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ABSTRACT

Many vehicle systems contain rolling elements

which exhibit unstable rolling motion, called shim-

mying, which may lead to disastrous results. The

classical shimmying wheel is a simple model which

captures the essential dynamics of such systems. For-

tunately, this model possesses a particular geometric

structure which provides a simple means to design a

globally stabilizing controller. However, this model is

limited because it assumes that the wheel rolls with-

out slipping, and for real systems, the wheel may slip

because the constraint force, applied by friction, is

bounded. The controller which globally stabilizes the

rolling system sometimes fails to stabilize the slipping

system. An alternative control strategy is proposed

which is more e�ective in stabilizing the slipping sys-

tem.

INTRODUCTION

Unstable rolling is an important phenomenon in

vehicle dynamics, a�ecting many systems such as

aircraft nose wheels, truck trailers and motorcycle

wheels. One particular model, which we call the clas-

sical shimmying wheel, is the focus of this paper. Al-

though the dynamics of this system are rich and com-

plex, the model is feedback linearizable, so there exists

a nonlinear coordinate transformation through which

the control system is transformed into a system which

is linear and controllable. We design a controller us-

ing this method and verify its e�cacy via numerical

simulations.

We also consider the more realistic model where

the wheel is allowed to slip if the rolling constraint

force exceeds that which can be supplied by friction.

This more realistic system evolves in either a four or

six{dimensional phase space, corresponding to pure

rolling and slipping, respectively, and may alternate

between them. Given the strongly nonlinear nature

of this system, it is not surprising that it can exhibit

chaotic behavior. When used on this more complex

model, the controller designed for the purely rolling

system sometimes fails to stabilize the system. Nu-

merical simulations suggest that an alternative con-

trol strategy in which the controller is only utilized

while the system is purely rolling is an extremely ef-

fective stabilizing control strategy. This alternative

approach is appealing because it directly utilizes the

existence of a chaotic attractor present in the slipping

system.

A schematic drawing of the classical shimmying

wheel model is shown in Figure 1. We consider the

kingpin assembly which connects the body to the rod

to be massless and the control input to be a torque,

u, about the kingpin. Also, we consider the body to

be moving with a constant velocity v. The con�gu-

ration variables are the kingpin displacement y, the

bar angle �, and the wheel rotation angle �.
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Fig. 1. Wheel Model

UNCONTROLLED DYNAMICS

The equations of motion for the purely rolling sys-

tem with ideal nonholonomic constraints and control

input u are
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A complete study of the dynamics of this system is

presented in (St�ep�an, 1991), where it was shown that

if 3m

2

r

2

< 2m

1

l

2

, then the system was linearly stable
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Fig. 2. Locally Stable Rolling System

about the � = 0 and y = 0 position, and linearly un-

stable otherwise. Additionally, it was shown by the

Hopf bifurcation method, that an unstable limit cy-

cle exists around the asymptotically stable stationary

motion.

If we set u = 0, we can numerically verify the above

results. For m

1

= 1:5, m

2

= 2:75, l = 0:2, r = 0:1,

k = 75 and v = 1, given in SI units, Figure 2 shows

the stability of the equilibrium solution. Ifm

2

= 4:75,

Figure 3 shows the saddle nature of the instability of

the equilibrium solution with � approaching ��=2.

Figure 4 shows two solutions, a stable solution with

initial conditions inside the unstable limit cycle and

an unstable solution with initial conditions outside

the unstable limit cycle. For the stable solution, the

initial conditions are �

0

= �0:24 and

_

�

0

= 0:4, and

for the unstable solution, �

0

= �0:24 and

_

�

0

= 0:0.

In this simulation, all the parameters are the same

as before, except m

2

= 3:75 (which satis�es the local

stability condition).
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Fig. 3. Locally Unstable Rolling System

Now we assume that the dynamics of the system

switch from a pure rolling condition to a slipping con-

dition if the magnitude of the constraining force ex-

ceeds that which can be applied by friction. We as-

sume that the dynamics of the system switch back

from slipping to pure rolling when the velocity of the

point of contact between the wheel and surface is zero

and the constraint force does not exceed the maxi-

mum friction force.

The equations of motion for the slipping system

are
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where v

p

x

and v

p

y

represent the two components of

the velocity of the point of contact of the wheel with

the surface, �

d

is the slipping (dynamic) coe�cient of

friction and M =

1

2

m

1

+m

2

.

In the following simulations, the constraint force is

evaluated using Lagrange multipliers. This may lead

to results which are slightly di�erent than in (St�ep�an,

1991), which used an approximation to determine

when to switch from rolling to slipping.

Figure 5 shows an enlarged view of a portion of

the response of the system with a coe�cient of static

(pure rolling) friction, �

s

= 0:2 and a coe�cient of

dynamic (slipping) friction of �

d

= 0:1. All other pa-

rameters are the same as before, except m

2

= 3:75.

This illustrates one aspect of the chaotic behavior dis-

cussed in (St�ep�an, 1991).

FEEDBACK LINEARIZATION

Consider the control system described by

�

0

=

�

_x = f(x) + g(x)u

y = h(x);

where h is called the output function and dim(x) = n.

