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Altstmct- The purpose of this paper is to develop 
methods to reduce the complexity of nonlinear dis- 
tributed systems by using symmetry propers within the 
system. A method for contracting and expanding con- 
trollable nonlinear systems is developed which main- 
tains the controllability of the original system. In fact, 
it is shown that an entire equivalence class of symmet- 
ric nonlinear distributed control systems can be deter- 
mined by checking the controllability of only one of its 
members. A group of mobile robots is used to demon- 
strate the utility of methods presented. 

1 Introduction 
This paper considers nonlinear controllability of dis- 

tributed systems, which is useful to analyze large scale 
cooperating robotic systems. While this paper is lim- 
ited to controllability, the overall purpose of this re- 
search is to develop provable methods to “reduce” the 
order of complexity of large scale robotic systems by 
exploiting symmetry within the system. These meth- 
ods will be useful for robotics engineers because re- 
duced order models are easier to consider analytically 
and also are computationally faster so that computa- 
tionally intensive control methodologies are more easily 
implemented. 

The main result is a proposition which can be used 
to determine controllability of large scale symmet- 
ric distributed systems by checking (via Chow’s theo- 
rem [2]) controllability of a much smaller scale, reduced 
order system. The result shows that controllability of 
an entire equivalence class of symmetric control sys- 
tems can be determined by checking the controllability 
of only one of its members. The use of the proposition 
is illustrated with a cooperating robots example. 

For simplicity of presentation, this paper is limited 
to driftless systems, i.e., systems of the form 

where the gi(z) are smooth analytic vector fields de- 
fined on the configuration space of the system and the 
ui are control inputs. However, there are no appar- 
ent difficulties with extending the approach to systems 

For example, consider large scale, but structurally 
’ with drift (utilizing the results from [lo]). 

Figure 1. Ten node symmetric system 

simple cooperating robotic system, with 11 robots, sys- 
tematically illustrated in Figure 1. The vertices, Vi, 
in the graph structure represent individual robots in 
the system, which mathematically represent individ- 
ual configuration sub-manifolds of the entire cod@- 
ration manifold of the robotic system. Furthermore, 
associated with each robot is a set of control inputs. 
The edges of the graph structure represent vector fields 
where an edge connecting V, to  V, represents a vector 
field on TV, that is a function of the states in K and 
V, . These edges mathematically represent the interac- 
tion among the robots. The system is symmetric if it 
remains invariant when one or more robots are inter- 
changed. A more formal description of the relationship 
between a graph representation and the usual differen- 
tial equation representation is developed in Section 2. 

Many efforts have been directed toward “reduction” 
of mechanical systems [l], [4], [5] ,  [6], [7], [8] and con- 
trol systems [15], [14]. However, these results are di- 
rected toward cases where there are Lie group sym- 
metries. In contrast, this paper considers discrete 
symmetries. A similar approach was considered by 
Tanaka [ll], [12], [13]; however, those results were 
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limited to linear controllability, as opposed to the full 
nonlinear controllability considered in this paper. Fur- 
thermore, the main results in those papers were not 
addressing a constructive “reduction” problem, but 
rather determining the degree of fault tolerance of lin- 
ear symmetric systems. 

The remainder of this paper is organized as follows. 
Section 2 describes the representation of distributed 
systems, defines symmetries for such systems and de- 
fines equivalence classes of systems. Section 3 presents 
the main result, which is a nonlinear controllability test 
for equivalence classes of symmetric distributed control 
systems. Section 4 presents a simple robotics example 
of the use of the result from Section 3, and Section 5 
presents conclusions and outlines current and future 
efforts to extend the results in this paper. 

2 Symmetric Distributed Systems 
A graph theoretical approach provides a compact 

means to represent the topological and algebraic struc- 
ture of large interconnected distributed systems. In 
graph theory, a digraph is a graph with directional con- 
nections between nodes or vertices. In this paper, we 
use digraphs to represent nonlinear control and coop- 
erating robotic systems. 

