, LP, ...)
Else:
    Non-convex optimisation — local minima
But:
    Must be solved 'quickly'.
So:
```

Formulate convex problem if possible.

Aircraft example: 12 states, nearly 30 actuators



Ship roll stabilisation: fins and rudder



Cruise ship Michelangelo (1962)

• Standard MPC moves all the actuators all of the time (like LQR).

- Standard MPC moves all the actuators all of the time (like LQR).
- We may have *preferred* actuators:

- Standard MPC moves all the actuators all of the time (like LQR).
- We may have *preferred* actuators:
 - Aircraft: Ailerons normally, spoilers only if necessary.

- Standard MPC moves all the actuators all of the time (like LQR).
- We may have preferred actuators:
 - Aircraft: Ailerons normally, spoilers only if necessary.
 - Ship roll control: Stabilisers normally, rudder only if necessary.

- Standard MPC moves all the actuators all of the time (like LQR).
- We may have preferred actuators:
 - · Aircraft: Ailerons normally, spoilers only if necessary.
 - Ship roll control: Stabilisers normally, rudder only if necessary.
- Actuators may 'fight' each other to get differential action.

- Standard MPC moves all the actuators all of the time (like LQR).
- We may have preferred actuators:
 - Aircraft: Ailerons normally, spoilers only if necessary.
 - Ship roll control: Stabilisers normally, rudder only if necessary.
- Actuators may 'fight' each other to get differential action.
- So we may want sparse solutions.

- Standard MPC moves all the actuators all of the time (like LQR).
- We may have preferred actuators:
 - · Aircraft: Ailerons normally, spoilers only if necessary.
 - Ship roll control: Stabilisers normally, rudder only if necessary.
- Actuators may 'fight' each other to get differential action.
- So we may want sparse solutions.
- If control actions are expensive, we may want sparse in time solutions — like Statistical Process Control.

'Regularise' by adding $\|u\|_q$ (or $\|\Delta u\|_q$) penalty term

$$\min_{\mathbf{u}} F(x_N) + \sum_{k=0}^{N-1} \left(x_k^T Q x_k + u_k^T R u_k \right)$$

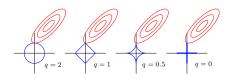
subject to constraints.

'Regularise' by adding $\|u\|_q$ (or $\|\Delta u\|_q$) penalty term

$$\min_{\mathbf{u}} F(x_N) + \sum_{k=0}^{N-1} \left(x_k^T Q x_k + u_k^T R u_k \right) + \lambda \| u_k \|_q \quad \text{subject to constraints.}$$

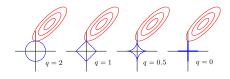
'Regularise' by adding $\|u\|_q$ (or $\|\Delta u\|_q$) penalty term

$$\min_{\mathbf{u}} F(x_N) + \sum_{k=0}^{N-1} \left(x_k^T Q x_k + u_k^T R u_k \right) + \lambda \| \mathbf{u}_k \|_q \quad \text{subject to constraints.}$$



'Regularise' by adding $\|u\|_q$ (or $\|\Delta u\|_q$) penalty term

$$\min_{\mathbf{u}} F(x_N) + \sum_{k=0}^{N-1} \left(x_k^T Q x_k + u_k^T R u_k \right) + \lambda \| \mathbf{u}_k \|_q \quad \text{subject to constraints.}$$



q=1 is the smallest q that gives a convex problem.

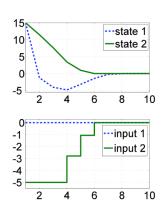
ℓ_{asso} -MPC gives sparse solutions for large enough λ Example: Unstable toy plant

$$A = \begin{bmatrix} 0.15 & 0.1 \\ 0 & 1.1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$Q = \begin{bmatrix} 20 & 0 \\ 0 & 60 \end{bmatrix} \qquad R = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}$$

$$\|x\|_{\infty} \le 20 \qquad \qquad \|u\|_{\infty} \le 5$$

$$\lambda = 300$$



ℓ_{asso} -MPC gives sparse solutions for large enough λ Example: Ship roll control

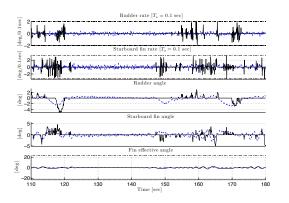


Figure: Solid: ℓ_{asso} -MPC ($\lambda = 1.8$). Dashed: Standard MPC.

