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1 Introduction

Many interesting and important control systems evolve on strati�ed con�gura-

tion spaces. Robotic systems, in particular, are of this nature. A legged robot

has discontinuous equations of motion near points in the con�guration space

where each of its \feet" come into contact with the ground, and it is precisely

the ability of the robot to lift its feet o� of the ground that enables it to move

about. Similarly, a robotic hand grasping an object often cannot reorient the

object without lifting its �ngers o� of the object. Despite the obvious utility of

such systems, however, a comprehensive means to analyze their controllability

properties, to our knowledge, has not appeared in the literature.

For such systems, the equations of motion on each strata may change in a

non{smooth, or even discontinuous manner, when the system moves from one

strata to another. In such cases, traditional nonlinear controllability analyses

are inapplicable because they rely upon di�erentiation in one form or another.

Yet it is the discontinuous nature of such systems that is often their most im-

portant characteristic. Therefore, it is necessary to incorporate explicitly into

a controllability analysis the non{smooth or discontinuous nature of these sys-

tems.

We present two controllability tests for strati�ed, kinematic control systems.

We assume that the con�guration manifold for the control system contains sub-

manifolds with codimension one, in which the system is subjected to constraints

in addition to those present outside the submanifold. Submanifolds of higher

codimension may be de�ned by the intersection of two lower codimension sub-

manifolds.

To use the �rst test, we consider the geometric relationship among involutive

distributions associated with the various (sub)manifolds at a point in the con-

�guration manifold. We note that the involutive distribution associated with a

particular submanifold is more than simply the involutive closure of the control

1



vector �elds restricted to each submanifold. It is actually generated by a set

of vector �elds de�ned by a relationship between the vector �elds on the sub-

manifold and the vector �elds on the manifold in which it is embedded. If there

exists a nested sequence of submanifolds, each containing the point of interest,

such that the sum of the associated involutive distributions evaluated at that

point is the whole tangent space of the con�guration manifold at that point,

then the system is controllable.

We also present a controllability test using tools from exterior di�erential

systems. The calculations in this test focus on the constraint equations, rather

than the equations of motion. Because we have assumed that each submanifold

has constraints in addition to those in the manifold in which it is embedded,

fewer calculations are needed to use this test because many of the calculations

will be repeated. Essentially the \dual" of the above test, controllability is

determined by the geometric relationship among the derived ags associated

with the same sequence of submanifolds described above.

2 The Distribution Approach

Throughout this paper we will be concerned with kinematic control systems of

the form

_x = g

i

(x)u

i

(1)

where x 2M , where M is an m{dimensional manifold (the con�guration man-

ifold), u = fu

1

; : : : ; u

m

g 2 U � R

m

, U is the set of admissible controls and

g

i

(x) 2 X, X is the set of (not necessarily smooth, or even continuous) vector

�elds on M .

Assume that on a collection of submanifolds S

i

�M , the system is subjected

to constraints in addition to those present in M . For example, the legged

robot will have additional constraints when one or more feet come into contact

with the ground. Also, if S

i

� S

j

, assume that the system is subjected to

constraints in S

i

in addition to those in S

j

. Denote the set of constraints on M

by f!

M;1

; : : : ; !

M;s

g. On a submanifold, S

i

, denote the additional constraints

with a superscript S

i

. Thus, if codimS

i

= 1, the set of constraints on S

i

is

f!

M;1

; : : : ; !

M;s

; !

S

i

;1

; : : : ; !

S

i

;q

g. Also, assume that S

i

is locally described by

the level set of a function �(x) = 0 and that the \constraint" d�(x) _x = 0 is

a constraint only on the control inputs. This means that there exists control

inputs which ensure that the system evolves on the submanifold without leaving

it.

We will write the equations of motion for the system at x 2M , x 62 S

i

as

_x = g

M;1

(x)u

M;1

+ � � � g

M;n

(x)u

M;n

;

and the equations of motion for the system in one of the submanifolds at x 2 S

i

as

_x = g

S

i

;1

(x)u

S

i

;1

+ � � � g

S

i

;(n�p)

(x)u

S

i

;(n�p)

; (2)
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where p depends upon the codimension of S

i

and the nature of the additional

constraints imposed on the system in S

i

. Note also that the form of the control

vector �elds g

i

are di�erent because additional constraints are present on S

i

.

