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Abstract. We present a general trajectory gener-
ation scheme for a class of “kinematic” legged robots.
The method does not depend upon the number of legs,
nor is it based on foot placement concepts. Instead,
our method is based on an extension of a nonlinear
trajectory generation algorithm for smooth systems to
the legged case, where the relevant mechanics are not
smooth. Our extension is based on the realization that
legged robot configuration spaces are stratified. The
algorithm is illustrated with a simple example.

1 Introduction

The trajectory generation problem for a legged
robot is the problem of determining control inputs
(e.g., mechanism joint variable trajectories) which will
steer the robot from a starting configuration to a de-
sired final configuration. This paper presents a general
trajectory generation scheme for a class of “kinematic”
legged robots. The method is independent of the num-
ber of legs and is not based on foot placement concepts.

Our approach is motivated by the method of Laffer-
riere and Sussmann [1] for generating trajectories for a
class of nonlinear “kinematic” systems whose equations
of motion are smooth. However, since legged robots
cyclically make and break contact with the ground,
their equations of motion are non-smooth. Hence, the
method of [1] can not be directly applied. We explicitly
account for this non–smooth feature by a stratification
of the robot’s configuration space. Each strata corre-
spond to configurations where different combinations
of the feet are in ground contact. We extend the ap-
proach of [1] by decomposing a given problem into a
set of trajectory generation problems on the individ-
ual strata, where a modification of their method can
be used on each strata. We illustrate the application
of this procedure with an example.

Our class of kinematic robots includes all quasi-
static legged locomotors. One common component of
trajectory generation for legged systems is the need
to calculate foot placements, which can be computa-
tionally burdensome. In our approach, the focus is on
control inputs, and the tricky issue of foot placement is
avoided. Prior schemes have also been restricted to a
particular number of legs (e.g. 4,6,8,· · · ). Our method
works independently of the number of legs.

There is a vast literature on legged locomotion anal-
ysis, control, and motion planning. However, prior
efforts have focused either on a particular morphol-
ogy (e.g. biped [2], quadruped [3], or hexaped [4]) or
a particular locomotion assumption (e.g. quasi-static
[4] or hopping [5]). Less effort has been devoted to
uncovering principles that span all morphologies and
assumptions. Future robotic engineers will want a
locomotion “mechanics” and “control” theory that is
general (i.e. not constrained to a particular morphol-
ogy), implementable in an automated way (i.e., gen-
eral software “tool-kits” can developed), and that has
verifiable and provable properties. Some recent works
have attempted to uncover some of the fundamental
structure underlying locomotion mechanics. Kelly and
Murray [6] showed that a number of “kinematic” lo-
comotive systems can be modeled using connections
on principal fiber bundles. They also provide results
on controllability, as well as an interpretation of move-
ment in terms of geometric phases. Ostrowski [7], [8]
developed analogous results for a class of “dynamic”
nonholonomic locomotion systems. The results pre-
sented in this paper are a small contribution to the
control aspect of our envisioned engineering basis. Our
work makes a novel connection with recent advances
in nonlinear geometric control theory. We believe that
this connection is a useful and necessary step towards
establishing a solid basis for locomotion engineering.
We note that Tsakiris and Krishnaprasad [9] have used
methods from nonlinear control theory to develop mo-
tion planning schemes for “G”-snakes, a class of kine-
matic undulatory mechanisms.

2 Background

To set the context for our approach, this section
outlines the method in [1] for the generation of tra-
jectories for smooth, kinematic nonholonomic systems
which are in the form of a non-linear affine driftless
system evolving on a configuration manifold, M

ẋ = g1(x)u1 + · · ·+ gm(x)um x ∈ M. (1)

Nonholonomic systems typically do not have enough
controls to directly drive each state variable along a
given trajectory. The trajectory generation problem
for systems with such a deficit is managed by using
an “extended system,” where “fictitious controls,” cor-



responding to higher order Lie bracket motions, are
added.

