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Abstract

This paper presents a general, nonholonomic dextrous manipulation and finger gaiting technique for robotic
grasping problems. This method is general in that it is independent of the geometry of the grasped object
and independent of the morphology of the mainipulating hand. This method is based upon a nonholonomic
motion planning method for smooth system that has been extended to a certain class of discontinuous systems by
recognizing a particular generic geometric structure underlying legged robotic locomotion and grasping problems,
called a stratification The stratification is a decomposition of the configuration space of the system into subsets
which correspond to the various combinations of fingers contacting the object. Additionally, associated with this
manipulation methodology is a definition of manipulability that takes into account the fact that fingers may
intermittently engage the object.
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1 Introduction

Nonlinear control is often concerned with determining control inputs which generate specified trajectories for general
nonlinear systems. In this paper, we present a general, nonholonomic dextrous manipulation and finger gaiting
technique for robotic grasping problems that is based upon a motion planning algorithm for nonlinear control
systems. This method is general in that it is independent of the geometry of the grasped object and independent of
the morphology of the manipulating hand. In particular, the method is independent of the type of contact between
the finger and object (e.g., “point contact with friction,” “soft finger,” rolling fingers [13, 14] etc.) and independent
of the morphology of the manipulating “fingers” (i.e., independent of the number of joints, number of fingers, etc.).

This method is based upon a nonholonomic motion planning method for smooth system [12] due to Lafferriere
and Sussmann that has been extended to a certain class of discontinuous systems by recognizing a particular generic
geometric structure underlying legged robotic locomotion and grasping problems, called a stratification [7, 8, 9, 10].
The stratification is a decomposition of the configuration space of the system into subsets which correspond to the
various combinations of fingers contacting the object. Additionally, associated with this manipulation methodology
is a definition of manipulability that takes into account the fact that fingers may intermittently engage the object.
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2 Background

Throughout this paper, we distinguish between smooth systems, where the vector fields for the control system are
smooth, and stratified systems, (defined in Section 3) where the vector fields are not necessarily smooth. Stratified
systems include legged robotic locomotion and robotic finger gaiting systems.

This section outlines the motion planning method due to Lafferriere and Sussmann [12] for smooth, kinematic
nonholonomic systems which are in the form of a non-linear affine driftless system evolving on a configuration
manifold, M

ẋ = g1(x)u1 + · · ·+ gm(x)um, x ∈M. (1)

For an underactuated system (i.e., m < dim(M)) we make use (from [12]) of an “extended system,” where “fictitious
controls,” corresponding to higher order Lie bracket motions, are added. The trajectory generation problem is
relatively easy to solve for the extended system. The real controls are then computed from the fictitious controls
associated with the extended system.

The flow along gi is referred to as the formal exponential of gi and is denoted

φgit (x) := etgi(x) = (I + tgi +
t2

2
g2
i + · · · ). (2)

Note that terms of the form g2
i are not vector fields and are rigorously considered by associating a Lie algebra

of indeterminates to the Lie algebra of vector fields associated with the control problem. A complete exposition
on the use of indeterminates in this manner is omitted here due to space limitations and we refer the reader to
references [12, 17, 18] for a complete explanation.

The Campbell–Baker–Hausdorff formula is given in the following theorem and is of basic importance to the
methods outlined in this paper.

Theorem 2.1 Given two smooth vector fields g1, g2 the composition of their exponentials is given by

eg1eg2 = eg1+g2+ 1
2 [g1,g2]+ 1

12 ([g1,[g1,g2]]−[g2,[g1,g2]])··· (3)

where the remaining terms may be found by equating terms in the (non-commutative) formal power series on the
right– and left–hand sides.

Associate with the system in Equation 1 the extended system:

ẋ = g1v1 + · · ·+ gmvm + gm+1vm+1 + · · ·+ gsvs (4)

where the gm+1, . . . , gs are higher order Lie brackets of the gi, chosen so that dim(span{g1, . . . , gs}) = dim(M).
(Note that this requires that the system is controllable since it is simply a statement of the Lie Algebra Rank
Condition.) The vi’s are called fictitious inputs since they may not correspond with the actual system inputs. The
higher order Lie brackets must belong to the Philip Hall basis (see [15]) for the Lie algebra generated by the control
vector fields.

