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ABSTRACT

Many vehicle systems contain rolling elements which exhibit unstable rolling motion, called shim-
mying, which may lead to disastrous results. The classical shimmying wheel is a simple model which
captures the essential dynamics of such systems. In particular, the uncontrolled stability of the
rolling wheel is characterized by a subcritical Hopf bifurcation when certain parameter values are
varied. As such, the equilibrium state for the system may be unstable, and even if it is stable, suffi-
ciently non-local initial conditions will lead to unstable dynamics. To control this unstable behavior,
a particular geometric structure of this model can be exploited which provides a simple means to
design a globally stabilizing controller by the means of feedback linearization.

1 INTRODUCTION

A schematic drawing of the model is shown in Figure 1. The rotational angle of the wheel with
radius r is given by ¢. The caster length, or the offset of the axis of the wheel with respect to the
vertical center of rotation of the wheel (the kingpin) is I, and the angle of rotation of the wheel
assembly with respect to the “straight” position is given by 8. We will consider the kingpin to be
massless. Call the mass of the connecting assembly m. and the mass of the wheel m,,. For the
control problem, we will consider the control input to be a torque, u, about the vertical center of
rotation of the wheel assembly.

In this study, the simplest possible mechanical model is considered, with the lowest number of
degrees of freedom which still exhibits the shimmying instability. This goal of simplicity perhaps
makes the model less similar to a particular example, e.g., less like an automobile suspension. On the
other hand, reducing the problem to the simplest possible model serves a two—fold purpose. First,
the problem becomes tractable, allowing the geometry of the dynamics to be explored. Second, by
considering the simplest possible model, we hope to reduce the rather general phenomena, present
in many different applications, to its essential elements.

The main simplification of this model is that the elastic nature of the system is modeled by springs;
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Figure 1. Classical shimmying wheel model.



whereas, the more sophisticated models mentioned previously directly attempt to model the infinite
dimensional elastic nature of pneumatic tires, or possibly reduce the problem to a finite dimensional
representation by only considering the lower order modes [Sharp and Jones, 1980]. However, there
are some cases where our simplified model may be a more accurate model than the more complicated
ones. For example, on an aircraft with a relatively tall landing gear structure, the elastic effect of
the tire may be small relative to the lateral elastic properties of the landing gear strut. Another
case is whenever there is a small contact region, or if the wheel is rigid (as in a shopping cart).
Regardless, here we model the elastic element by two springs, each with spring constant g The
kingpin is constrained to deflect laterally (so it can not deflect “forwards and backwards”, but only
“side to side”), and the amount of deflection is represented by the variable y.

We consider the system to be moving with a constant velocity, v. This assumption further reduces
the dimension of the phase space, thus helping to further simplify the problem. Such an assumption
is justified in cases where the body is massive relative to the mass of the wheel and the associated
structure (as in an airplane), or where some external control keeps the overall structure moving with
constant velocity (such as a truck trailer or shopping cart). Finally, we note that many structures
such as an aircraft landing gear system or automobile suspension also include significant vertical
elastic elements, e.g., the shock absorbers. Clearly, a model including these elements would be more
realistic and could possibly alter the dynamics of the system. However, since the simpler, planar
model we consider exhibits the phenomenon we wish to control, we will restrict our attention to the
simpler model for the reasons set forth above.

2 THE DYNAMICS OF THE CLASSICAL SHIMMYING WHEEL

The equations of motion for this system with the ideal nonholonomic constraining forces and
control input u are given by:
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A complete study of the dynamics of this system is presented by [Stépdn, 1991]. In particular,
it was shown that the linearized stability of the system about the § = 0 and y = 0 position was

governed by the following condition:
l 3Mmy

r 2m,

(2)

If the above condition is satisfied, the equilibrium point is asymptotically stable, and the equilibrium
point is unstable otherwise. Additionally, it was shown, that when the above local stability condi-
tion is satisfied, an unstable limit cycle exists around the stable stationary motion. This stability
condition does not contain the velocity term, which may seem to contradict intuition because in
vehicle dynamics, the notion of a “critical speed” is often utilized. However, in the case presented
here, equation 2 does not contain a velocity term because we have not included viscous damping in
the equations of motion.

If we set the control input to zero, we can numerically verify and observe the above results. For
m. = 1.5kg, m,, = 2.75kg, | = 0.2m, » = 0.1m, k = 75N/m and v = 1m/s, the value of the critical
caster length is I, =~ 0.1658m, so the length of the caster is greater than the critical length, and so
the equilibrium solution is stable. Figure 2 shows this stable equilibrium solution. For a decreased
caster length, I = 0.152m < I, Figure 3 shows the local instability of the equilibrium solution. This
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Figure 2. Locally stable rolling system. Figure 3. Locally unstable rolling system.

unstable solution appears to be growing unbounded in all variables except 6, which is bounded by
+I.