Recall that the Lie bracket between two control vec-
tor fields, g1(x) and g2(x), is computed as

[g1(x), g2(x)] =
∂g2(x)

∂x
g1(x)−

∂g1(x)

∂x
g2(x)

and can be interpreted as the leading order term that
results from the sequence of flows

φg1
ǫ ◦ φg2

ǫ ◦ φ−g1
ǫ ◦ φ−g2

ǫ (x) = ǫ2[g1, g2](x) +O(ǫ3),

where φg1
ǫ (x0) represents the solution of the differential

equation ẋ = g1(x) at time ǫ starting from x0.
The trajectory generation problem is relatively easy

to solve for the extended system. The real controls are
then computed from the fictitious controls associated
with the extended system. We first must review two re-
lated concepts before summarizing the approach. More
details on both concepts can be found in Serre [10]. We
assume that the reader is familiar with the basic con-
cepts of nonlinear geometric control theory, as in [11].

The Philip Hall basis. Because of Jacobi’s iden-
tity and the fact that a Lie bracket is skew symmetric,
it is not easy to select a basis for the Lie algebra gen-
erated by the set of vector fields {gi(x)} in Equation 1.
A Philip Hall basis is a particular way to select a ba-
sis. Given a set of vector fields {g1, . . . , gm}, define the
length of a Lie product as

l(gi) = 1 i = 1, . . . ,m

l([A,B]) = l(A) + l(B),

where A and B may be Lie products. A Philip Hall
basis is an ordered set of Lie products H = {Bi} sat-
isfying:
1. gi ∈ H, i = 1, . . . ,m
2. If l(Bi) < l(Bj), then Bi < Bj

3. [Bi, Bj ] ∈ H if and only if
(a) Bi, Bj ∈ H and Bi < Bj and
(b) either Bj = gk for some k or Bj = [Bl, Br] with

Bl, Br ∈ H and Bl ≤ Bi.
The Campbell–Hausdorff Formula. The flow

along gi is referred to as the formal exponential of gi
and is denoted

φ
gi
t (x) := etgi(x) = (I + tgi +

t2

2
g2i + · · · ). (2)

We note that terms of the form g2i must be carefully
justified. This is done by associating a Lie algebra of
indeterminates to the Lie algebra of vector fields associ-
ated with the control problem. A complete exposition
on the use of indeterminates in this manner is omitted
here due to space limitations and we refer the reader
to references [1], [12], [13] for a complete explanation.

We note that in order to use Equation 2, composi-
tion must be from left to right, as opposed to right to

left for flows, e.g.,

φ
g2
t2

◦ φg1
t1

= eg1t1eg2t2 ,

which means “flow along g1 for time t1 and then flow
along g2 for time t2.” The Campbell–Baker–Hausdorff
formula is given in the following theorem.

Theorem 2.1 Given two smooth vector fields g1, g2
the composition of their exponentials is given by

eg1eg2 = eg1+g2+
1

2
[g1,g2]+

1

12
([g1,[g1,g2]]−[g2,[g1,g2]])···

where the remaining terms may be found by equating
terms in the (non-commutative) formal power series
on the right– and left–hand sides.

Trajectory Generation for Smooth Systems.

In this section, we limit our attention to a smooth,
kinematic system described by a single set of equations
of motion having the form of Equation 1. Such a sys-
tem is said to be nilpotent of order k if all the Lie brack-
ets between control vector fields of order greater than
k are 0. The method presented in this section works
exactly for nilpotent systems, and approximately for
systems which are not nilpotent. For non-nilpotent
systems, arbitrary precision can be obtained by iterat-
ing the algorithm.