To steer the system from a point p to a point q, define a curve, γ(t) connecting p and q (a straight line would
work, but is not necessary) and solve

γ̇(t) = g1(γ(t))v1 + · · ·+ gs(γ(t))vs (5)

for the fictitious controls vi.
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To compute the actual control inputs, determine the Philip Hall basis for the Lie algebra generated by g1, . . . , gm,
and denote it by B1, B2, . . . , Bs. It is possible to represent all flows of Equation 1 in the form

St(x) = ehs(t)Bsehs−1(t)Bs−1 · · · eh2(t)B2eh1(t)B1(x) (6)

for some functions h1, h2, . . . , hs, called the (backward) Philip Hall coordinates. Furthermore, St(x) satisfies the
formal differential equation

Ṡ(t) = S(t)(B1v1 + · · ·+ Bsvs), S(0) = 1, (7)

where St(x) has been replaced by S(t). If we define the adjoint mapping

Ade−hiBiBj = e−hiBiBje
hiBi ,

then it can be shown that

Ade−hiBi ···e−hj−1Bj−1 Bj ḣj =

(
s∑

k=1

pj,k(h)Bk

)
ḣj ,

for some polynomials pj,k(h). (For a more detailed explanation, see [14]). Equating coefficients yields the differential
equations

ḣ = A(h)v h(0) = 0. (8)

These equations specify the evolution of the Philip Hall coordinates in response to the fictitious inputs, which were
found via Equation 5, and represent how long the system must flow along each basis element in Equation 6.

Determining the real inputs is straight–forward. Note that the fictitious inputs are defined as a function of time
which occur simultaneously; whereas, the Philip Hall coordinates occur sequentially. Since the system flows along
each basis element sequentially, the real control inputs can be determined by making use of piece–wise constant
approximations to Lie bracket motions, e.g.,

φt[g1,g2](x0) ≈ φ
√
t
−g2 ◦ φ

√
t
−g1 ◦ φ

√
t

g2 ◦ φg1√
t
(x0). (9)

If the extended system contains Lie brackets of order higher than two, then we must transform the backward
Philip Hall coordinates into forward Philip Hall coordinates (see [12]). The method is particularly elegant in that
the higher order error associated with approximating flows along Lie bracket vector fields as in Equation 9 can be
directly compensated when approximating Lie brackets of the same order as the error. For simplicity, we will restrict
our attention to second order Lie bracket systems in this paper. However, we note that this is not a theoretical
limitation of the method. Finally, note that this method works exactly for nilpotent systems, and approximately
for non–nilpotent systems. However, arbitrary precision can be obtained by iterating the method for non–nilpotent
systems.

3 Stratified Systems

The method outlined in the preceding section does not apply to stratified systems since it requires that the vector
fields that define the control system be smooth. Before considering the motion planning problem for stratified
systems we will define and consider the fundamental geometry of stratified systems. We will motivate our definition
of a stratified configuration space with a simple example.
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3.1 Stratified Configuration Spaces

Example 3.1 Consider two cooperating robot arms which intermittently engage a smooth object as illustrated in
Figure 1 (for the purposes of this example, ignore the important practical issues of force closure and manipulability).
The configuration manifold for the system describes the spatial position and orientation of a reference frame rigidly
attached to the object as well as variables such as joint angles which describe the internal geometry of the robots. The
set of configurations corresponding to one of the robots engaging the object is a codimension one submanifold of the
configuration space. The same is true when the other robot engages the object. Similarly, when both robots engage
the object, the system is on a codimension 2 submanifold of the configuration space formed by the intersection of
the single contact submanifolds. We will refer to each submanifold as a stratum. The structure of the configuration
manifold for such a system is abstractly illustrated in Figure 2. Note that the equations of motion for the system
will be different on each submanifold because the constraints on the system will be different on each submanifold.
Our approach is to exploit this type of geometric structure of such configuration spaces.
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Figure 1. Two cooperating robots manipulating an object.

