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Abstmct-This paper considers the “reduction” prob- 
lem for distributed robotic systems. In particular, con- 
trollability of systems containing multiple instances of 
identical robotic systems or components where the over- 
all system is invariant with respect to interchanging 
these identical robots or components is considered. The 
main result is a proposition which shows that for an 
equivalence class of symmetric systems of this type, con- 
trollability of the entire class of systems can be deter- 
mined by analyzing the smallest member of the equiva- 
lence class. 

1 Introduction 
This paper considers symmetric distributed robotic 

systems which consist of, perhaps many, interacting 
robots working together to perform a task. As the 
number of interacting robots increases, so does the 
overall dimension and complexity of the system. There 
have been many efforts exploring high level planning 
and coordination between groups of robots [l], [2], [3], 
[4], [5]; however, none of these attempted to directly 
exploit any of the symmetry properties of distributed 
systems. The aim of this work is to consider dis- 
crete symmetries to “reduce” the order of complexity 
of large-scale distributed systems. In this paper, we 
consider the controllability of nonlinear robotic sys- 
tems with equations of motion of the following, general 
form 

m 

i=l 

where f(s) and g(x) are smooth analytic vector fields 
and the ui’s are admissible control inputs. The vector 
field f(z) is referred to as the dr$ vector field and the 
gi(z) are defined as input vector fields. 

The main development of this paper is a proposi- 
tion that can be used to check the controllability of 
large-scale systems by analyzing lower order systems. 
For multi-robot systems, an analysis of a system con- 
taining an arbitrarily large number of identical inter- 
acting robots could be undertaken on an much smaller 
set of robots. In fact, it is shown that the controlla- 
bility of an entire equivalence class of systems can be 
determined by checking only one of its members. A 

Figure 1. A graph of eleven robots. 

graph theoretical representat.ion is developed to aid in 
the analysis of the system and to clearly illustrate the 
interaction between robots. Figure 1 displays a graph 
of a distributed robotic system. Each vertex of the 
graph represents a robot or a group of robots in the 
overall system and an edge denotes the fact that the 
connected nodes affect each other in some manner. If 
nodes 2-11 are identical the system is characterized by 
an Slo symmetry (the symmetric group of order 10). 
This is a consequence of the fact that each of the robots 
2-11 can be interchanged without altering the system. 

The main utility of this work is that it provides a 
means to make the analysis of very large scale cooper- 
ating or interacting robotic systems tractable. While 
this paper is limited to controllability, efforts are also 
under way to extend the basic framework of the ap- 
proach presented here to the analysis of stability of 
such systems as well as the control synthesis problem. 
In whole, a complete package of controller design tools 
is envisioned that are tractable in the sense that the 
analysis or synthesis problem could be directed toward 
a smaller-scale system that then could be utilized on 
an arbitrarily larger-scale system. 

There have been many efforts directed toward the 
reduction of mechanical systems [6], [7], [8], [9], [lo], 
[ll] and control systems [12], [13]. However, these re- 
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suits are directed toward cases of Lie group symme- 
tries. In contrast, this paper considers discrete symme- 
tries. Distributed control systems has also been given 
much attention [14], [15], [16], [17], (181, [19]; however, 
these results are typically limited to linear systems. 
The method found in [16] considers linear systems with 
time-varying nonlinear connections, but not fully non- 
linear systems and the main results in [17], [18], [19] are 
not directed at “reduction” but rather determining the 
fault tolerance of linear systems. The main result of 
this paper is an extension of previous work [20], which 
is limited to driftless systems. This work is also closely 
related to decentralized systems [21], [22], [23]. Again, 
however, the results in these references are limited to 
linear systems. 

The remainder of this paper is organized as follows. 
Section 2 develops a graph theoretic description of non- 
linear distributed system with drift, defines the notion 
of vector field equivalence, which leads to the definition 
of symmetric systems. Using the symmetry group of 
a system naturally defines an entire equivalence class 
of symmetric systems. Section 3 provides a brief re- 
view of controllability and accessibility for nonlinear 
distributed systems and presents the main result of 
the of the paper. This is followed by an illustrative 
example in Section 4. Section 5 gives ‘a brief summary 
of the results and a description of future work. 

2 Symmetric Distributed Robotic Sys- 

This section presents the definitions and notation 
used in our analysis of nonlinear distributed robotic 
systems. In this section we define vector field equiva- 
lence, define symmetric systems and define an equiva- 
lence relation between systems of nonlinear distributed 
robots. From the equivalences relation, an equivalence 
class is defined for which controllability is maintained. 
2.1 Nonlinear Distributed Nonlinear Systems 

We will consider smooth analytic systems of the 

t ems 

with Drift 

form 

E :  j . 1  - = f l ( X )  + 9 1 , 1 ( ~ ) ~ 1 , 1 + 9 2 , 1 ( ~ ) ~ 2 , 1  + * * .  

