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Abstmct-This paper presents an extension of the au- 
thors’ previous stratified motion planning results to the 
case where the base manifold upon which the motion 
planning occurs is not smooth. Robotic applications 
of this work includes motion planning for legged robots 
over non-smooth (but known) terrain and manipulation 
of non-smooth objects with multiple robotic manipula- 
tors. 

1 Introduction 
This paper presents an extension of a novel control 

strategy which considers motion planning for robotic 
systems which are characterized by switching dynam- 
ics. Previous work by the authors developed a “strat- 
ified motion planning” algorithm which provided a 
means for motion planning for systems with switching 

cation of this previous work is legged locomotion over 
smooth terrain where the switching dynamics occur 
when various feet make and break contact with the 
ground. Another application is robotic manipulation 
of smooth objects where the switching dynamics oc- 
cur when the robotic fingers make and break contact 
with the manipulated object. This paper presents an 
extension of this algorithm to handle the case where 
the terrain or object is non-smooth. 

Specifically, the previous work of the authors as- 
sumed that the configuration manifold for the system 
under consideration was smooth and that the discon- 
tinuous nature of the dynamics of the system resulted 
only from the intermittent physical contact among var- 
ious elements of the overall system. A consequence 
of this assumption was that a particular critical ele- 
ment (the “bottom stratum,” described subsequently) 
was smooth. Previous results did not consider the case 
where the bottom stratum was not smooth, which is a 
case that includes legged locomotion over nonsmooth 
terrain and manipulation of nonsmooth objects, which 
is the focus of this paper. 

The main difficulty with such systems, and strati- 
fied systems in general, is to determine a method to 
analytically incorporate, either in an analysis tool or 
control synthesis algorithm, the discontinuous nature 

dynamics PI, PI, PI, ~41, [51, PI, ~71, PI. one  appli- 

Figure 1. Non-smooth object manipulation. 

of the equations of motion for the system. Incorpo- 
rating the discontinuities of the equations of motion of 
a system into a general motion planning algorithm is 
difficult because almost all motion planning methods 
assume that the equations of motion are smooth. 

An overall goal of the approach is to formulate the 
results in a mathematically general way so that they 
apply to the broadest possible class of problems. This 
allows, for example, the implementation of the gen- 
eral approach via a software toolkit where a particu- 
lar user would only need to input the particular kine- 
matics of the system under consideration and a de- 
scription of the terrain. The software toolkit would 
neither be limited to any particular kinematic design, 
nor would it depend on the number of legs and/or fin- 
gers of a robotic platform. Indeed, both the manipula- 
tion results, schematically illustrated in Figure 1 and 
presented in Section 4.1 as well as the legged locomo- 
tion results, schematically illustrated in Figure 2 and 
presented in Section 4.2, use nearly identical software 
to  plan the motions for the systems. One aspect of 
our current efforts is the development of a “production 
quality” software toolkit for general stratified systems. 

Prior research efforts concerning legged locomotion 
have typically focused either on a particular morphol- 
ogy such as in [9], [lo], [Il l ,  [12] or a particular loco- 
motion assumption such as in [12], [13]. Some more 
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M=S, Neither Robot 
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Figure 2. Hexapod locomotor on nons- 
mooth terrain. 

general results exist, such as in [14], [15], [13]. In 
contrast to robotic legged locomotion, many results 
in robotic grasping and manipulation are formulated 
in a manner that is independent of the morphology 
of the gripper, such as in [16]. Many efforts consid- 
ered the analysis of grasp stability and force closure 
[17], [18], [19], motion planning assuming continuous 
contact [20], [21], [22] and haptic interfaces [23], [24], 
[25]. Finger gaiting has been implemented in certain 
instances [as], [27], [28] and also partially considered 
theoretically [5], [29], [30], [31]. Perhaps the approach 
which most closely mirrors that of the subject of this 
proposal is in [16] where notions of coritrollability and 
observability from “standard” control theory are ap- 
plied to grasping (however, these results are limited to 
the linear case and do not allow for fingers to inter- 
mittently contact the object). In contrast the current 
work, none of these methods directly use the inherent 
geometry of stratified configuration spaces to formu- 
late results which span many different morphologies 
and assumptions. 