By considering systems more general than the two cooperating robots from Example 3.1, we can develop a
general definition of stratified configuration spaces. Let M denote the system’s entire configuration manifold (it will
often be convenient to denote this space as S0). Let Si ⊂ M denote the codimension one submanifold of M that
corresponds to all configurations where only the ith robot engages the object. Denote, the intersection of Si and
Sj , by Sij = Si ∩ Sj . The set Sij physically corresponds to states where both the ith and jth robots engage the
object. Further intersections can be similarly defined in a recursive fashion: Sijk = Si ∩ Sj ∩ Sk = Si ∩ Sjk, etc.
We will call the stratum with the lowest dimension containing the point x as the bottom stratum, denoted SB, and
any other submanifolds containing x as higher strata. When making relative comparisons among different strata, we
will refer to lower dimensional (i.e. higher codimension) strata as lower strata, and higher dimensional (i.e. lower
codimension) strata as higher strata.
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Figure 2. Configuration manifold structure of two cooperating
robots.

Definition 3.2: (Stratified configuration manifold)

Let M be a manifold, and n functions Φi : M 7→ R, i = 1, . . . n be such that the level sets Si = Φ−1
i (0) ⊂ M are

regular submanifolds of M , for each i, and the intersection of any number of the level sets, Si1i2···im = Φ−1
i1

(0) ∩
Φ−1
i2

(0) ∩ · · · ∩ Φ−1
im

(0), m ≤ n, is also a regular submanifold of M . Then M and the functions Φn define a stratified
configuration space.

3.2 Stratified Motion Planning

The main difficulty with stratified systems is that the various sets of equations of motion are defined on different
spaces. Since we are ultimately required to consider the vector fields associated with each stratum in one common
space, vector fields on different strata must have a particular relationship. In this case, that common space will be
the bottom stratum and the particular relationship will involve Lie bracket. A simple example will help motivate
this.

Example 3.3 Consider the simple cooperating robot configuration space as shown in Figure 2. Assume that on
stratum S12, the vector field g1,1 moves the system off of S12 and onto S1, (arm 2 disengages the object) and
correspondingly, g2,1 moves the system off of S12 onto S2. Also, consider the vector fields g1,2 and g2,2, defined on
S1 and S2 respectively. Consider the following sequence of flows, starting from the point x0 ∈ S12

xf = φt6−g2,1︸ ︷︷ ︸
S12←S2

◦ φt5g2,2︸︷︷︸
on S2

◦ φt4g2,1︸︷︷︸
S2←S12

(10)

◦ φt3−g1,1︸ ︷︷ ︸
S12←S1

◦ φt2g1,2︸︷︷︸
on S1

◦ φt1g1,1︸︷︷︸
S1←S12

(x0).

The notation under each flow indicates what the flow is doing, e.g., “S12 ← S1” means that the flow takes the
system from S1 to S12 and “on S1” means that the flow was entirely on S1. This sequence of flows is illustrated in
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Figure 3. Sequence of flows.

Figure 3. In this sequence of flows, the system first moved off of the bottom stratum into S1, flowed along the vector
field g1,2, flowed back onto the bottom stratum, off of the bottom stratum onto S2, along vector field g2,2 and back
to the bottom stratum. In finger gaiting, such a sequence of flows corresponds to a finger disengaging the object,
undergoing some additional motion and then engaging the object.

In the simplest case, it is clear from the Campbell–Baker–Hausdorff formula (Equation 3) that if the Lie bracket
between two vector fields is zero, then their flows commute. Thus, if

[g1,1, g1,2] = 0 and [g2,1, g2,2] = 0, (11)

we can reorder the above sequence of flows, by interchanging the flow along g1,1 and g1,2 and the flows along g2,1

and g2,2 as follows

xf = φt5g2,2 ◦ φt6−g2,1︸ ︷︷ ︸
interchanged

◦φt4g2,1 ◦ φt2g1,2 ◦ φt3−g1,1︸ ︷︷ ︸
interchanged

◦φt1g1,1(x0). (12)

If t1 = t3 and t4 = t6, this reduces to

xf = φt4g2,2 ◦ φt2g1,2︸ ︷︷ ︸
on S12

(x0). (13)