Associate with the system in Equation 1 the ex-
tended system:

ẋ = g1v
1 + · · · gmvm + gm+1v

m+1 + · · ·+ gsv
s (3)

where the gm+1, . . . , gs are higher order Lie brack-
ets of the gi, chosen so that dim(span{g1, . . . , gs}) =
dim(M). The vi’s are called fictitious inputs since
they may not correspond with the actual system in-
puts. The higher order Lie brackets must belong to
the Philip Hall basis for the Lie algebra. The con-
trol inputs vi which steer the extended system can be
found as follows. To go from a point p to a point q,
define a curve, γ(t) connecting p and q (a straight line
would work, but is not necessary). After determining
γ, simply solve

γ̇(t) = g1(γ(t))v
1 + · · ·+ gs(γ(t))v

s (4)

for the fictitious controls vi. This will involve invert-
ing a square matrix or determining a pseudo–inverse,
depending on whether or not there are more gi’s than
the dimension of the configuration space.

The actual control inputs can be found as follows.
Determine the Philip Hall basis for the Lie algebra gen-
erated by g1, . . . , gm, and denote it by B1, B2, . . . , Bs.
It is possible to represent all flows of Equation 1 in the
form

St(x) = ehs(t)Bsehs−1(t)Bs−1 · · · eh2(t)B2eh1(t)B1(x)



for some functions h1, h2, . . . , hs, called the (backward)
Philip Hall coordinates. Furthermore, St(x) satisfies
the differential equation

Ṡ(t) = S(t)(B1v1 + · · ·+Bsvs); S(0) = 1, (5)

where St(x) has been replaced by S(t). If we define
the adjoint mapping

Ade−hiBiBj = e−hiBiBje
hiBi ,

then it can be shown that

Ad
e−hiBi ···e

−hj−1Bj−1Bj ḣj =

(

s
∑

k=1

pj,k(h)Bk

)

ḣj ,

(6)
for some polynomials pj,k(h). (For a more detailed
explanation, see [14]). Equating coefficients yields the
differential equations

ḣ = A(h)v h(0) = 0. (7)

These equations specify the evolution of the Philip Hall
coordinates in response to the fictitious inputs, which
were found via Equation 4. Next we determine the
actual inputs using the Philip Hall coordinates.

It is easier to determine the real inputs using the
forward rather than backward Philip Hall coordinates.
The transformation from the backward to forward co-
ordinates is a “simple algebraic transformation” (see
[1]), and this transformation results in an equation of
the form

S = eh1B1eh2B2 · · · ehs−1Bs−1ehsBs .

In this paper, we avoid the need for this transformation
between forward and backward Philip Hall coordinates
by limiting our attention to systems which are nilpo-
tent of order two. The process to determine the actual
inputs is best illustrated by a simple example.

Example 2.2 (from [1]). Find u for S(T ) =
eαXeβY eγ[X,Y ]eδ[X,[X,Y ]]eǫ[Y,[Y X,Y ]].

Recall that composition is from left to right. So,
first, determine the control input for the first two
terms, and call them αA and βB. We will use # for
concatenation, so αA#βB means control αA followned
by control βB. Clearly, αA#βB gives rise to system
evolution eαXeβY .

Now, we want to steer in the Lie bracket di-
rection γ[X,Y ]. To leading order, the sequence√
γA#

√
γB#(−√

γA)#(−√
γB) gives rise to eγ[X,Y ].

However, using the Campbell–Baker–Hausdorff for-
mula, and assuming a nilpotency of degree three, it
actually gives rise to

eγ[X,Y ]e
1

2
γ

3

2 [X,[X,Y ]]e−
1

2
γ

3

2 [Y,[X,Y ]].

We now must find a control that gives rise to

e(δ−
1

2
γ

3

2 )[X,[X,Y ]]e(ǫ+
1

2
γ

3

2 )[Y,[X,Y ]], to cancel out the

third order error from above and give the correct third
order exponentials. The 20 sequence move is presented
in [1] and is easy to determine using the Campbell–
Baker–Hausdorff formula.

The basic idea is that we construct the control in-
puts that give us the appropriate first order flow, and
then take care of the higher order error when con-
structing the control input sequence to execute the Lie
bracket directions. We note furthermore, that if the
system is nilpotent of order 2, then there is no need
to transform to the forward coordinates because the
higher order error will not be present.