Formally, we define the digraph of a nonlinear con- 
trol system C, written as &, to be the pair (V,E) 
consisting of a set of vertices denoted by V and the 
set of ordered pairs of elements of V, denoted by E. A 
vertex, 6 E V ,  is a submanifold of the configuration 
manifold consisting of i, states, Xi = { x i l , .  . . ,zip} , 
such that the complete configuration space, M ,  is the 
Cartesian product of all vertices given by 

T 

n 
M = VI x fi x ... x Vn = K. 

i= 1 

An edge, E,,j E E, also commonly referred to as an 
arc, represents a vector field on the tangent space of 
the end-point vertex vj which is a function of the states 
on Vi and vj i .e. ,  

Figure 1 shows a a digraph consisting of 11 vertices 
and 50 edges. Each vertex has a self-referencing edge 
i.e., an edge with itself as the initial and final point 
(not illustrated for K).  Since it is common for the 
vector fields of a subsystem to depend on states con- 
tained within its own subsystem, we will drop the self- 
referencing connections for convenience and assume 
that any vertex can have a self-referencing edge. 

In order to develop mappings between digraphs, we 
need to use some tools from group theory. A G-set is 
a set where there exists a function Q : G x X I+ X 
[called an action) such that a ( 1 , x )  = x ,  V x  E X and 

Ei9j : V, x vj t) TI$. (2) 

Figure 2. Complicated digraph structure. 

a ( p , a ( v , z ) )  = ~ ( p v , ~ ) ,  Vp,v E G and x E X. We 
will typically abbreviate a ( p ,  x )  by px.  A G-set can be 
partitioned into equivalence classes using G-orbits. 

DEFINITION 2.1 I f X  is a G-set and z E X ,  then the 
G-Orbit of x is 

O ( x )  = {ps : p E G}. (3) 

It is common to refer to a G-orbit as simply an orbit. In 
this paper, orbits are used to partition the system into 
nodes that can be interchanged and those that cannot. 
A fixed orbit is the set of vertices or subsystems that 
are unaffected by the symmetry group actions and the 
non-fixed orbits are the symmetry orbits. 

We consider systems that have at most two cycles in 
the symmetry orbit. A cycle of length c,c 2 3, is a set 
of c + 1 ordered vertices in which all the vertices and 
edges are different and the first and last vertex are the 
same. For the system in Figure 1, a clockwise cycle is 
C1 = (V2, V3,. . . , V11, fi} and a counterclockwise cy- 
cle is Cz = {V2,I41,I40,. . . ,&,V2}. Even with this 
restriction, a broad class of systems can be considered. 
Many very complicated digraphs can be reduced to a 
digraph with one cycle by combining multiple vertices 
into one vertex. Simple “ring like” systems, as in Fig- 
ure 1 obviously satisfies this restriction, but so do a 
broad range of other more complex digraphs, such as 
the one illustrated in Figure 2, which shows that groups 
of vertices, such as V,, V, and Vs can be considered as 
an individual vertex which form the appropriate cycle 
structure. 

In this paper, we restrict our attention to systems 
which are symmetric with respect to the symmetry 
group, S,, which is the group of degree m of the m! 
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permutations of a set containing m elements. An ele- 
ment of the symmetry group, p,  acts on a vertex, Vi, 
by interchanging the elements of vi with elements of 
another vertex Vp(i) ,  i.e., pv1, = Vp(ij. Applying the 
symmetry group operator on a distributed nonlinear 
system is defined as follows. 

DEFINITION 2.2 A nonlinear system in the form of 
Equation 1 is said to be symmetric if for all p E Sm 
such that p interchanges vertices V, and Vj, 

(4) 
P*Ei,k = Ej,k, vk 4 c 

~ * E i , l i ~ l  = Ej,ljk1, 

where C is the set of cycles, if any, (clockwise and 
counterclockwise) through the symmetry orbit, Ei,lifl 

denotes the edge from vi to each adjacent V;, where 
Vi E C, p .  denotes the push forward of p ,  and where 
edges related by p* are associated with corresponding 
inputs in vi and 4. 

The definition above describes symmetry based on 
the system equations as in Equation 1; however, sym- 
metry can be directly applied to the graphical repre- 
sentation by interchanging vertices with the same ua- 
lence, while changing the edges using Equation 4. The 
valence of a vertex is the number of edges that have 
the vertex an end-point or initial point. A digraph is 
said to be nonlinear distributed symmetric if the corre- 
sponding system remains invariant when one or more 
vertices are interchanged. 