Note that that g1,2 and g2,2 are vector fields in the equations of motion for the system on S1 and S2, respectively,
but not on S12. However, the sequence of flows in Equation 10, where each flow occurs on a stratum where the
associated vector field is in the equations of motion results in the same flow as in Equation 12, where the vector fields
are evaluated on the bottom stratum, even though they are not part of the equations of motion there. Furthermore,
note that if the vector fields g1,2 and g2,2 are tangent to S12, then the resulting flow given in Equation 12 will remain
in S12.
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In the more general case where the Lie bracket “decoupling” expressed by Equation 11 does not hold we can
consider the pull back of vector fields defined on higher strata to the bottom stratum along the flow of the vector field
which takes the system off of the bottom stratum. Recall that the pull back of a vector field g by a diffeomorphism
φ is

φ∗g = (Tφ)−1 ◦ g ◦ φ

and the basic fact that the flow of the pull back of a vector field is the pull back of its flow, where the pull back of
the flow is defined as

φ∗φtg = φ−1 ◦ φtg ◦ φ,

where φg is the flow corresponding to the vector field g. In general, the diffeomorphism φ and its derivative, Tφ may
be hard to compute since it involves integrating a nonlinear differential equation; however, for grasping problems,
since this flow corresponds to a finger moving out of contact with the object, this flow will be easy to compute since
it is simply the forward kinematics of the finger.

Finally, note that pulling back a vector field as described above defines a vector field at points contained in the
bottom stratum, but not necessarily vector fields contained in the tangent space to the bottom stratum. Therefore,
we require that the pull back satisfy the following equation

〈dΦ(x), φ∗g〉 = 0, x ∈ SB (14)

where a level set of the function Φ describes the bottom stratum. Alternatively, we can push forward the one form
dΦ to points in the higher stratum where g is defined by the formula

〈φ∗dΦ(x), g(x)〉 = 〈dΦφ−1(m), Txφ−1g(m)〉,
m = φ(x).

The above discussion shows that it is possible to consider vector fields in higher strata as part of the equations of
motion for the system on the bottom stratum. At this point, then, we have essentially increased the class of vector
fields that we may use in using the motion planning algorithm presented in Section 2 by recognizing a mechanism
whereby vector fields on higher strata can be defined on the bottom stratum. Thus, the method presented in
Section 2 could be used with the modification that whenever the system must flow along a vector field in a higher
stratum, it switches to that stratum by appropriately disengaging the object, flows along the vector field, and then
engages the object as before.

Now for stratified systems, we can proceed just like in Section 2. Pick a nominal trajectory γ(t) connecting the
starting point with the desired final point. Denoting the stratified extended system by ẋ = b1(x)v1 + · · ·+ bk(x)vk,
(where some of the bi’s are vector fields that come from the equations of motion for the system on higher strata (or
their pull back)) set

γ̇(t) = b1(γ(t))v1 + · · ·+ bk(γ(t))vk,

and solve for the fictitious inputs, vi(t). Because of the fact that the method only works approximately for non–
nilpotent systems, it will be convenient to consider the nominal trajectory as a set of concatenated subtrajectories.
Then, the motion planning method will be used for each subtrajectory sequentially. We will address this issue further
in Section 4.

Note that we can consider a more general notion of manipulability for a grasp. The “standard” definition of
manipulability for a grasp (see, e.g., [14]) does not accommodate fingers making and breaking contact. Here, similar
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to the definition of controllability for nonlinear systems, the grasp will be manipulable at a point x if {b1, . . . , bk}
span the tangent space to the configuration manifold. Note that if {b1, . . . , bk} do not span the tangent space to
the configuration space, it will not be possible to use this method to have the system to follow arbitrary object and
finger motion trajectories.

The rest of the method is just as outlined in Section 2: from the fictitious inputs, determine the Philip Hall
coordinates which gives the desired sequence of flows along basis elements, and then approximate Lie bracket flows
by a sequence of piece–wise constant inputs taking care to switch strata as necessary.