2 Smooth Stratified Systems 
This work is an extension of previous work by the 

authors; therefore, a short review of previous results is 
necessary. This section outlines the stratified motion 
planning method for smooth systems, which forms the 
basis for the extension to non-smooth stratified case. 
Many details are necessarily omitted, and the inter- 
ested reader is referred to [l], [2], [3], [4], [5] ,  161, [7], 
[8] for a complete, detailed exposition. 

A simple example will provide an intuitive under- 
standing of the geometry inherent in stratified systems. 
Consider the simplistic example two fingers intermit- 
tently engaging the a smooth object, such as a sphere. 
The set of configurations corresponding to one of the 
robots engaging the object is a smooth codimension 
one submanifold contained in the configuration space. 

/-- 
First Robot 
Engaged 

Engaged 

\ 
Second Robot 
Engaged 

Figure 3. Configuration manifold struc- 
ture for two cooperating robots. 

The same is true when the other robot engages the ob- 
ject. Similarly, when both robots engage the object, 
the system is on a smooth codimension two submani- 
fold of the configuration space formed by the intersec- 
tion of the single contact submanifolds. Each subman- 
ifold is referred to as a stratum. The structure of the 
configuration manifold for such a system is abstractly 
illustrated in Figure 3. 

More generally, let SO denote the system’s entire 
configuration manifold and Si C SO denote the smooth 
codimension one submanifold of SO that corresponds to 
all configurations where only the ith robot engages the 
object. Denote, the intersection of Si and Sj, by Sij = 
Si n Sj. The set Sij physically corresponds to states 
where both the ith and j t h  robots engage the object. 
Further intersections can be similarly be recursively 
defined: S i j k  = Si n Sj n s k  = Si n S j k ,  etc. The 
lowest-dimensional stratum will be called the bottom 
stratum. All our previous efforts have assumed that all 
the strata are smooth manifolds, which, as illustrated 
subsequently, will not be true in the case of nonsmooth 
objects or terrain. 

We assume that the equations of motion on each 
stratum are of the form 

x = gi,i(z)ui,i + . . . + gr,nr (z )Ur ,nr ,  (1) 

where the first subscript, I, indexes the stratum upon 
which the equations are defined. The motion planning 
algorithm for smooth stratified systems is based upon 
the method presented in [32]. The approach is to con- 
struct an extended system in which the original set of 
equations of motion is appended with Lie bracket vec- 
tor fields associated with which are fictitious inputs. 
For the extended system, motion planning is trivial 
since it is constructed so that the span of all the vec- 
tor field is full rank. Formal algebraic computations 
utilizing indeterminates, bi, formal exponential expan- 
sions of the form ebi = 1 + bi + $ + which can 
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be related to solutions of the original equations 1 and 
approximations to Lie brackets of the form 

4;92 0 4;91 0 (fp 0 @1(2) = 4 p 9 q Z )  + O(E3), (2) 
where (20) represents the solution of the differential 
equation x = g1(x) at  time E starting from xo provide 
a mechanism to determine the real control inputs. 

For stratified system, if it is the case that the Lie 
bracket between the vector fields which switch the sys- 
tem among strata and any other vector fields is zero 
(called “Lie bracked decoupling,” which will always be 
satisfied with holonomic manipulators. See [4] for a 
complete discussion.), then it is straight forward to 
show that vector fields defined on multiple strata can 
be considered simultaneously in the motion planning 
algorithm (a detailed explanation can be found in [7]). 
An outline of the algorithm is as follows. 

1. Check that the Lie bracket decoupling assump- 

2. Check that the stratified system is controllable 

3. Determine a nominal trajectory in the bottom 

tion holds. 

(see PI, [31). 

4 
stratum. 
Construct the extended stratified system on the 

bottom strata. This is of the form 
x = g1(z)v1 +-..gm(x)wm 

+ gm+1vm+1 * .  . + gnvn 

from higher strata 
., 

+ Qn+lYn+l + * .  . + gpvp, (3) 
“ 

any Lie brackets 
where the {gl,. . . , g p }  span T,So and a r e  the con- 
trol vector fields from multiple strata, the inputs 
V I , .  . . ,U, are real, and the inputs vn+l,.. . , vp are 
fictitious. 