This method generates the actual control inputs
necessary to follow the desired trajectory. If the system
is nilpotent, [1] proves that this method exactly steers
the system to the desired final state. If the system is
not nilpotent, they show that it steers it to a point
that is, at worst, only half the distance to the desired
configuration. The algorithm can thus be iterated to
generate arbitrary precision. Finally, we note that the
results in [1] also include the notion of a “critical” step
length. While Lafferiere and Sussmann prove the exis-
tence of a critical step and give a rough bound for it,
they acknowledge that a better means to estimate the
critical length is desirable. An appropriate step length
can be determined by simulation or experiment, and
the simulation results in [1] show that the actual crit-
ical length is larger than the estimated bound.

3 Stratified Configuration Spaces

The motion planning approach of [1] can not be
directly applied to trajectory generation for legged
robots because their equations of motion are not
smooth. However, there is sufficient structure inher-
ent in legged robot configuration spaces to develop a
method based upon the results reviewed in Section 2.

The configuration space (c-space) for a kinematic,
legged robot is stratified. (See [15] for details on strat-
ifications). A regularly stratified set X is a set X ⊂ R

m

decomposed into a finite union of disjoint smooth man-
ifolds, called strata, satisfying the Whitney condition.
The dimension of the strata varies between zero, which
are isolated point manifolds, and m, which are open
subsets of Rm. The Whitney condition requires that
the tangents of two neighboring strata “meet nicely,”
and for our purposes it suffices to say that this condi-
tion is generically satisfied.

Legged robot c-spaces have even more structure that
arises from their multi-legged nature. Let M denote
the legged robot’s entire configuration manifold (it will
often be convenient to denote this space as S0). Let
Si ⊂ M denote the codimension one submanifold of
M that corresponds to all configurations where only
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Figure 1. Biped Configuration Space

the ith foot contacts the terrain. Generically, the in-
tersection of Si and Sj , denoted Sij = Si ∩ Sj , will
be a submanifold with codimension two. The set Sij

physically corresponds to states where the ith and jth

feet are on the ground. Higher codimension subman-
ifolds can be similarly defined in a recursive fashion:
Sijk = Si∩Sj∩Sk = Si∩Sjk, etc. Figure 1 pictorially
illustrates such a structure for a biped robot. Techni-
cally speaking, strata Xi consists of the submanifold
Si with all lower dimensional strata (that arise from
intersections of Si with other submanifolds) removed.
However, by abuse of notation, we will often refer to
the submanifolds Si, as well as their recursive intersec-
tions Sij , Sijk, etc, as strata. We will term the highest
codimension strata containing the point x as the bot-
tom strata, and any other submanifolds containing x

as higher strata.
Whenever an additional foot contacts the ground,

the robot is subjected to additional constraints. For
“point–like” feet, this may be a holonomic constraint;
whereas, other foot structures may be better charac-
terized by a “rolling without slipping” constraint. Re-
gardless of the particular form of the additional con-
straint, it will change the system’s equations of motion
in a non–smooth manner. This non–smooth transition
will occur whenever the system transitions between any
two submanifolds or strata.

We assume that robot’s equations of motion are
smooth when restricted to a strata, and undergo a
non–smooth change only when transitioning between
strata. Let I denote an index set: I = {i1, · · · , ik}. Let
SI = Si1,··· ,ik denote the submanifold whose describ-
ing indices are contained in I. The robot’s equations
of motion at a point x ∈ SI will be denoted as

ẋ = gSI ,1(x)u
SI ,1 + · · ·+ gSI ,pI

(x)uSI ,pI , (8)

where gSI ,j is the jth control vector field and pI is

the number of control inputs when the system is con-
strained to SI . The number of control inputs may differ
among strata because the physical constraints associ-
ated with a particular submanifold may additionally
constrain the control inputs or the robot’s kinematic
movement. Thus, the control input uM,1 does not nec-
essarily correspond to the control input uSI ,1.

