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Abstract

This paper presents the application of stratified motion planning to the robotic
manipulation problem. Although the manipulation problem is a subclass of appli-
cations for stratified motion planning, the method present is general in that it is
formulation in a manner independent of the object surface geometry or the kine-
matics of the “fingers” of the robot. The theoretical development of the method is
presented as well as experimental results.

1 Introduction
This paper presents the development and experimental verification of a general control
framework for robotic grasping and manipulation problems where “fingers” manipulate
a grasped object. The method incorporates standard techniques from nonlinear control;
furthermore, it analytically incorporates techniques to exploit the discontinuities present
if the fingers intermittently contact the object (such manipulation has been called “fin-
ger gaiting”). Incorporating the discontinuities of the equations of motion of a system
into a general motion planning algorithm is difficult because almost all motion planning
methods assume that the equations of motion are smooth.

Robotic grasping and manipulation have been the subject of many research efforts,
and only an overview can be provided here. Vast efforts have been directed toward
the analysis of grasp stability and force closure [28, 29, 32], motion planning assuming
continuous contact [22, 37, 13] and haptic interfaces and other sensing [4, 31, 30]. Finger

gaiting, where fingers make and break contact with the object has been less extensively
considered and is the main focus of this paper. Finger gaiting has been implemented in
certain instances [26, 15, 5] and also partially considered theoretically [14, 3, 10]. Not
related to finger gaiting, however, perhaps the approach which most closely mirrors that
of the subject of this paper is in [27] where notions of controllability and observability
from “standard” control theory are applied to grasping. Additionally closely related is
the work in [13] where the fundamental grasping constraint from [23] is slightly modified
to include controlled relative velocities.
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2 Preliminaries
This presentation of background material assumes that the reader is familiar with con-
cepts from grasping as well as nonlinear control from [16, 23].

2.1 Rolling Contact Kinematics
Most grasping motion planning or manipulation algorithms (such as [25]) or analysis
(such as [27]) techniques which allow the fingers to roll relative to the object surface have
been formulated in contact coordinates. In particular, the differential equations relating
the evolution of contact to the relative velocities between a finger tip and object well
known and are given by [22, 23]:

α̇f = M−1
f

(

Kf + K̃o

)−1
[
−ωy
ωx

]

α̇o = M−1
f Rψ

(

Kf + K̃o

)−1
[
−ωy
ωx

]

(1)

ψ̇ = ωz + TfMf α̇f + ToMoα̇o,

where αf = (uf , vf), αo = (uo, vo) ∈ R
2 are the contact coordinates which parameterize

the finger and object, respectively, the M ’s, T ’s and K’s are the metric, torsion, and
curvature forms, respectively, describing the geometry of the object or finger surfaces,
denoted by subscript o or f , respectively, and the ω’s are components of the relative
angular velocities between frames affixed to the body and object at the point of contact.

The kinematic constraints which relate the relative velocities of the finger and object
to joint velocities, which, coupled with Equation 1 provide a complete description of the
manipulation dynamics. The coordinate frames used to describe the grasping manipula-
tion are the standard frames from [23], and include the palm frame, P , a station frame,
Si, associated with each finger, a finger frame, Fi, associated with each finger and an
object frame, O, used to describe the configuration of the object. Also, defined at every
point on the surface of the object and finger tips are a family of Gauss frames, denoted
by Lo and Lfi

. These frames are fixed with respect to the object and fingers, respectively.
Also, define at the point of contact the Gauss frames Co and Cfi

attached to the object
and finger tips respectively which move with the point of contact.

Assuming that contact friction is sufficient to prevent slipping, then the directions
in which forces can be applied are exactly the same components in which the relative
velocity between Lo and Lfi

must be zero at the ith contact point, i.e., BTV b
lolf

= 0,

where V b
lolf

is the body velocity of frame Lf with respect to Lo and B is the wrench basis

(see [23] for a complete explanation).
We consider a modified system where the wrench basis is appended with two addi-

tional columns that encode the fact that the relative rolling velocities (from Equation 1)
are constrained to be a specified value. In particular, for point contact with friction,
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where the fourth and fifth columns will constrain the x and y components of the relative
angular velocity between the L frames on the object and finger. Note that for this contact
model, only ωz is unconstrained.

For the case where the relative angular velocities are going to be specified,

BTV b
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=
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0
0
0
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
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


= ξ, (2)

where ωx and ωy are determined (as illustrated subsequently) from Equation 1. A more
useful expression will result from rewriting Equation 2 in terms of the velocity of the
object and the joint velocity of the fingers, and a simple derivation results in

−BTAd−1
gplf

Adgpo
V b
po +BTAd−1

filf
J bsifi

θ̇i = ξ, (3)

where Ad is the adjoint transformation, V b
ab is the body velocity of frame b relative to

frame a and J bab is the body Jacobian. Each is fully explained in [23].