4 Stability and Force Closure

Important issues for finger gaiting manipulation is stability and force closure. Unfortunately there is not an inherent
mechanism in the direct application of the method in Section 2 to guarantee the stability of the gait. Recall that
the main approach of the method was to pick a trajectory for the extended system, γ(t), from which to determine
the fictitious inputs. Then, using the fact that any flow can be decomposed to individual flows along the Philip Hall
basis vector fields, the real inputs could be determined. The important point to note is that the actual trajectory
will, in general, not be γ(t). Thus, merely picking an initial trajectory γ(t) which is always stable or force closure
is not sufficient. What also must be guaranteed is that deviations from the initial trajectory be within the stability
bounds as well.

Assume that there is a means for determining the stability or force closure properties of the system and assume
that this property can be determined by means of a scalar–valued function of the configuration, Ψ(x). For conve-
nience, assume that when Ψ(x) has a negative value, the system is unstable, when Ψ(x) has a positive value, the
system is stable, and when Ψ(x) = 0, the system is on the boundary between stability and instability. In the trajec-
tory generation method, then, we must pick the initial trajectory, γ(t) such that it does not does not intersect any
unstable regions and also such that it does not intersect the stability boundary, i.e., Ψ(γ(t)) > 0, t ∈ [0, 1]. Whether
a stable trajectory exists for a given object for any or all initial and final configurations is clearly an important
question, but is beyond the scope of this paper.

The overall approach is to take steps that are “small enough” to ensure that the system remains stable. Since
we are considering small motions and need a norm to provide a measure of the length of a flow, we will consider the
system locally in Rn . Given a desired step along the trajectory, γ(t), t ∈ [0, 1], let R = min{‖x− c‖, c ∈ Ψ−1(0)},
i.e. the distance from the starting point to the closest point on the stability boundary.

The goal is to ensure that the trajectory of the system does not intersect the set Ψ−1(0). If x denotes the starting
point, and xf the final point, let γ(t) = x + t(xf − x) be the desired straight line path between the starting and
end points. Also, let ∆ = ‖xf − x‖. Recall that the fictitious inputs, vi were determined by solving the equation
γ̇(t) = g1(γ(t))v1 + · · · + gs(γ(t))vs for the vi. Then ‖vi‖ < C‖γ̇(t)‖ = C∆, for some fixed constant C. By the
method of construction of the real inputs from the fictitious inputs, then, ‖ui‖ < C∆1/k, where k is the highest
order Lie bracket that is approximated by a sequence of piece–wise constant inputs.

Now, pick a ball, B, of radius R, and let K be the maximum norm of all the (first order) vector fields, gi for
all points in the ball B. Recall that the real inputs, ui were given by a sequence of inputs which approximate the
flow of the extended system. Denote this sequence by uij, where the subscript indexes which input it is, and the
superscript indexes its position in the sequence. The maximum distance that the system can possibly flow from the
starting point, x, is given by the sum of the distances of the individual flows. Let xmax = maxt∈[0,1]{‖x(t) − x‖}
denote the point in the flow that is maximally distant from the starting point. (Note that this is not necessarily the
final point, xf ). To guarantee stability, we want to show that ‖xmax − x‖ < R. However, this distance, ‖xmax − x‖
is necessarily bounded by the sum of the norms of each individual flow associated with one real control input, uij ,
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i.e.,

‖xmax − x‖ ≤
∑
i,j

‖
∫ 1

0

giu
i
jdt‖.

However, ‖uij‖ ≤ C∆1/k and ‖gi(x)‖ ≤ K ∀x ∈ B. Thus,

‖xmax − x‖ ≤
∑
i,j

KC∆1/k, (15)

and since ∆ = ‖xf − x‖, by choosing the desired final point close enough to the starting point, the trajectory will
not intersect the stability boundary.

Note that because ∆ is raised to the power of 1/k, if k is large, then it may be necessary to make ∆ exceedingly
small in order to ensure stability. However, the bound expressed in Equation 15 is itself very conservative since it
sums the length of a bound on each individual flow in the series. Thus an appropriate step length may be best
determined experimentally.