For the biped robot whose configuration space is
depicted in Figure 1, there will be four strata and three
or four sets of motion equations. One set will describe
(on submanifold S12) the evolution of the system when
both feet are in contact with the ground. Two sets of
equations will describe (on submanifolds S1 and S2)
the system when individual feet make ground contact.
A fourth set of equations on M will describe the state
where both feet simultaneously lift off the ground. This
fourth set of equations will typically be disallowed for
kinematic systems.

For a given strata, SI , the distribution defined by
the span of the control vector fields active on SI is:

∆SI
= span{gSI ,1, . . . , gSI ,pI

}.
The involutive closure of ∆SI

, denoted by ∆SI
is the

closure of ∆SI
under Lie bracketing, and it will be

called a controllability Lie algebra (see [11] for more
details). A basic assumption in this paper is that the
robot is controllable, which practically implies that it is
possible to generate control inputs that will move the
system in any direction (though these control inputs
may involve complicated switching between strata). In
[16] the authors have developed a procedure to test the
controllability of a stratified kinematic system, and this
assumption of controllability, in certain simple cases,
can be stated as

∆M +
∑

i

∆Si
+
∑

i,j

∆Sij
+ · · · = TxM. (9)

4 Legged Trajectory Generation

In this section, we extend the procedure outlined in
Section 2 to kinematic legged systems with a stratified
c-space. Assume that the robot starts at configuration
p and seeks to reach a final configuration q. Assume
that the system is nilpotent to degree kSI

(for strata
SI), or that we are making a nilpotent approximation
to degree kSI

. Each strata may have a different degree
of nilpotency or nilpotent approximation. Finally, as-
sume for simplicity that points p and q lie in the same
bottom strata. In the biped example, this assump-
tion states that if the robot starts with both feet in
contact with the ground, it must end with both feet
in contact. Eliminating this requirement would be a
straightforward extension of this algorithm.

Assume that p, q ∈ Si1 ∩ Si2 ∩ · · · ∩ Sik , so that the
bottom strata is SI . Assume also that we are restricted



to the collection of submanifolds {Si1 , Si2 , . . . , Sik},
i.e., lifting all the legs off the ground at once is not al-
lowed. The stratified trajectory generation algorithm
is comprised of the following steps:
1. Construct the extended systems (Section 2) on SI

and higher strata which contain p and q.
2. Find a curve, γ(t), connecting p and q. In general,

γ(t) will need to switch among the strata which
contain p and q. To do this, we must consider the
stratified extended system, discussed later.

3. Solve the stratified extended system for the ficti-
tious inputs.

4. For each segment in each strata: compute the
backward Philip Hall coordinates; if necessary,
transform them into forward Philip Hall coordi-
nates; compute (strata–by–strata) the control in-
puts that steer the system along γ(t).

Each step is a relatively straightforward application
of the results discussed in Section 2, except for Step
2. The notion of a “stratified extended system,” is the
key to implementing Step 2, and is the key concept
that extends the results of Section 2 to legged robots.

As mentioned above, the path γ(t) that connects
p to q must generally switch among multiple strata.
This switching behavior, which can not be accounted
for in the method of Section 2, can be incorporated as
follows. On each strata, only one set of controls is in ef-
fect, and the equations of motion in the bottom strata
will be different than in the higher strata. However,
since the bottom strata is defined by the intersection
of higher strata, the equations of motion in the higher
strata are valid at points arbitrarily close to the bot-
tom strata. Hence, the general approach to determine
all of the control in the various neighboring strata is
to consider the equations of motion in each strata si-
multaneously, assuming that each is valid at points in
the bottom strata. The stratified extended system has
the form

ẋ = g̃1v
1 + g̃2v

2 + · · ·+ g̃pv
k (10)

where the vector fields g̃i are all the vector fields from
all the extended systems associated with each strata
computed in Step 1.