2.2 Stratified Systems
One of the authors has previously considered nonholonomic motion planning and control
for so-called stratified systems, which are systems that can switch among multiple contact
states [11, 7, 8, 10, 6, 12]. Examples of stratified systems include the manipulation
problem considered in this paper, legged locomotion and certain types of hybrid systems.

A simple example will provide an intuitive understanding of the geometry inherent in
stratified systems. Consider the simplistic example two fingers intermittently engaging
an object. The set of configurations corresponding to one of the robots engaging the
object is a codimension one submanifold contained in the configuration space. The same
is true when the other robot engages the object. Similarly, when both robots engage the
object, the system is on a codimension two submanifold of the configuration space formed
by the intersection of the single contact submanifolds. Each submanifold is referred to
as a stratum. The structure of the configuration manifold for such a system is abstractly
illustrated in Figure 1. Note that the equations of motion for the system will be different

on each submanifold because the constraints on the system will be different on each
submanifold.

By considering systems more general than the two cooperating robots in the example,
a general definition of stratified configuration spaces can be developed. Let S0 denote
the system’s entire configuration manifold and Si ⊂ S0 denote the codimension one
submanifold of S0 that corresponds to all configurations where only the ith robot engages
the object. Denote, the intersection of Si and Sj , by Sij = Si∩Sj . The set Sij physically
corresponds to states where both the ith and jth robots engage the object. Further
intersections can be similarly defined in a recursive fashion: Sijk = Si∩Sj∩Sk = Si∩Sjk,
etc. The lowest-dimensional stratum (corresponding to all fingers in contact with the
object for grasping problems) will be called the bottom stratum.

Definition 2.1: (Stratified configuration manifold)
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Figure 1. Configuration manifold structure for two cooper-
ating robots.

Let S0 be a manifold, and n functions Φi : S0 7→ R, i = 1, . . . n be such that the level
sets Si = Φ−1

i (0) ⊂ S0 are regular submanifolds of S0, for each i, and the intersection of
any number of the level sets, Si1i2···im = Φ−1

i1
(0) ∩Φ−1

i2
(0) ∩ · · · ∩Φ−1

im
(0), m ≤ n, is also a

regular submanifold of So. Then S0 and the functions Φn define a stratified configuration

space.

2.3 Stratified Motion Planning
For smooth nonlinear systems, there are various motion planning techniques (piecewise
constant inputs [17], steering with sinusoids [25, 24, 23, 36, 35], small amplitude inputs
for mechanical system on Lie groups [19, 18, 2, 1], pushing, [20, 21], and others, [34, 33]).
One of the authors has extended the method using piecewise constant inputs from [17]
to the stratified case [12, 7] with application to legged robotic locomotion.

The basic approach is to consider the set of vector fields defined on the lowest-
dimensional stratum (all fingers in contact) and to incorporate vector fields defined on
higher strata by appropriately “projecting” them onto the bottom stratum. Then a series
expansion (the Chen–Flies series) and the notion of the “extended system” (described
subsequently) can be used in a straight–forward manner to construct control inputs which
will steer the system to the final position with reference to a nominal trajectory.

For example, consider the simple cooperating robot configuration space as shown
in Figure 1. Assume that on stratum S12, (corresponding to both fingers in contact
with the object) the vector field g1,1 moves the system off of S12 and onto S1, (finger
2 disengages the object) and correspondingly, g2,1 moves the system off of S12 onto S2

(finger 1 disengages the object). Also, consider the vector fields g1,2 and g2,2, defined on
S1 and S2 respectively (corresponding to some motion of the system with fingers 2 and
1 not in contact with the object, respectively). Consider the following sequence of flows,
starting from the point x0 ∈ S12

xf = φt6−g2,1
︸ ︷︷ ︸

S12←S2

◦ φt5g2,2
︸︷︷︸

on S2

◦ φt4g2,1
︸︷︷︸

S2←S12

◦ φt3−g1,1
︸ ︷︷ ︸

S12←S1

◦ φt2g1,2
︸︷︷︸

on S1

◦ φt1g1,1
︸︷︷︸

S1←S12

(x0), (4)

as illustrated in Figure 2. The notation under each flow indicates what the flow is doing,
e.g., “S12 ← S1” means that the flow takes the system from S1 to S12 and “on S1” means
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Figure 2. Sequence of flows.

that the flow was entirely on S1. In this sequence of flows, the system first moved off
of the bottom stratum into S1, flowed along the vector field g1,2, flowed back onto the
bottom stratum, off of the bottom stratum onto S2, along vector field g2,2 and back to
the bottom stratum. In robotic finger gaiting, such a sequence of flows corresponds to
the following sequence of motions:

1. finger 2 disengaging the object;
2. some motion of the system with finger 1 in contact with the object and finger 2 not

in contact with the object;
3. finger 2 engaging the object;
4. finger 1 disengaging the object;
5. some motion of the system with finger 2 in contact with the object and finger 1 not

in contact with the object; and,
6. finger 1 engaging the object.