This system has relative degree r at a point x

0

if

1. L

g
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f
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0

, and

all k < r � 1, and
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0

) 6= 0,

where L

g

h is the Lie derivative of the function h along

the vector �eld g.
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Fig. 4. Unstable Limit Cycle
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Fig. 5. Chaotic Behavior

If r = n for all x, consider the change of coordi-

nates
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is transformed into a controllable linear
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as a feedback control law where the �

i

are such that

s

n
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s
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is a Hurwitz polyno-

mial. For a complete explanation see (Isidori, 1989),

and (Nijmeijer and van der Schaft, 1990).

For an arbitrary system, there is no general

method for constructing an output function, h, which

generates the coordinate transformation under which

the system is rendered linear. In the case of the clas-

sical shimmying wheel (the purely rolling case) the

�{coordinate is cyclic, so we can consider x = (�; y;

_

�)

and write the system asf(x) + g(x)u, where g(x) is

simply the terms in

�

� which contain the control input

term, u, and f(x) contains all the other terms in the

equations of motion.

If we consider h

1

= y as a candidate output func-

tion,
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Since L

g

L
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h 6= 0, h

1

is not an output function which

renders the system feedback linearizable. Note, how-

ever, that if another output function, h

2

were purely

a function of �, then
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from the result. If we

denote the resulting function by h, we have
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where h renders the system feedback linearizable via

the preceding construction.

SIMULATION RESULTS

The results of a simulation which illustrates that

the controller stabilizes the system when the phys-

ical parameters do not satisfy the linear stability

criterion are presented in Figure 6. In this sim-

ulation, m

2

= 5:75 and the initial conditions are

(�; y; �;

_

�) = (�0:75; 0; 0; 0).
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Fig. 6. Controlled Pure Rolling System

To attempt to stabilize the slipping system, the

obvious �rst attempt would be to use the same con-

troller on the slipping system. Figure 7 show the

results of a simulation where the controller stabilizes

the slipping system. In this simulation, we take the

physical parameters to be the same as before, ex-

cept m

2

= 5:75, which makes the equilibrium solu-

tion locally unstable, and �

s

= 0:4 and �

d

= 0:2.

We take the initial conditions to be (�; y; �;

_

�; _y;

_

�) =

(�0:5; 0; 0; 0; 0; 0).

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10

M
ag

ni
tu

de

time

theta
y

Fig. 7. Controlled Slipping System

Note, however, for the same initial conditions, but

for �

s

= 0:2 and �

d

= 0:1, the controller fails to

stabilize the system. See Figure 8.
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Fig. 8. Controlled Slipping System

These, and other numerical experiments indicate

that the controller is stabilizing for a region of the

phase space that gets larger as the coe�cient of fric-

tion increases. This makes intuitive sense because as

the coe�cient of friction increases, the system is, in

some sense, \closer" to the system for which the con-

troller was designed.

AN ALTERNATIVE APPROACH

If we adopt a slightly di�erent approach, however,

better results are obtained. If the initial conditions

for the system are in the slipping regime and the pa-

rameter values for the system are such that a chaotic

attractor exists, the solution will approach the chaotic

attractor. If we set the control input to zero until the

solution is near this attractor, indicated by a switch

from slipping to rolling, better results are obtained.

Speci�cally, we choose the control strategy where the

control input is zero if the wheel is slipping, and the

controller designed previously is utilized if the wheel

is rolling. Figure 9 shows simulation results for the

system with the same physical parameters and initial

conditions as the preceding simulation.
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Fig. 9. Alternative Control Strategy

At least with regard to numerical experimenta-

tion, this control strategy seems globally stabilizing

with respect to initial conditions in � as well as vari-

ations in �

s

, �

d

, m

1

and m

2

. Figure 10 shows the re-

sults when the initial conditions are (�; y; �;

_

�; _y;

_

�) =

(�3:0; 0; 0; 0; 0; 0). Extensive numerical experimenta-

tion suggests that this strategy is very e�ective. The

only apparent problem is that the strategy does not

always stabilize the system when �

s

= �

d

, which,

fortunately, is a physically unrealistic situation.
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Fig. 10. Alternative Control Strategy

CONCLUSIONS

In this paper, we have presented and illustrated a

particular controller design for the classical shimmy-

ing wheel. The controller is guaranteed to be globally

stabilizing for the wheel when it rolls without slip-

ping, but sometimes fails to stabilize the system when

the wheel is allowed to slip. However, based upon nu-

merical simulations, the alternative control strategy

seems e�ective in stabilizing the slipping system.

Of course, there are many more avenues available

for investigation. Obviously, more work is required

to determine the nature of the chaotic attractor and

its relationship to the purely rolling regimes where

the controller is guaranteed to stabilize the system.

Another avenue of study would be to study the e�-

cacy of the controller designed here on a more real-

istic model of an elastic tire. Also, investigating the

geometric nature of a more realistic tire model, such

as presented in (Barta and St�ep�an, 1995) may yield

insights into controller design for practical implemen-

tation.
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