5. Construct the formal equation, which is simply 
Equation 3 written in indeterminates, S( t )  = 
S(t)(blvl f.. * + b,vs), where the S( t )  are polyno- 
mial Lie series (see [32] for details). 

6. Construct the Chen-Fleiss series, namely, S( t )  = 

respect to time and equate the coefficients of the 
bi’s in the resulting equation with the coefficients 
of the corresponding bi’s in the equation in the 
previous step, to construct ordinary differential 
equations for the backward Philip Hall coordinates, 

7. Solve the o.d.e.3 from the previous step to deter- 
mine the hi’s to  determine how long the system 
should flow along each basis element, bi to reach 
the goal point. If the bi represents a Lie bracket, 
then an approximation of the form of Equation 2 
should be used. 

eh.(t)baeh.-l(t)bs-l . . . ehl(t)bl, differentiate it with 

hi. 

8. If two sequential bi’s belong to different strata, 
then the decoupled vector field (checked in step 1) 
must be actuated to switch strata. 

Unfortunately, most of these steps are rather in- 
volved, but space limitations prevent the inclusion of 
most detail. Again, references [32], [33] provide a good 
overview of the nonstratified version of the algorithm, 
and references [l], [2], [3], [4], [5] ,  [6], [7], [8] present 
the smooth stratified version. 

3 Nonsmooth Stratified Systems 
In this section we consider the geometry of a nons- 

mooth stratified system arid the manner in which the 
motion planning algorithm outlined in Section 2 can 
be extended to the non smooth case. Consider the 
case of the four fingers manipulating the cube illus- 
trated in Figure 4. If each finger has, say, three revo- 
lute joints, then the overall configuration space for the 
system is SO = SE(3) x S3x4, where SE(3) describes 
the configuration of the cube and S3x4 represents the 
configuration of the joints. As described in Section 2, 
if the object were smooth, then the set of all configu- 
rations where one finger contacts the object defines a 
smooth codimension one submanifold of SO. However, 
since the object is not smooth, the set of configurations 
where the finger contacts the cube will be the union of 
6 disconnected smooth manifolds with boundary. 

Figure 4. A polygonal object. 

In general, we use stratum SI,,,J,,K,L,, where 1 L 
I < J < K < L _< 4 and m,n,p and q are different 
integers between 1 and 6, to represent the configura- 
tion when four fingers I ,  J, K and L are in contact with 
surfaces m, n,p and q respectively. Similarly, stratum 
SI,,, J , , K ~  represents the configuration when three of the 
four fingers, I ,  J and K ,  are in contact with the sur- 
faces m, n and p of the object respectively. The level of 
the stratum is referred to as its codimension. Thus, the 
bottom stratum for the structure our system is on the 
4th level and contains all the strata with codimenion 
4 representing all the four fingers are in contact with 
the cube. And, all the strata representing three of the 
four fingers are in contact with the cube are in level 
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3. Part of the combinatorial structure of the stratified 
system is shown in Figure 5,  where the nodes of the 
figure represents different strata, the edges connecting 
the nodes indicate that it is possible for the system 
to move from one stratum to  another. Thus, if the 
nodes axe connected by an edge, the system can move 
between the strata, if there is no edges between two 
nodes, the system cannot move between them directly. 

""0 --. Le*o 

Figure 5. The Structure of the Non-Smooth 
Stratified System. 

Comparing the structure of this stratified system 
with the system of robot fingers engaging a smooth 
object described in Section 2, we can find that for the 
stratified system with multiple fingers to  manipulate 
a smooth object, there is just one bottom stratum in 
the configuration structure. However, for our stratified 
system for four finger to manipulate a cube object, the 
bottom stratum is the union of P: = 360 manifolds 
with boundary. In the rest of the development, we will 
consider each of these manifolds with boundary as a 
separate stratum. 