On a submanifold of codimension 1, the system is subjected to additional

constraints, and the equations of motion are given by an equation of the form of

Equation 2. Since we have assumed that d� is a constraint only on the control

inputs, all the directions in which the system can ow in S

i

are given by the

involutive closure of the distribution formed by the intersection of �

M

j

x

and

T

x

S

i

plus the control vector �elds on S

j

of the form of Equation 2,

�

S

i

= spanfv : v = g

S

i

;j

; j = 1; : : : ; (n � p) or v 2 �

M

j

x

\ T

x

S

i

g;

denoted by �

S

i

. For a submanifold, S

j

with codimension greater than 1, we

similarly construct an involutive distribution by calculating the involutive clo-

sure of the distribution formed by the intersection of �

S

i

and T

x

S

j

plus the

intersection of �

S

k

and T

x

S

j

plus the control vector �elds given in the form of

Equation 2,

�

S

j

= spanfv : v = g

S

j

; j = 1; : : : (n�p�q); v 2 �

S

i

j

x

\T

x

S

j

; or v 2 �

S

k

j

x

\T

x

S

j

g

where S

i

and S

k

are the two manifolds whose intersection de�nes S

j

. We simi-

larly denote the involutive closure of this distribution by �

S

j

.

Now we can state our �rst controllability result.

Proposition 2.1 If there exists a nested sequence of submanifolds

S

p

i

� S

(p�1)

i

� � � � � S

1

i

� M;

such that the associated involutive distributions satisfy

�

M

j

x

+

p

X

j=1

�

S

j

i

j

x

= T

x

M

then the system is STLC.

Remark 2.2 In the nested sequence of manifold, the �rst subscript is the codi-

mension of the submanifold. This subscript is also subscripted because there

may be multiple submanifolds with the same codimension at the point x. If

there are multiple submanifolds with the same codimension, this sequence only

contains one of them.

Remark 2.3 The idea behind the proof is simple. Figure 1 pictorially illus-

trates M , and one submanifold, S

i

, and the associated involutive closures of

the distributions associated with each regime. Note that the symbols for the

involutive distributions are pointing to the manifolds to which they are the

tangent space. If the system starts at a point x

0

2 S

i

, then the set of points

it can reach in S

i

is represented by the lines (submanifolds) in S

i

. If these

submanifolds transversely intersect the manifolds which comprises the foliation

associated with �

M

, then these lines provide a means to locally ow to any leaf

in the foliation de�ned by �

M

.
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Figure 1. Controllability of a Strati�ed System

Remark 2.4 Often in applications the submanifolds upon which the system is

subjected to additional constraints will often be a physical boundaries, which the

system cannot penetrate. In such a case, we have to rede�ne a neighborhood

of a point x

0

contained in the boundary to be the union of the portion of

the standard neighborhood on the \allowable" side of the manifold with the

intersection of the standard neighborhood with the boundary. Proposition 2.1

still applies, however, due to the fact that we have assumed that we can directly

control whether or not the system will ow onto or o� of the manifold.

3 The Exterior Di�erential Systems Approach

Let I = spanf!

1

; : : : ; !

n

g be a smooth codistribution on M , where the !'s

are the one forms describing the constraints. The derived ag is a construction

which describes the integrability properties of the ideal generated by I. It

follows from Frobenius' Theorem that I

(N)

is the largest integrable subsystem

contained in I, therefore, if I

(N)

is not empty, there exists functions h

1

; : : : ; h

r

such that fdh

i

g � fIg: Thus, if the bottom derived ag is not empty, there

exists functions which describe a foliation of the state space.

Recall that on M , we have the collection of constraints f!

M;1

; : : : ; !

M;s

g,

and on a codimension 1 submanifold S

i

we have the collection of constraints

f!

M;1

; : : : ; !

M;s

; !

S

i

;1

; : : : ; !

S

i

;q

g, which is equivalent to the set of constraints

f!

M;1

; : : : ; !

M;s

;d�; !

S

i

;1

; : : : ; !

S

i

;q

g on M . Let I

(N

M

)

M

be the bottom derived

ag for the constraints on M . Recall that on a submanifold, the system can

momentarily move o� of the submanifold to move in a direction contained in
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�

M

\T

x

S

i

. In this case, the set of constraints to which the system is subjected is

fd�; I

(N

M

)

M

\ f!