Recall from Section 2 that to find the fictitious con-
trol inputs we solved the extended system containing
the extended control vector fields.

γ̇(t) = g1(γ(t))v
1 + · · ·+ gm(γ(t))vm. (11)

The solution to this equation will yield control inputs
which must be executed simultaneously. Since the robot
switches among strata to execute control motions, it is
impossible to simultaneously execute the control inputs
that are computed from Equation 11 if these inputs are
associated with different strata. The control inputs as-

sociated with different strata must be executed sequen-
tially. This fact will lead to an error, as can be seen in
the following example. Assume that Equation 11 gives
two inputs, v1(t) and v2(t). The flow resulting from the

simultaneous execution of v1(t) and v2(t) is eg1v
1+g2v

2

.
However, if we execute v1 and then v2 sequentially, the
Campbell–Baker–Hausdorff formula gives

eg1v
1

eg2v
2

= eg1v
1+g2v

2+[g1v
1,g2v

2]+···

which is clearly not the same flow.
Frequent switching between strata will minimize

this error since it more closely approximates the ac-
tion of simultaneous control execution, and thereby
reduces the higher order difference between the simul-
taneous and sequential flows. This rapid switching,
which physical corresponds to many small footsteps,
may not be desirable. In certain “decoupled” cases
rapid switching may not be necessary. Control vector
fields associated with different strata are strata decou-
pled when the Lie bracket between any two vector fields
belonging to different strata is zero. In that case the
Campbell–Baker–Hausdorff formula shows that the si-
multaneous flow and sequential flow are equal. Extend-
ing the results of this paper to construct a switching
algorithm which requires neither rapid switching nor
strata decoupling will be the subject of a future publi-
cation. We will hereafter assume that the equations of
motion are strata decoupled. As the example in Sec-
tion 5 illustrates, this assumption may be commonly
satisfied.

5 Example

We illustrate the application of our approach by gen-
erating control inputs which will steer a hexapod robot
model (Figure 2, which is adapted from [6]). Assume
that the robot walks with a tripod gait, alternating
movements of legs 1–4–5 with movements of legs 2–3–
6. The c-space of this hexapod is abstractly similar to
that of the biped illustrated in Figure 1. This robot
has four control inputs. The first two inputs, u1 and u2

control the forward and backward angular leg displace-
ments. The first control input controls the movement
of legs 1–4–5, and the second control legs 2–3–6. The
other two inputs, u3 and u4 control the height of legs
1–4–5 and 2–3–6 respectively.

The equations motion in the bottom strata, S12

(where all the feet maintain ground contact), are:












ẋ

ẏ

θ̇

φ̇1

φ̇2













=













cos θ cos θ
sin θ sin θ
l −l

1 0
0 1













(

u1

u2

)

(12)

where (x, y, θ) represents the planar position of the
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Figure 2. Six Legged Robot

robot’s center. φ1 is the angle of legs 1–4–5 and φ2

is the angle of legs 2–3–6. The variables u3 and u4 are
constrained to be 0 (so that the legs maintain ground
contact). If gS12,1 and gS12,2 represent the first and
second columns in Equation 12, then

gS12,3 = [gS12,1, gS12,2]

= (−(2l sin θ) (2l cos θ) 0 0 0)
T
.

(13)

If legs 1–4–5 are in contact with the ground, but legs
2–3–6 are not in contact, the equations of motion are

















ẋ

ẏ

θ̇

φ̇1

φ̇2

ḣ2

















=

















cos θ 0 0
sin θ 0 0
l 0 0
1 0 0
0 1 0
0 0 1





















u1

u2

u4



 (14)

where hi is the height of the corresponding set of legs
and u3 is constrained to be 0. Call columns one, two
and three in Equation 14 gS1,1, gS1,2 and gS1,3, respec-
tively. This higher strata will be called S1. If legs
2–3–6 are in ground contact and legs 1–4–5 are not,
the equations of motion are

















ẋ

ẏ

θ̇

φ̇1

φ̇2

ḣ1

















=

















0 cos θ 0
0 sin θ 0
0 −l 0
1 0 0
0 1 0
0 0 1





















u1

u2

u3



 (15)

where u4 is constrained to be 0. The columns in Equa-
tion 15 will be denoted gS2,1, gS2,2 and gS2,3, respec-
tively, and this higher strata is S2.