5 Example

This section illustrates the stratified motion planning algorithm with a grasping manipulation problem. Unfortu-
nately, due to space limitations, this example is necessarily relatively simple and does not make use of the full
capability of the theory (for example, no Lie bracket approximating motions are necessary for this example). Ad-
ditionally, much of the machinery associated with robotic grasping manipulation is incorporated by reference, and
many equations are left in symbolic form.

Consider the “egg–shaped” object in Figure 4 which is manipulated by four, three degree of freedom manipulators.
The object is parameterized by

c(u, v) =

 (
1 + u

π

)
cosu cos v(

1 + u
π

)
cosu sin v

3
2 sinu

 ,
u ∈ (−π2 , π2 )
v ∈ (−π, π)

and the kinematic model for each manipulator is illustrated in Figure 5, where the forward kinematics are x
y
z

 =

 l cos θ1 sin θ2 + l cos θ1 sin(θ2 − θ3)
l sin θ1 sin θ2 + l sin θ1 sin(θ2 − θ3)

l cos θ2 + l cos(θ2 − θ3)

 ,

where (x, y, z) is the Cartesian position of the end effector. We assume a “point contact with friction” contact model.
The geometry of the stratified configuration space will consist of a total of 16 different strata, corresponding to

all the possible combinations of finger contacts. However, as will be clear shortly, the system is manipulable if we
restrict our attention to only 5 strata: when all four fingers are in contact plus each of the four cases where only one
of the fingers is out of contact. We will denote these strata as S1234, S123, S124, S134, and S234 where the subscripts
denote which fingers are in contact with the object.

Since the nominal trajectory is away from the kinematic singularities of the fingers, we can treat the velocity of
the finger tips as the inputs to the system to simplify the computations (this will also make the equations of motion
satisfy Equation 11). We note that, in general, this can not be done (for example, when the the finger tips are in
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Figure 4. Four fingers manipulating an object.

rolling contact with the object); however, we emphasize that this more general case fits within the framework of the
stratified motion planning method outlined in Section 3, and will be the subject of a future (longer) publication.

The following treatment of grasping and much of the associated notation is from [14]. For a grasped system with
point contacts, the fundamental grasping constraint is

Jh(θ, x0)θ̇ = GTV b
po, (16)

where Jh is the hand Jacobian, G is the grasp map and V b
po is the body velocity of the object relative to the “palm”

frame. The grasp map is defined as

G =
[
AdT

g−1
oc1

Bc1 · · ·AdT
g−1
oc4

Bc4

]
, (17)

where the wrench basis, Bci is defined as

Bci =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 ,

for point contacts with friction. The adjoint map in Equation 17 is defined as

AdT
g−1
oci

=
(

Roci 0
p̂ociRoci Roci

)
,

and the subscript ci indicates the contact point for the ith finger. Equation 16 requires that the linear velocity of
the contact points be compatible with the rigid body velocity of the object and contact model. In this example, due
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to the form of the wrench basis in Equation 17, each side of Equation 16 is simply the linear velocities of the contact
points. Equation 16 is actually 12 equations on the bottom stratum (9 equations on the higher strata). Thus, 6
finger tip velocities will be constrained on the bottom stratum, and 3 finger tip velocities will be constrained on the
higher strata. Thus the equations of motion on the bottom stratum are of the form

ẋ = g1(x)u1 + · · ·+ g6(x)u6,

and on the higher strata are of the form

ẋ = g1(x)u1 + · · ·+ g6(x)u6 + g7(x)u7 + · · · g9(x)u9,

where the first 6 inputs correspond to the inputs associated with the finger tip velocities for the three fingers contact-
ing the object, and inputs 7 through 9 are the three degrees of freedom for the finger that is not in contact with the
object. Note that g7(x) through g9(x) will be of the form (0, 0, 0, 0, 0, 0, 1, 0, 0) since they are just the unconstrained
finger tip velocities of the finger which is not contacting the object, and thus they will satisfy Equation 11. Therefore,
they may be incorporated into the equations of motion for the bottom stratified extended system.