On the bottom level, Figure 5 shows that the sys- 
tem cannot move from one stratum to another since 
there are no edges between them. But, the system ac- 
tually can be moved from one stratum to  another on 
the bottom level by moving up to the strata in the up- 
per levels and then move down to  the stratum in the 
bottom level. For example, the system can be moved 
along a series of strata s11223443 t) S112334 ++ 5'1~2~ +) 

s112335 ++ s11233544 to move between strata S11233445 
and s11233544 by going through the strata in the levels 
2,3 and 4, or the system can be moved between strata 
s15223346 and &!?15263344 by going through the strata just 

Although we have presented the structure of a non- 
smooth stratified system by way of a particular ex- 
ample, namely, four fingers manipulating a cube, for- 
mulating the generic structure is straight forward. In 
particular, a stratum is simply a smooth manifold with 
boundary and a single, smooth bottom stratum does 
not necessarily exist, but is, in fact, the union of mul- 

in levels 3 and 4 s1522334.3 +) SI53344 ++ s152.33344. 

tiple strata. 
Having developed the structure of a non-smooth 

stratified system, we consider motion planning for non- 
smooth systems, which only involves one additional 
complication relative to the smooth stratified system 
case. In particular, since the bottom stratum is not 
simply a smooth manifold, then the nominal trajec- 
tory (step 3 for the smooth case) will not be contained 
within a single stratum. Too see this, consider the 
same example of four fingers manipulating a cube and 
consider an ending configuration wherein the four fin- 
gers are contacting a different face of the cube than 
upon which they started. Since the nominal trajec- 
tory is computed in the bottom stratum (all the fingers 
in contact with the cube), the nominal trajectory will 
need to  switch among the various strata from which 
the bottom stratum is comprised. 

4 Examples 
4.1 Robotic Manipulation 

To verify the motion planning method for the ma- 
nipulation of the cube, we apply the method by sim- 
ulating the motion when four spherical fingers manip- 
ulate a cube with with width 2b (b = 3 inch). We 
number the fingers and the surfaces of the cube the 
manner illustrated in Figure 4. The parameterization 
of the surface of the cube is assumed to be 

on surface 5'1: co~(uol,vol) = {-b,vol,uol]T 
on surface S2: co$uo2, w o 2 )  = {uo2,vo2, b}T 
on surface ~ 3 :  co3(uo3, vo3) = { b ,  uo3, vo3 I T  (4) 
on surface ~ 4 :  co4(Uo4,vo4) = ( ~ ~ ~ , b , u ~ ~ ) ~  
on surface sS: C05(Uo5,wo5) = { v 0 5 , b l ~ 0 5 } T  
on surface $3: CO6(Uo6,Vo6) = {uo6, - b , ~ , . , ~ } ~ ,  

where in each case, uoi,voi E (-3,3). The surface 
parameterizaton of the finger is: 

1 1.1075 COS(U~) COS(V~)  
c f ( u f ,  vf) = -1.1075 cos(uf) sin(vf) , 

where u t  E (-;, :) and vf E (-T, T ) .  Space limitatios 
prevent including the details, but the kinematics of the 
manipulators are taken to be identical to a PUMA 560. 

We would like to rotate the cube along axis w = 
[l, 1, 1IT for an angle of 9 up to 7r using the four spher- 
ical fingers. The constructure of all the fingers and the 
object at the initial state is shown in Figure 6, a close 
picture of both the fingers and the object during the 
motion procedure are shown in Figure 7 to 11. 

The theoretical and simulation results have aIso 
been verified experimentally. The experimental system 
is shown in Figure 12, which consists of four PUMA 560 
robots mounted on a common platform, where each 

[ 1.1075 sin(uf) 
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Figure 8. Manipulation at 8 = 1.2 

Figure 6. Manipulation at 8 = 0 

Figure 7. Manipulation at 8 = 0.6 

robot has and identical spherical end effector. Three 
8-axis Galill880 motion control boards are installed on 
one PC running Linux operating system to control the 
motion of the robots. An arbitrary motion can be spec- 
ified for the object besides the motion we showed in the 
simulation session. Experiments show that algorithmi- 
cally the method works as expected. Due to the highly 
nonlinear nature of the problem and the fundamentally 
open loop nature of the algorithm, only limited manip- 
ulation is possible before the cube is dropped. A future 
paper will detail current efforts to  implement a vision- 
based system which will provide feedback information 
to the manipulation system, leading to more robust 
manipulation. 
4.2 Legged Locomotion 