It is simple to verify that these equations of mo-
tion satisfy the controllability requirement expressed
in Equation 9.

The extended system on each strata is constructed
in the first step of the algorithm. On strata S12, simple
calculations verify that

∆S12
= span{gS12,1, gS12,2, gS12,3}

is involutive. Thus, the extended system on S12 is

ẋ = gS12,1v
S12,1 + gS12,2v

S12,2 + gS12,3v
S12,3. (16)

This Lie algebra is not nilpotent, and thus the extended
system of Equation 16 is only a nilpotent approxima-
tion. The inclusion of higher order terms (i.e., third,
fourth or even higher order Lie brackets) would result
in a better approximation. For the simulation results
presented below, only Equation (16) was used. Note
also that gS12,1, gS12,2 and gS12,3 constitute a Philip
Hall basis up to degree two.

On strata S1, it is easy to verify that [gS1,i, gS1,j ] = 0
∀i, j. Thus,

∆S1
= span{gS1,1, gS1,2, gS1,3}

is involutive and nilpotent of order 1. The extended
system on strata S1 is:

ẋ = gS1,1v
S1,1 + gS1,2v

S1,2 + gS1,3v
S1,3.

Similarly, on strata S2 it is easy to verify that
[gS2,i, gS2,j ] = 0 ∀i, j. Thus,

∆S2
= span{gS2,1, gS2,2, gS2,3}

is involutive and nilpotent of order 1. Thus, on strata
S2, the extended system is

ẋ = gS2,1v
S2,1 + gS2,2v

S2,2 + gS2,3v
S2,3.

Thus, the stratified extended system is

ẋ = gS12,1v
S12,1 + gS12,2v

S12,2 + gS12,3v
S12,3

+ gS1,1v
S1,1 + gS1,2v

S1,2 + gS1,3v
S1,3

+ gS2,1v
S2,1 + gS2,2v

S2,2 + gS2,3v
S2,3.

However, since gS12,1 = gS1,1 and gS12,2 = gS2,2, the
stratified extended system can be rearranged to

ẋ = gS12,1v
S12,1 + gS12,2v

S12,2 + gS12,3v
S12,3

+ gS1,2v
S1,2 + gS1,3v

S1,3

+ gS2,1v
S2,1 + gS2,3v

S2,3.

One can verify that this system is strata decoupled.
Let the starting and ending configurations be:

p = (x, y, θ, φ1, φ2, h1, h2) = (0, 0, 0, 0, 0, 0, 0)
q = (x, y, θ, φ1, φ2, h1, h2) = (1, 1, 0, 0, 0, 0, 0)

A path that connects these points is γ(t) =
(t, t, 0, 0, 0, 0, 0). Equating γ̇(t) with with the stratified
extended system and solving for the fictitious controls
yields:





















vS12,1

vS12,2

vS12,3

vS1,2

vS1,3

vS2,1

vS2,3





















=
1

2l





















l(cos θ + sin θ)
l(cos θ + sin θ)
cos θ − sin θ

−l(cos θ + sin θ)
0

−l(cos θ + sin θ)
0





















.
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Figure 3. Straight Trajectory

For a system which is nilpotent of order 2, we have
from Equation 6 for the extended system on S12

ḣ1 = vS12,1, ḣ2 = vS12,2,

ḣ3 = vS12,3 + h1, v
S12,2

which yields.

h1(1) =
1

2
h2(1) =

1

2
h3(1) =

3

4
. (17)

Since the nilpotent approximation is of order two,
there is no need to transform to forward Philip Hall
coordinates. The control sequence is

√

3

4
(vS12,1#vS12,2#− vS12,1#− vS12,2)

to get eh3B3 , and 1
2v

S12,2#vS12,1 to get eh2B2eh1B1 .
Hence, the complete sequence is
√

3

4
(vS12,1#vS12,2#−vS12,1#−vS12,2)#

1

2
vS12,2#vS12,1.