Incorporating these unconstrained finger tip velocity vector fields for each of the four higher strata gives a
stratified extended system of the form

ẋ = g1(x) + · · ·+ g6(x)u6︸ ︷︷ ︸
on S1234

+ g7(x)u7 + g8(x)u8 + g9(x)u9︸ ︷︷ ︸
from S123

...
+ g16(x)u16 + g17(x)u17 + g18(x)u18︸ ︷︷ ︸

from S234

,
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where all the vector fields except those on the first line correspond to free finger tip motion. Tedious detailed
calculations show that {g1, . . . , g18} spans the the tangent space to the configuration space, so the system is stratified
manipulable. Since no Lie brackets are necessary to make the system stratified manipulable, this system is already
in extended form, and the actual control inputs are the same as the “fictitious” inputs presented in Sections 2 and
3.

Assume that the initial and final configurations are identical (as illustrated in Figure 4), and that the desired
motion is a pure rotation of 2π about the axis ω = ( 1/√

3
, 1√

3
, 1√

3
). Using exponential coordinates, then, the nominal

configuration of the object as a function of time is given by Rodriques’ formula:

γ(t) = eω̂2πt = I + ω̂ sin 2πt + ω̂2(1− cos 2πt),
t ∈ [0, 1].

For the initial and final configuration for the object as shown in Figure 4, each finger is oriented at an angle of π/4
relative to the x– and y–axes. As the object is rotated, the nominal configuration for each finger is such that it
contacts the object along that same axis. This can be determined by equating the forward kinematics for each finger
with the the point on the surface of the object that intersects the respective π/4 radial from the origin, i.e., for the
finger in the quadrant where both x and y are positive, solve

γ(t)c(u, v) =

 s√
2
s√
2

0


for u, v and s (s parameterizes how far along the radial the surface of the object intersects it), and then, using the
kinematics of each finger, determine the desired joint configurations. For this particular example, this trajectory is
difficult to compute analytically, but is simple to do numerically for each step in the motion of the system.

We also must check that the grasp maintains force closure during the entire manipulation. Numerically calculating
the angles between the normal vectors for each combination of three fingers in contact with the line connecting the
contact points along the entire trajectory shows that a coefficient of friction (assuming a static Coulomb friction
model) of µ > 0.40 maintains force closure.

For the desired trajectory described above decomposed into 10 subsegments, the evolution of the contact coor-
dinates for the finger in the positive ‘x– and y–quadrant is illustrated in Figure 6. Similar plots show the evolution
of the contact coordinates for the other fingers. Finally, a sequence of ten “snapshots” from the manipulation are
shown in Figure 7.

6 Conclusions

Our method provides a general means to solve the manipulation problem for certain types of robotic grasping
problems and the simulations indicate that the approach is simple to apply. The method is general in that it
is independent of morphology of the grasping system and shape of the grasped object. A by–product of this
manipulation method is a test for manipulability that takes into account the fact that fingers can make and break
contact with the object.

The method is limited in several ways. First, as formulated, the object must be a manifold, and so polygonal
objects with edges do not fit within the framework as presented here. However, since we typically consider the
nominal trajectory as the composition of several subtrajectories, it may be relatively straight–forward to devise
a means to have a finger move from one smooth surface of the object to another across an edge which can be
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Figure 6. Evolution of contact coordinates.

interspersed between the application of our methodology to the various subtrajectories. Alternatively, manifold
“approximations” could be formulated which “smooth” the edges, and the method may be modified to place fingers
at points on the surface with some specified maximum curvature which would naturally avoid the edges.

Another area of future work concerns determining a nominal trajectory that has the desired force–closure and
stability properties. As presented in this paper, we presume that we are given or can otherwise determine a stable
nominal trajectory. The existence of this trajectory is not necessarily guaranteed, however, and, in any case,
determining feasible nominal trajectories may prove difficult.

A final area of future work concerns dynamic manipulation. The method upon which ours is based (from [12]) is
limited to kinematic systems which can be expressed in the form of Equation 1. Since our method is an adaptation
of that in [12], it is similarly limited, and in fact, has this limitation on each stratum to which the system may
switch. Considering systems with drift on some or all of the strata would greatly broaden the class of systems to
which this methodology applies.
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Figure 7. Evolution of manipulation task.
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