These definitions are illustrated by the following ex- 
ample. Consider the system 

c :  x = g1(2)u1+.*'+97(x)u7, 

described by 

where xi E Vi and each vertex has one associated in- 
put ui for i = (1,. . . ,7}. (Note that in general each 
vertex can represent more than on state and associated 
with which could be more than one input). Note that, 
for example the sin(s2) in the third slot in g2 is rep- 
resented in & by the edge directed from V2 to Vs and 
the sin(x7) in the second slot of 97 is represented in 
& by the edge directed from V7 directed to V2. These 
two edges map the states from the initial vertex to the 
tangent space of adjacent vertex (along the clockwise 
cycle) in the same way; hence, E2,3 = @7,2 if p inter- 
changes I4 and V7. 

Figure 3. Removal of vertex V7 and corre- 
sponding edges E277 E72, E177 E71, E67, 

With the relation between a system and digraph 
formally defined, transformation between digraphs can 
now be defined. Two transformation are considered in 
this paper, contraction and expansion. System con- 
traction is transformation between systems that re- 
duces a system with n subsystems and symmetry s,,, to 
a system with n - 1 subsystems and symmetry Sm-1. 

Expansion maps a system with n subsystems and sym- 
metry S,,, to a system with n + 1 subsystems and sym- 
metry Sm+l. 

Given a digraph, BE,, = {Vn, En}, contraction acts 
on both vertices and edges. Contraction deletes one 
vertex, Vj, and all edges connected to V,, i.e., all edges 
of the form Ei,j and Ej,i. In Figure 3, vertex V7 is be- 
ing removed from the example system along with all 
edges. The dashed limes in this figure represent ele- 
ments that are being removed. New edges are added 
to the digraph as needed to maintain an Sm-1 sym- 
metry. Let Val and V,, denote vertices adjacent to 
the removed vertex, Vj. Without loss of generality, as- 
sume that V a z  precedes V,, in the clockwise cycle, CI, 
and Va, precedes Val in the counter clockwise cycle, 
Cz. Edges connecting vertices Val and Va, are created 
by applying the push forward of the symmetry opera- 
tor, p E Sm-l,  on non-deleted edges such that for the 
vertices Val and V,,, 

and E76. 

Eo1,az = P*Ej,lj+i , 
Eaz,al  = P*Ejrlj-l , 

where j is not adjacent to the removed vertex, V.  and 
Ej,ljkl denotes the edge from V, to each adjacent K ,  
where V; E C. By construction, the new edges are 
symmetric with respect to an S,-l symmetry. Fig- 
ure 4 shows the contracted digraph of the example sys- 
tem with dashed lines representing the edges that were 
added to  maintain an Sg symmetry. 

Expansion of digraphs is the converse of contraction. 
Instead of removing a vertex, one is added such that 
symmetry is maintained. Graphically, this is done by 
deleting edges connecting two vertices from the orbit, 
if such edaes exist. All other edaes are left unchanged. 

v -  " v u 
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set of admissible controls. Define 

RW(X0,  < T) = U R W ( X 0 , T ) .  ( 5 )  
O<r<T 

We will refer to  RW(zo, 5 T) as the set of states reach- 
able up to time T. 

Figure 4. Addition of edges E62 and E26 
to complete SS symmetry. 

A copy of a vertex in the orbit is added to the digraph. 
Edges are added connecting the new vertex to all fixed 
vertices. Finally, edges connecting the new vertex to 
vertices in the orbit are added to maintain an Sm+l 
symmetry. All new edges are copies of existing edges 
connecting similar orbits. 

Expansion adds a complete subsystem to the system 
equations. This addition is equivalent to the addition 
of a vertex in the graphical representation. The struc- 
ture of the added subsystem has the same structure 
of an existing subsystem in the symmetry orbit. Let 
V, represent the new vertex. The vertex V, must be 
related to an existing vertex, vi E V,, by the symme- 
try operator, p E Sm+l, i.e., V, = pvi.  New edges are 
created by applying the push forward of the symmetry 
operator, p E on non-deleted edges as follows. 
Assume that K,, and vb, are adjacent to  the added 
vertex where l/b2 precedes l/bz in the clockwise cycle, 
CI, and v b z  precedes v b l  in the counter clockwise Cycle, 
C2, then 

Eb1,c = P*Ej,lj+l, 

Eb2,c = P*Ej,lj+l, 

Ec,bl = P * E j , l j - I  3 

Ec,bz = P*Ej,lj-1, 

where j is not adjacent to  the added vertex, V, and 
Ej,lj*l denotes the edge from V, to each adjacent kj. 
Now, for each fixed vertex V f ,  

Ef,c  = P*Ef,jr 
Ec,f = P&,f , 

where j is not adjacent to the added vertex. By con- 
struction, all new edges are symmetric with respect to 
an S,+l symmetry. 