It is a basic result of differential geometry (the Campbell–Baker–Hausdorff formula),
that if the Lie bracket between two vector fields is zero, then their flows commute. Thus,
if

[g1,1, g1,2] = 0 and [g2,1, g2,2] = 0, (5)

it is possible to reorder the above sequence of flows, by interchanging the flow along g1,1

and g1,2 and the flows along g2,1 and g2,2 as follows

xf = φt5g2,2
◦ φt6−g2,1

︸ ︷︷ ︸

interchanged

◦φt4g2,1
◦ φt2g1,2

◦ φt3−g1,1
︸ ︷︷ ︸

interchanged

◦φt1g1,1
(x0). (6)

If t1 = t3 and t4 = t6, this reduces to

xf = φt4g2,2
◦ φt2g1,2

︸ ︷︷ ︸

on S12

(x0). (7)

Note that that g1,2 and g2,2 are vector fields in the equations of motion for the system
on S1 and S2 respectively, (where each one of the fingers is not in contact), but are not

part of the equations of motion on S12 when both fingers are in contact, but, for motion



planning purposes can be considered as such because of the fact that Equation 6 results
in the same net displacement as Equation 4, where the system switched between strata.

In the above example, the vector fields that took the system off of a substratum
correspond in the grasping case to moving a finger out of contact (or back into contact)
with the object. Due to the fact that the fingers are assumed to be holonomic, the Lie
bracket decoupling expressed in Equation 5 will always be satisfied.

3 Underactuated Manipulation
The equations of motion for the grasping system are of the form

−BTAd−1
gplf

Adgpo
V b
po +BTAd−1

filf
J bsifi

θ̇i = ξ (8)

M−1
f

(
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)−1
[
−ωy
ωx

]

= α̇f

M−1
f Rψ

(

Kf + K̃o

)−1
[
−ωy
ωx

]

= α̇o,

for each finger in contact with the object. For fingers out of contact with the object,
there is no constraint from the object, and the contact coordinates evolve according to

α̇f = M−1
f

(

Kf + K̃o

)−1
([
−ωy
ωx

]

− K̃o

[
vx
vy

])

(9)

α̇o = M−1
0 Rψ

(

Kf + K̃o

)−1
([
−ωy
ωx

]

+Kf

[
vx
vy

])

ψ̇ = ωz + TfMf α̇f + ToMoα̇o,

for each finger out of contact with the object and with V b
po = 0. The states that we

desire to control are the object velocity, V b
po and the contact coordinates, αf and αo for

each finger contact. Algebraically solving the above equations to separate them into an
equation of the standard nonlinear control form:

ẋ = g1(x)u1 + · · ·+ gn(x)un, (10)

and a set of state equations is theoretically straight-forward, but may be nearly in-
tractable for complicated surface geometries.

A complete description of the motion planning algorithm from [17] and its extension
to the stratified case in [7, 12, 9] is beyond the scope of this paper, so only a outline is
provided here. Recall that the Lie bracket between two vector fields can be expressed by

[g1, g2](x) =
∂g2(x)

∂x
g1(x)−

∂g1(x)

∂x
g2(x),

and that the flow along the vector field corresponding to a Lie bracket motion can be
approximated by

φt[g1,g2](x0) ≈ φ
√
t
−g2
◦ φ
√
t
−g1
◦ φ
√
t

g2
◦ φg1√

t
(x0), (11)

where φtg represents the flow of the system along the vector field g for time t, i.e., the
control corresponding to vector field g is turned on for time t. Although the construction
and formalism is substantial, the basic idea in [17] is to decompose a desired motion
(called the nominal trajectory) into multiple subtrajectories along various vector fields



that provide a basis for space of vector fields. If the system is underactuated, some of
these elements will be Lie brackets, and flowing in Lie bracket directions will need to be
approximated in a manner expressed in Equation 11.

