

Simulation of Cyber-Physical Control Systems

Karl-Erik Årzén Lund University

Notre Dame Workshop on Control of Cyber-Physical Systems, London, Oct 20-21, 2012

Contents

- Simulation of CPS
- TrueTime
 - New features
- Truetime in Simulink
 - Mobile robotics demo
- Truetime in Modelica
 - Demo

CPS and Control

- Large-scale distributed and decentralized control
 - Large scale
 - Decentralized analysis, synthesis and optimization
 - Utilize sparsity
- Resource-constrained implementation platforms
 - Embedded and networked control
 - Temporal nondeterminism and temporal robustness
 - Delays, jitter, lost packets, quantization,
 - Codesign, cross/layer design,

Simulation of CPS

- Complement to formal methods
- When formal methods are not applicable
- Need simulation tools to cover both the cyber part and and the physical part
- Holistic co-simulation of
 - computations inside the computers
 - tasks and interrupt handlers
 - wireless and wired communication
 - dynamics of the physical parts
 - sensor and actuator dynamics
 - the power consumption in the nodes

TrueTime

- Simulator for the cyber parts of CPS
- Embedded in physical system simulators (Simulink, Modelica)
- · Simulation of
 - Real-time kernels
 - Wired and wireless networks
- Developed in Lund since 1999
 - Version 2.0
 - Large userbase
 - GPL

20 October 2012

Modeling of Computations

- Simulates an event-based real-time kernel
- Executes user-defined tasks and interrupt handlers
 - C/C++ or M-files
- Arbitrary user-defined scheduling policies
- Real-time primitives
- Code structured into code segments
 - · emulate multithreading


```
function [exectime,data] = my_ctrl(segment,data)
switch segment,
    case 1,
    data.y = ttAnalogIn(1);
    data.u = calculate_output(data.x,data.y);
    exectime = 0.002;
    case 2,
    ttAnalogOut(1,data.u);
    data.x = update_state(data.x,data.y);
    exectime = 0.004;
    case 3,
    exectime = -1;
end
```

7

Modeling of Wired Networks

- Models the medium access delay and the transmission delay
- A number of pre-defined data-link layer protocols
 - Switched Ethernet
 - CAN
 - Round Robin
 - FDMA
 - TDMA
 - CSMA/CD (Shared Ethernet)
 - Flexray
 - PROFINET IO

TrueTime Network

Modeling of Wireless Networks

- Supports two common MAC layer policies:
 - IEEE 802.11 b/g (WLAN)
 - IEEE 802.15.4 ("ZigBee")
- x and y inputs for node locations (2D)

- Radio models:
 - Exponential path loss (default)
 - User-defined models to model fading etc

9

New Features

- Multicore kernels
 - Each TrueTime kernel may have multiple cores
 - Partitioned scheduling
 - ttSetNumberOfCPUs(no)
 - ttSetCPUAffinity(task,cpu)
- Constant bandwidth servers (CBS)
 - Virtual processors
 - Temporal isolation
 - ttCreateCBS(budget,period)
 - ttAttachCBS(task,CBS)
 - ttSetCBSParameters(budget, period)

TrueTime for Simulink

- S-function interface
 - Kernels
 - Networks
- Task code
 - C/C++
 - M-file script language

TrueTime: Mobile Wireless Robotics

TrueTime: Mobile Robotics

- Tunnel road safety scenario in RUNES
 - EU FP6 IP (2004-2007)
 - Coordinated by Ericsson
- Stationary sensor network in a road tunnel
- Mobile robots as mobile gateways for restoring connectivity among isolated subislands of the network

Localization

- Ultrasound-based
 - Active mobile robots
 - Passive stationary nodes
- Robot broadcasts radio packet and ultrasound pulse "simultaneously"
- Difference in time-of-arrival allows each reachable node to calculate its distance to the robot
- Each node sends its distance measurement back to the robot
- Extended Kalman Filter fuses distance measurements with wheel encoders

Verification Problem

- Robot with several microprocessors, I2C bus communication
- Sensor network radio communication
 - IEEE 802.11 b/g (WLAN)
 - AODV routing protocol
- Ultrasound localization
- IR-based obstacle avoidance
- Control and estimation
- How verify the functionality and timeliness of this??
 - TrueTime used for developing a simulator in parallel with the real physical implementation
 - Proof of concept and verification

Robot Submodel

- Tmote Sky
 - Radio interface & bus master
 - Robot controller
- AVR Mega128
 - Compute engine
 - IR interface
 - EKF, navigation, and obstacle avoidance
- AVR Mega16
 - Ultrasound interface
- I2C bus
- Wheel and motor submodel

| Interest | Interest

Wheel and Motor Submodel

- One AVR Mega16 for each wheel/motor
- Simple motor models
- Dual-drive unicycle robot dynamics model

19

Animation Gateway Obstacle Partition Active sensor Inactive sensor Both the true position of the robots and their internal

- Both the true position of the robots and their internal estimate of their position are shown
- A sensor node that is turned off will not participate in the message routing and in the ultrasound localization

Demo

TrueTime for Modelica

- Network part
 - Native Modelica version
 - External C code version for Dymola
- Full TrueTime
 - Flexible Mockup Interface (FMI)
 - Open source non-proprietary model exchange format
 - Model Exchange
 - Co-Simulation

TrueTime for FMI

- Kernels and Networks are Flexible Mockup Units (FMUs)
 - Modelica simulation tools:
 - Dymola
 - Open-source tools: OpenModelica, JModelica
 - Non-Modelica tools that embrace FMI
- Task code written in C
- Work in progress
 - Vanderbilt University
 - DARPA Adaptive Vehicle Make (AVM) programme
 - TrueTime a part of the Meta toolchain for CPS

Demo

Simulation of CPS

- Even more important than in conventional control
- Co-simulation of cyber parts and physical parts
- TrueTime embeds models of the cyber parts within physical system simulators
 - Simulink
 - Modelica simulators

References

- Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, Karl-Erik Årzén, How Does Control Timing Affect Performance? Analysis and Simulation of Timing Using Jitterbug and TrueTime, IEEE Control Systems Magazine, 23:3, pp. 16–30, June 2003.
- Karl-Erik Årzén, Martin Ohlin, Anton Cervin, Peter Alriksson, Dan Henriksson, Holistic Simulation of Mobile Robot and Sensor Network Applications Using TrueTime, In *Proceedings of the European Control Conference*, Kos, Greece, July 2007.
- Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove Bergdahl, Hubertus Tummescheit Modeling and Optimization with Optimica and JModelica.org—Languages and Tools for Solving Large-Scale Dynamic Optimization Problem, Computers and Chemical Engineering, 34:11, pp. 1737-1749, November 2010.