Now, define an equivalence class of control systems, 
C where for each C, E E, Cn+l and En-1 are equiv- 
alent to C n  related to  C, by the expansion and con- 
traction constructions previously defined. 

3 Reduction and Controllability 
First, it is necessary define the term “controllable.” 

Given an open set W 5 M, define RW(zo, T) to be the 
set of states x such that there exists U : [0, TI + U that 
steers the control system from x ( 0 )  = 20 to x(T) = zf 
and satisfies x ( t )  E W for 0 _< t 5 T ,  where U is the 

- 

DEFINITION 3.1 A system is small time locally 
controllable (“STLC, ” or simply “controllable”) if  
RW(xo,< T )  contains a neighborhood of xo for all 
neighborhoods W of xo and T > 0. 

Let C denote the smallest subalgebra of V“ ( M )  (the 
Lie algebra of smooth vector fields on a manifold M 
whose product is the Lie bracket, [-, e])  that contains 
91,. . . ,gm. If dim(C) = dimM at a point 2, then the 
system described by Equation 1 satisfies the Lie Alge- 
bra Rank Condition (“LARC”) at x. The following is 
well known as “Chow’s Theorem.” 

THEOREM 3.2 If the system described by  Equation 1 
satisfies the LARC at a point xo then it is STLC from 
20. 

The following proposition is the main result in this 
paper. 

PROPOSITION 3.3 If any one member, C, ,  of the 
equivalence class of symmetric distributed control sys- 
tems, E is STLC, then all members of the equivalence 
class, Ci E E where i > n of symmetric distributed 
control systems are STLC. 

Proof Assume that C n  E E, satisfies Chow’s theorem. 
Partition the configuration manifold into sets of states 
corresponding to each node in the control system, i.e., 
let M = II?=”=,. Let C, contain n nodes with m nodes 
in the G-orbit, and denote Ai to be the subdistribu- 
tion of K,, which spans the tangent space to the states 
associated with node i .  Since C, is STLC, 

m - 
A n  = Ai, 

i=l 
where the sum of distributions is defined in a point- 
wise manner as in [3]. We will show that if C, is STLC, 
then Cn+l is STLC, and then the result follows by 
induction. 

For &+I, recall that the transformation from C, to 
it was that a vertex (submanifold), V,, was added to 
the G-orbit. If edges connected the elements of the G- 
orbit, one edge was deleted, and copies of existing edges 
were added to  maintain symmetry. We will consider 
separately the fixed nodes, nodes in the 8-orbit not vj 
and not adjacent to V,, the nodes adjacent to 6 and 
Vj itself. 
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For nodes in the orbit not adjacent to &, denoted 
by Ai, let the collection of vector fields {XI,. . . , X,} E 
A,, span Ai. Then in Cn+l the same set of vector 
fields will span Ai in Cn+l where the vector fields, Xi 
are defined relative (in position) to vi. If an adjacent 
node, say v k ,  is a fixed node, i.e., not in the G-orbit, 
then Ak will still span TVk because vector fields have 
only been added to that node, and the existing vector 
fields are unchanged. For V, and the adjacent vertices, 
by symmetry 3p E Sm+l such that V, = pV,, where 
V, is a nonadjacent node. Since A, spans T K ,  and 
the system in invariant with respect to the group ac- 
tion, A j  must span TV,.. Similarly, for the vertices 
adjacent to V,., 3u E Sm+l such that vV, is mapped 
to them, which shows that A for the adjacent nodes 
in the G-orbit must span their tangent spaces. Since 
3Ai such that spanAi = TV,, An+l = Cy’?; A, spans 
T M  = nyz:TV,. Since M is a manifold, by Frobe- 
nius’ theorem, Am+l is involutive. Therefore, Zm+1 is 
full rank, and by Chow’s theorem, the system is STLC. 