2The previous simulations verify that with certain parameter values, the equilibrium point can be
locally unstable. Next, we numerically verify that even if the equilibrium point is locally stable,
there exists an unstable limit cycle around it. Figure 4 shows two solutions, with initial conditions
which are “close” together, one of which is stable, the other of which is unstable. The first solution
has initial conditions leading inside the limit cycle, and the second solution has initial conditions
leading outside the limit cycle. In this simulation, we use the same physical parameters for the
system as for the simulation demonstrating the local stability of the equilibrium solution, except
1 =0.171m > I, which still satisfies the local stability condition expressed by equation 2. In both
cases, the initial conditions are all zero, except for the solution leading inside the limit cycle, the
initial angle is o = —0.24 and the initial angular velocity is o = 0.4s~1. For the solution leading
outside the limit cycle, fy = —0.24 and 6y = 0s~!. See the bifurcation analysis in [Stépan, 1991] for
more details.

3 FEEDBACK LINEARIZATION

This section constructs a feedback linearizing controller for the classical shimmying wheel. First,
we review the basics of feedback linearization. Consider the control system described by

i = flx)+g(z)u
EO_{ y = h(x),
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Figure 4. Unstable limit cycle.



where h is called the output function and dim(z) = n. This system has relative degree r at a point
i) if

1. Lngih(x) = 0 Vz in a neighborhood of xg, and all k < r — 1, and

2. LyL% 'h(zo) # 0,
where Lgh is the Lie derivative of the function h along the vector field g.

If r = n for all z, consider the change of coordinates

& = h(2)
& = & =Lsh(z)
& = &= Lih(x)

fn = énfl = L}lilh(a’.)
n = L}h(z) + LyL} " h(z)u.

Since LgL?_lh(a:) # 0 Vz, we can define

1
u=—————(—L%h(z) +v)
LoLy h(z)
so that fn = v. In this manner, the nonlinear control system ¥ is transformed into a controllable
linear system. If hy(t) is the desired “trajectory,” choose

v=h" +an 1 (B — &) + -+ ag(ha — &),

as a feedback control law where the «; are such that s™ + a,—18" '+ - - 4+ a5 + ag is a Hurwitz
polynomial. For a complete explanation see [Isidori, 1989], and [Nijmeijer and der Schaft, 1990].

For an arbitrary system, there is no general method for constructing an output function, kA, which
generates the coordinate transformation under which the system is rendered linear. In the case of
the classical shimmying wheel (the purely rolling case) the ¢—coordinate is cyclic, so we can consider
x = (0,y,0) and write the system asf () 4 g(z)u, where g(z) is simply the terms in § which contain
the control input term, u, and f(x) contains all the other terms in the equations of motion.

If we consider hy = y as a candidate output function,

Ly = 0
Lihy = 10cosf+ (v+10sinf)tan 6
LyLih # 0.

Since LyL¢h # 0, hy is not an output function which renders the system feedback linearizable. Note,
however, that if another output function, ho were purely a function of 8, then
dhs -
Liho = —>0
e
since the 6 component of f is simply 6. Since L fhy is linear in 0, and otherwise only a function of
0, we can differentiate it with respect to €, integrate it with respect to 6, and subtract h; from the
result. If we denote the resulting function by h, we have

0 .0 6 .0
h(z) = —y — [ log(cos 5 —sin 2) + [ log(cos 5 + sin 2),
where h renders the system feedback linearizable via the preceding construction.

The efficacy of this controller can be verified via numerical simulation. The results of a simulation
which illustrates that the controller stabilizes the system when the physical parameters do not satisfy
the linear stability criterion are presented in Figure 5. In this simulation, mg = 5.75 and the initial
conditions are (6,y, ¢,0) = (—0.75,0,0,0).
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4 CONCLUSIONS

This paper analyzed the dynamics of he classical shimmying wheel and presented a control design
methodology which is effective in controlling its unstable dynamics. Of course, there are many more
avenues available for investigation. Obviously, more work is required to determine the nature of the
chaotic attractor and its relationship to the purely rolling regimes where the controller is guaranteed
to stabilize the system. Another avenue of study would be to study the efficacy of the controller
designed here on a more realistic model of an elastic tire. Also, investigating the geometric nature
of a more realistic tire model, such as presented in [Barta and Stépéan, 1995] may yield insights into
controller design for practical implementation.
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