M;1

; : : : ; !

M;s

;d�; !

S

i

;1

; : : : ; !

S

i

;q

g. Let I

(N

S

i

)

S

i

be the bottom

derived ag for this set of constraints. Similarly to the manner of construction

in the previous section, we can calculate derived ags associated with each

submanifold S

i

.

Proposition 3.1 If there exists a nested sequence of submanifolds

S

p

i

� S

(p�1)

i

� � � � � S

1

i

� M;

such that the associated derived ags satisfy

span(I

(N

M

)

M

)

\

span(I

(N

S

1

i

)

S

1

i

)

\

� � �

\

span(I

(N

S

p

i

)

S

p

i

) = 0;

then the system is STLC.

4 An Example

We illustrate the application of the �rst test by presenting the following example.

The following example is adapted from Kelly and Murray [7]. Consider

the six{legged robot shown in Figure 2. Assume that the robot walks with a

tripod gait, alternating movements of legs 1{4{5 with movements of legs 2{3{6.

Suppose that

_x = cos � (�(h

1

)u

1

+ �(h

2

)u

2

)

_y = sin � (�(h

1

)u

1

+ �(h

2

)u

2

)

_

� = l�(h

1

)u

1

� l�(h

2

)u

2

_

�

1

= u

1

_

�

2

= u

2

_

h

1

= v

1

_

h

2

= v

2

where (x; y; �) represents the planar position of the center of mass, �

i

is the

angle of the legs and h

i

is the height of the legs o� the ground.

The functions �(h

1

) and �(h

2

) are de�ned by

�(h

1

) =

�

1 if h

1

= 0

0 if h

1

> 0

The function �(h

2

) is the same, but as a function of h

2

.

Now if all legs are in contact with the ground, the equations of motion are

0

B

B

B

B

@

_x

_y

_

�

_

�

1

_

�

2

1

C

C

C

C

A

=

0

B

B

B

B

@

cos � cos � 0 0

sin � sin � 0 0

l �l 0 0

1 0 0 0

0 1 0 0

1

C

C

C

C

A

0

B

B

@

u

1

u

2

u

3

u

4

1

C

C

A

(3)
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2

3

4

6

1

5

(x, y) θ

Figure 2. Six Legged Robot

where u

3

and u

4

are constrained to be 0. Note that if we let f represent the

�rst column, and g the second column, then

[f; g] =

0

B

B

B

B

@

�2l sin �

2l cos �

0

0

0

1

C

C

C

C

A

: (4)

Clearly, with all the legs in contact with the ground, we have generated enough

directions to span the (x; y; �) directions, but not without control over all the

leg heights and angles.

If leg 1 is in contact with the ground, but leg 2 is not in contact, the equations

of motion are

0

B

B

B

B

B

B

@

_x

_y

_

�

_

�

1

_

�

2

_

h

2

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

cos � 0 0 0

sin � 0 0 0

l 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1

1

C

C

C

C

C

C

A

0

B

B

@

u

1

u

2

u

3

u

4

1

C

C

A

(5)

where u

3

is constrained to be 0.

Finally, if leg 2 is in contact with the ground and leg 1 is not, then the
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equations of motion are

0

B

B

B

B

B

B

@

_x

_y

_

�

_

�

1

_

�

2

_

h

1

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

0 cos � 0 0

0 sin � 0 0

0 �l 0 0

1 0 0 0

0 1 0 0

0 0 1 0

1

C

C

C

C

C

C

A

0

B

B

@

u

1

u

2

u

3

u

4

1

C

C

A

(6)

where u

4

is constrained to be 0.

If none of the legs are in contact with the ground, we have

0

B

B

B

B

B

B

B

B

@

_x

_y

_

�

_

�

1

_

�

2

_

h

1

_

h

2

1

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

@

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C

C

C

C

C

C

C

C

A

0

B

B

@

u

1

u

2

u

3

u

4

1

C

C

A

: (7)

Now, if we take all the columns from Equation 7, the �rst two columns

from Equation 3 and Equation 4, and combine them to form a distribution, it

spans T

x

M 8x 2M , which clearly satis�es the hypotheses of Proposition 2.1.

Therefore, the system is STLC.
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