This proposition only provides a sufficient condi- 
tion for controllability of larger symmetric systems if 
a smaller equivalent system is controllable. The neces- 
sary condition requires further assumptions regarding 
the largest degree of Lie bracket necessary for to 
be involutive. Detailed computations illustrate that 
states from one node can “propagate” to affect other 
nodes via Lie brackets. In fact, they can “propagate” 
one node for each order of Lie bracket. We note that 
even though this proposition does not provide the nec- 
essary condition for controllability of a larger system, 
the sufficient condition is of greater engineering utility 
due to the fact that it can be used to determine con- 
trollability of a larger system by analyzing a smaller 
system. 

4 Cooperating Robotic Systems 
A simple robotic example is given in this section to 

demonstrate the utility of the results presented in this 
paper. Suppose we have a group of 5 mobile robots, 
where an individual mobile robot is described by 

- 

[ i ] = [ :;: ] 211 + [ 8 ] ’112 
where u 1  is the linear velocity input and u 2  is the an- 
gular velocity input from [9]. We will control the the 
group using a leader/follower method where robot one 
is the leader. The leading robot controls the angular 
position of the entire group. The following robots have 
individual control of their respective linear speed, u1, 
but not their direction. To ensure following robots do 
not overtake the leading robot, the linear velocity in- 

u2+ 

Figure 5. A digraph of five cooperating 
mobile robots. 

- 1  
1 
0 

sin XI 
0 
0 
0 
0 
0 

- 0  

cos 21 

put of the following robots directly affects the linear 
speed of the leading robot. After relabeling the states, 
as XI = 5, 2 2  = y, and 2 3  = 8, the system equations 
for this configuration are 

j.1 
j.2 
j.3 
j.4 
j.5 
j.7 
j.8 

$10 
j.11 
5 1 3  
j.14 

+ 

- - 

1 
1 
0 
0 
0 

cos x g  
sin x 9  

0 
0 
0 
0 

cos x 3  
sin 2 3  
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

U4 + 

U1 + 

1 
1 
0 
0 
0 
0 
0 

cos 512 
sin 2 1 2  

0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

us + 

1 
1 
0 
0 
0 
0 
0 
0 
0 

cos 215  
sin 215  

where 2 4  represents the x position of robot 2, 2 5  r e p  
resent the y position of robot 2, etc. States 267 59,212, 

and 215 have be removed because they are all equal to 
13. A graph of this system is shown in Figure 5.  

Determining the controllability of this system and 
perhaps even larger systems can be tedious. We will 
use Proposition 3.3 to determine controllability of the 
complete system on a reduced order system. Using the 
contraction transformation described in Section 2, the 
example system can be reduced to  a system of three 
vertices. Figure 6 displays the graph of the reduced 
system. 

The equation corresponding to  the reduced graph is 
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+ 

- 1 -  r l ’  
1 1 
0 0 

sin 2 6  0 
C O S 5 6  U3 + 0 U4. 

0 cos 29 
- 0 -  - s i n x ~  - 

- 0  
0 
0 
0 
0 

-sin xg 
cos29 

sin23 - 
- cos 2 3  

0 

0 
0 

0 , 96 = [92rg31= 

1 

- 0  
0 
0 

cos xg 
0 

- 0  

-sinzg , 

we find that the distribution spanned by the vector 
fields gl, g2, 93, g4, g5, g6, and g7 is full rank. There- 
fore, by Chow’s Theorem, the z and y positions of the 
reduced system are controllable. By Proposition 3.3, 
the full system of mobile robots is also controllable. 
Furthermore, the results show that the entire equiv- 
alence class of systems is controllable with respect to 
the z and y positions. 

5 Conclusions and Future Work 
In this paper, we have considered controllability of 

distributed systems. The main result was proving that 
controllability of large scale symmetric nonlinear sys- 
tems can be determined from the controllability of a 
reduced order system. In fact, the result shows that 
controllability of an entire equivalence class of systems 
can be determined by checking the controllability of 
only one of its members. 

Current efforts are being directed toward formula- 
tion the necessary condition for the larger-scale sys- 
tem to be controllable. Furthermore, this paper has 
presented distributed controllability for driftless non- 
linear systems. The next step will be to extend this 

work to systems with drift, i.e, systems of the form 
f f l  

E : i = f(z) + &(Z)Uj. (6) 
i=l 

In the future an extension of this work to multiple orbit 
systems with more complex interactions will also be 
considered. 
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