On the higher strata S1, the extended system is:

ḣ1 = vS1,2 ḣ2 = vS1,3 (18)

which gives

h1(1) = −1

2
h2(1) = 0. (19)

This dictates a control sequence − 1
2v

S1,2. Similarly,
the extended system on S2 gives the control sequence
− 1

2v
S2,3. Thus, the total control sequence is
√

3
4 (v

S12,1#vS12,2#− vS12,1#− vS12,2)

# 1
2v

S12,2#vS12,1#(− 1
2v

S1,2)#− ( 12v
S2,3).

Figure 3 shows the path of the robot’s center as it
follows a straight line trajectory, which is broken into
four equal segments. Due to the nilpotent approxima-
tion, there is some small final error. Better accuracy
can be obtained by use of a higher order nilpotent ap-
proximation or a second iteration of the algorithm from
the robot’s ending position.

The approach is general enough that arbitrary
smooth trajectories are possible. Figure 4 shows the
the hexapod tracking an ellipse while maintaining a
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Figure 4. Elliptical Trajectory
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Figure 5. Elliptical Trajectory

constant angular orientation. Figure 5 shows the re-
sults when a smaller step size is used. In this exam-
ple, part of the trajectory tracking error is due to the
nilpotent approximation, but another contribution to
the trajectory error is the simplicity of the model. Es-
sentially, some directions are more “difficult” for the
system to execute than others. In these simulations,
because of the simplicity of the model, which elimi-
nates “crab–like” gates, when the robot has to move
sideways, its tracking error is greater because this di-
rection corresponds to a Lie bracket direction.

Figure 6 shows the hexapod following the same el-
lipse while also rotating at a constant rate. Figure 7
plots the robot’s angular orientation as the simulation
progresses.

6 Conclusions

Our method provides a general means to solve
the trajectory generation problem for certain types
of legged robotic systems and the simulations indi-
cate that the approach is rather simple to apply. The
method is independent of the number of legs and is
not based on foot placement principles. For a given
legged robot mechanism, the deployment of a speci-
ficly tuned leg-placement-based algorithm may lead to
motions which use fewer steps or results in less track-
ing error. However, for the purposes of initial design
and evaluation of a legged mechanism, our approach
affords the robotic design engineer an automated way
to implement a realistic trajectory generation scheme



-3 -2 -1 1 2 3
x

-2

-1

1

2

y

Figure 6. Elliptical Path with Rotation

500 1000 1500 2000
t

1

2

3

4

5

6

θ

Figure 7. Hexapod Orientation

for a quasi-static robot of nearly arbitrary morphol-
ogy. More importantly, we believe that are approach
provides an evolutionary path for future research and
generalizations. Clearly, this general framework also
encompasses other types of systems whose configura-
tion space is similarly stratified. An obvious example
would be a robotic grasping problem, where we wish
to reorient an object grasped by a robot hand by used
of repeated finger repositioning.

There are several avenues of potential further work.
In this paper we addressed the simple case where the
equations of motion are strata decoupled. While ex-
perience dictates that many robots are strata decou-
pled, the non-decoupled case merits further attention.
Since many of the most interesting types of robotic sys-
tems (such as bipeds) are not kinematic, an algorithm
for solving the trajectory generation problem for such
systems is necessary. However, since the state of the
art for solving the trajectory generation problem for
smooth systems with drift is still in its infancy (see,
for example, the special results in References [17], and

the references cited therein), it may be difficult to make
headway along these lines until more complete results
for the smooth case become known.
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