• LASSO: L_1 -constrained fitting for statistics and data mining.

- LASSO: L₁-constrained fitting for statistics and data mining.
- A method for variable selection which are the important explanatory variables?

- LASSO: L₁-constrained fitting for statistics and data mining.
- A method for variable selection which are the important explanatory variables?
- Has been used in 'sparse regression', data compression, wavelet expansions, . . .

- LASSO: L₁-constrained fitting for statistics and data mining.
- A method for variable selection which are the important explanatory variables?
- Has been used in 'sparse regression', data compression, wavelet expansions, . . .
- It's not ' ℓ_2 -MPC' or ' ℓ_1 -MPC'.

Is control different from modelling/statistics?

Stability

- Stability
 - 1. *Dual-mode* approach: Switch to regular LQR when close to set-point. But then sparseness is lost in the terminal set.

- Stability
 - 1. *Dual-mode* approach: Switch to regular LQR when close to set-point. But then sparseness is lost in the terminal set.
 - **2.** Contractive terminal set approach: $\hat{x}_{k+N} \in \{x : F(x) \le c_k\}$, with $\{c_k\}$ decreasing according to LQR 'cost-to-go'. (F(x) is terminal cost.)

- Stability
 - 1. *Dual-mode* approach: Switch to regular LQR when close to set-point. But then sparseness is lost in the terminal set.
 - 2. Contractive terminal set approach: $\hat{x}_{k+N} \in \{x : F(x) \le c_k\}$, with $\{c_k\}$ decreasing according to LQR 'cost-to-go'. (F(x) is terminal cost.)
 - 3. New terminal cost which preserves sparseness in the terminal set.

- Stability
 - Dual-mode approach: Switch to regular LQR when close to set-point. But then sparseness is lost in the terminal set.
 - Contractive terminal set approach: \$\hat{x}_{k+N} \in \{x : F(x) \le c_k\}\$, with \$\{c_k\}\$ decreasing according to LQR 'cost-to-go'. (F(x) is terminal cost.)
 - 3. New terminal cost which preserves sparseness in the terminal set.
- Robustness: Add/tighten constraints to get *recursive feasibility* with model $x_{k+1} = Ax_k + Bu_k + w_k$, $w_k \in W$.

- Stability
 - Dual-mode approach: Switch to regular LQR when close to set-point. But then sparseness is lost in the terminal set.
 - 2. Contractive terminal set approach: $\hat{x}_{k+N} \in \{x : F(x) \le c_k\}$, with $\{c_k\}$ decreasing according to LQR 'cost-to-go'. (F(x)) is terminal cost.)
 - 3. New terminal cost which preserves sparseness in the terminal set.
- Robustness: Add/tighten constraints to get recursive feasibility with model $x_{k+1} = Ax_k + Bu_k + w_k$, $w_k \in W$.
- Offset-free tracking: Use disturbance estimator and target calculator (modified for ℓ_1 term).

• MPC is very successful, in great demand.

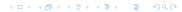
- MPC is very successful, in great demand.
- Over-actuated systems or expensive controls: ℓ_{asso} -MPC. (An example of What not How.)

- MPC is very successful, in great demand.
- Over-actuated systems or expensive controls: ℓ_{asso} -MPC. (An example of What not How.)
- · Simultaneous regulation and control allocation.

- MPC is very successful, in great demand.
- Over-actuated systems or expensive controls: ℓ_{asso} -MPC. (An example of What not How.)
- Simultaneous regulation and control allocation.
- Further developments:

- MPC is very successful, in great demand.
- Over-actuated systems or expensive controls: ℓ_{asso} -MPC. (An example of What not How.)
- Simultaneous regulation and control allocation.
- Further developments:
 - Tuning to select preferred actuators, enhance pre-existing controllers.

- MPC is very successful, in great demand.
- Over-actuated systems or expensive controls: ℓ_{asso} -MPC. (An example of What not How.)
- Simultaneous regulation and control allocation.
- Further developments:
 - Tuning to select preferred actuators, enhance pre-existing controllers.
 - Design to maximise region of attraction.



References

- M. Gallieri and J.M. Maciejowski, The ℓ_{asso} MPC: Smart regulation of over-actuated systems, *Proc. American Control Conference*, Montreal, July 2012.
- H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd, Trajectory generation using sum-of-norms regularization, *Proc. IEEE* Conference on Decision and Control, Atlanta, December 2010.