The algorithm was also verified via simulation on a 
hexapod robot model as illustrated in Figure 2. The 
surface upon which the robot is locomoting is param- 
eterized by 

floor (mod(x, 2)) floor (mod(y, 2)) 
4 h(X,Y) = 

Figure 9. Manipulation at 8 = 1.8 

9 1  = u1; (62 = U 2  

hi = U 3 ;  h2 = 214 

where (z, y, 8) represents the planar position of the cen- 
ter of mass, 41 is the front to back angular deflection of 
legs 1-4-5, $2 is the angular deflection of legs 2-3-6,l 
is the leg length and hi is the height of the legs off the 
ground. The functions a(h1) and ,O(hz) are defined by 

1 if h2 = 0 
0 if h2 > 0 

1 if hl = 0 
0 if hl > 0 

Note that these simplistic equations literally require 
some foot slippage in order to describe the motion of 
a robot like the one illustrated in Figure 2; however, 
we utilize this very simple model in order to  clarify 
the presentation of the theory. A real robot could be 
designed to conform to such a kinematic model if the 
front and rear leg front to hack deflections were appro- 
priately modified and if the “knee” joint were kinemat- 
ically linked to the front to back deflections in such a 
manner as to  prevent foot slippage. 

Figure 13 illustrates the motion of the hexapod as 
it traverses the nonsmooth terrain following a nominal 
trajectory of 

which produces the partial ?checker-board” height pat- 5 ( s )  := s 
tern in Figure 2. The equations of motion for the hexa- y(s) := s 

e(s)  := 2Ks, pod are taken to be 

where s E (0,l) parameterizes the path it follows. In 
y = sin8 (a(hl)u1+ P(h2)212) such a case, the robot walks diagonally across the floor 
8 = la(h1)ul - l,O(hz)u2 while “spinning” one com.plete revolution as it com- 

5 = case (a(hl)U1 + p(h2)U2) 
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Figure 10. Manipulation at 6 = 2.4 

Figure 11. Manipulation at &J = 3.0 

pletes one unit diagonally in the 2 and y directions. 
To make the presentation a manageable length, we 

assume that the robot's equations of motion are the 
same regardless of which combination of feet are on the 
lower level or up on the square bumps; although, we 
emphasize that this is not at all required by the the- 
ory previously presented. Furthermore, since all the 
bumps have the same height, then the bottom stratum 
is composed of all 26 = 64 possible different combina- 
tions of the various feet being either on the lower plane 
or higher bumps. We will denote the strata composing 
the bottom stratum by So00000 (all feet on the lower 
level) through S111111. An easy numerical computa- 
tion shows that the system traverses 45 members of 
the bottom strata as s goes from 0 to 2. In particular, 
the first and last 

A plot of the 

are: 

end 
of its motion is illustrated in Figure 13. The black 

Figure 12. Manipulation of a Cube Ob- 
ject. 

6 

.1 

Figure 13. Hexapod motion. 

dots represent the foot placement locations, illustrat- 
ing the complex pattern of foot placements necessary 
to achieve the motion. We emphasize that this was 
a greatly simplified example in that all the bumps 
had the same height (so that it was only necessary 
to check if a foot was on a bump, rather than differ- 
entiate among the bumps; furthermore, the kinematics 
of the robot were assumed to be very simple and un- 
changed regardless of on which of the strata of which 
the bottom stratum is composed the robot is. 

5 Conclusions and Future Work 
This paper presented an extension of the stratified 

motion planning algorithm to  the case where the do- 
main upon which the robot is evolving is non-smooth, 
but known. The extension was rather straight forward 
in that, while the structure of the stratified space in- 
creased in complexity significantly due to the fact that 
the bottom stratum is actually a set of multiple strata, 
the only necessary modification to the algorithm is the 
need to  compute the nominal trajectory through mul- 
tiple bottom strata, which is relatively simple to do. 
The theory was illustrated with very simple examples. 

Avenues of related current and future work include 
1. supplementing the algorithm with a means for vi- 
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sual sensing; 
2. extending motion planning algorithms other than 

the one from [32] to the smooth and non-smooth 
stratified case; and, 

3. development and dissemination of a general strat- 
ified motion planning Mathematica toolkit. 
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