In particular, related to the original system (Equations 8 and 9) is formal differential

extended system

Ṡ(t) = S(t) (B1v1 + · · ·+Bpvp) (12)

where the Bi’s belong to a noncommutative formal Lie algebra and are related to the
original vector fields in Equation 10 and their Lie brackets. The extended system is
picked so that the vector fields corresponding to the Bi’s are full rank at every point along
the desired trajectory. Therefore, if the original system is underactuated, the extended
system will contain Lie brackets directions along which the system cannot directly flow.
Additionally, all flows of the original system can be represented (formally) by

S(t) = ehp(t)Bpehp−1(t)Bp−1 · · · eh1(t)B1 , (13)

where the hi are called the backward Philip Hall coordinates and, because of the formal
representation, the exponentials can be expanded in the “standard” series expansion for
exponentials. Differentiating Equation 13 with respect to time and equating the resulting
coefficients of the Bi’s with the coefficients of the Bi’s in Equation 12 yields differential
equations for that can be solved to determine the backward Philip Hall coordinates. Once
the Philip Hall coordinates are computed, it is straight-forward to construct piecewise
constant control inputs for the original system (Equation 9) to approximate the total flow
of the system along γ, as was illustrated by Equation 11.. The method works exactly for
nilpotent systems (nilpotency is a property of the Lie algebra containing the gi). For the
general, non-nilpotent case, the method works approximately and [17] derives explicit
bounds on the resulting error.

Now, in the stratified grasping case, since the Lie bracket decoupling expressed in
Equation 5 is always satisfied, motions when each of the fingers are out of contact with
the object can be considered as part of the collection of vector fields that can be used for
motion planning. Accordingly, we can define the extended stratified system.

Definition 3.1: (Extended Stratified System)

The extended stratified system on the bottom strata, SB, is the driftless system comprised
of the vector fields on the bottom strata, chosen vector fields from the higher strata, and
Lie brackets of vector fields from SB and higher strata, i.e., it is a system taking the
form:

ẋ = b1(x)v1 + · · · bm(x)vm + bm+1vm+1 · · ·+ bnvn
︸ ︷︷ ︸

from higher strata

+ bn+1vn+1 + · · ·+ bpvp
︸ ︷︷ ︸

any Lie brackets

, (14)

where the {b1, . . . , bp} span TxS0, the inputs v1, . . . , vn are real, and the inputs vn+1, . . . , vp
are fictitious.

Specifically, the algorithm to generate trajectories that move the system from initial
configuration p to final configuration q is as follows.

1. Construct the extended stratified system, Equation (14), on the bottom strata, SB.



Figure 3. Experimental stratified ma-
nipulation.

Figure 4. Schematic of control sys-
tem.

2. Find a nominal trajectory, γ(t), that connects p and q. Given γ(t), solve

γ̇(t) = b1(x)v1 + · · ·+ bp(x)vp,

for the fictitious inputs, vi.

3. Solve the stratified extended system for the fictitious control inputs, i.e., solve for
the backward Philip Hall coordinates by solving the differential equations derived
from from Equations 12 and 13.

4. For each path segment in each strata, compute the actual controls that steer the
system along γ(t).

5. Flow along each first order vector field, and approximate higher order vector fields
as illustrated in Equation 11. In general, it will be necessary to switch strata
between some of these flows.

4 Experimental Validation
The above results have also been verified and demonstrated experimentally. The ex-
perimental platform consists of four standard Puma 560 robots mounted on a common
platform. All of the robots are controlled by a central 500 MHz Pentium III computer via
Galil 1880 8-axis motion control boards operating six amplifies, each controlling four axes
each. A close-up of the four robots with spherical finger tips engaging a spherical football
is illustrated in Figure 3 and the complete system is schematically illustrated in Figure 4.
Experiments are carried out with spherical and “egg-shaped” objects as spherical and
flat finger tips with only four of the robot axes actuated. Any arbitrary axis of rotation
can be specified and the ensuing motion is extremely robust and precise where the robots
are able to completely rotate the ball several times with many instances of the fingers
coming in and out of contact. Given that the algorithm is open loop, such a level of pre-
cision and robustness was surprising even to the authors. Movies of sample experimental
results are available via the world wide web at http://controls.ame.nd.edu/manip/.

5 Conclusions
This paper presented an outline of a robotic manipulation planning technique to imple-
ment so-called “finger gaiting.” It is based on nonholonomic motion planning techniques
which have been extended by the authors to a class of discontinuous problems which



includes robotic grasping. It is formulated in a level of mathematical generality so that
the algorithm can accommodate any smooth object and finger tip parameterizations and
arbitrary controllable kinematics of the manipulators. Simulation as well as experimental
results were presented. Not presented, but a direct result from the authors’ previous ef-
forts is a proof that force closure can be maintained throughout the manipulation process.
Interested readers are referred to [12, 7] for an applicable proof.

Future work includes adopting a vision-based robotic control method to “close the
loop” to further enhance robustness and precision.. Additionally, a current requirement
of the algorithm is that the object and finger tip be smoothly parameterized. Work to
extend the algorithm to non-smooth objects will be the subject of a future publication.
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