5 2  = f 2 ( x )  + 9 1 , 2 ( X ) u 1 , 2  + 9 2 , 2 ( X ) u 2 , 2  + . * ’ 
(2) 

in = f n ( x )  + g l , n ( X ) U l , n  + 9 2 , n ( X ) U 2 , n  + * * ’  > 

where M is a smooth manifold, x E M ,  fi and g i , j  are 
smooth vector fields on M. The notation ui,j denotes 
the j th  control input associated with robot i and g i , j  

is the associated input vector field. A drift term that 
is a function of states in node i is denoted by fi. 

It may be the case that the overall system is char- 

r 5 1 -  
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Figure 2. Digraph for eight node system. 

acterized by limited interaction among the robots, in 
which case each robot may be only affected by a small 
subset of other robots. To help provide a clear repre- 
sentation of such distributed robotic systems, we will 
utilize a graph-theoretic model of the system. For- 
mally, we define a digraph of a nonlinear system, C, 
written as &, to be the pair (V, E) consisting of a 
set of vertices V = {VI ,  V 2 ,  . . . , Vm} and a set of di- 
rected edges, denoted by E, which are ordered pairs 
of elements from V. Each vertex E V, represents 
a regular submanifold of the configuration space, M ,  
such that M is the Cartesian product of the vertices, 
i.e., M = VI x V 2  x x V, = n E I V , .  The edge 
directed fmm V, to V,, denoted E i , j  = {V,, V,} E E, 
represents the vector fields which map elements of the 
vertices V, and V, to the tangent space of V,, i.e., 

E i , j  : V, x V, H TV,. 

The edge E i , j  is the jth component of the drift- 
less vector fields g i , k ( x )  from Equation 2 that mul- 
tiply the control inputs associated with the node i 
and the drift vector field f i , j ( x i , X j ) ,  where f i ( X )  = 
E;.-, f i , j ( x i , x j ) .  That is, the . f i , j ( x i , x j )  vector field is 
composed of the components of f i ( x )  that takes states 
from node V, and V, and maps them to TV,. 

EXAMPLE 2.1 Consider the system, 

E :  5 =  f ( x ) + g 2 ( x ) U 2 + * * - + 9 7 ( x ) U 7 ,  

described by, 

+ 

5 2  
1 

0 
0 
0 

x 2  

4 
5 7  

0 
0 
0 

2 7  
1 

4 

where x i  E V, and each vertex has one associated in- 
put ui for i = (2 , .  . . ,7}. (Note that in general each 
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vertex can be represent more than one state and as- 
sociated with which could be more than one input). 
Figure 2 displays the digraph of this system. For ex- 
ample, f2(2) = 2122 + 2 3  which can be written as 
f i ( 2 )  = f2,1(21,52)+f2,2(22)+.. - + f 2 , n ( 2 2 , ~ , ) ,  where 
f2,1(51,22) = 21x2, f2,2(22) = 0, f2,3(22,23) = 23, 
and f2 ,4(~2,24)  = ... = f 2 , n ( 2 2 , 4  = 0. Fur- 
thermore, the first slot in the vector field g2(2) is, 
g2,1(2) = 22, so the in the graphical representation 
of this system, Ox, the edge directed from VI to V2 is 
given by, 

- 
1 0 0 0 0 0 0  
0 0 1 0 0 0 0  
0 0 0 1 0 0 0  
0 0 0 0 1 0 0  
0 0 0 0 0 1 0  
0 0 0 0 0 0 1  
0 1 0 0 0 0 0  - 

which is given by, 

A more rigorous definition of symmetric nodes fol- 
lows shortly, but at this point note that the vertices 
V2 and V7 are symmetric to the extent that, for exam- 
ple, the way node 2 affects node 3, E2,3 = 2$&, is the 
same as the way node 7 affects node 2, E2,7 = 227~7. 

Because of symmetry, these two nodes can be inter- 
changed without affecting the dynamics of the system. 
By “interchanged” we mean a physical interchange, 
i.e., if, V2 and V7 are interchanged they affect and are 
affected by their neighbors in the same way that they 
affect and axe affected by their new neighbors. The 
goal of this paper is to exploit this type of symmetry 
to formulate a simpler reduced order analyzes of such 
systems. 

Since it is possible to have multiple inputs associ- 
ated with one node, it may be necessary to further 
distinguish edges by representing to which vector field 
within the subsystem an edge is associated. To do this, 
a third subscript can be added, i.e., 

This edge, &,j,k still maps between the same spaces, 
but the third subscript indicates that it is the jth 
component of si&. To avoid unnecessary notational 
complexity, we will often drop the third subscript and 
use Ei,j to represent the ordered set of vector fields, 

Interchanging nodes is more than interchanging vec- 
tor fields. We introduce notation that will makes 
interchanging nodes a straightforward process. Let 

= V, = {ql, ez, .  . . , Qn} be an ordered set of 
vertices which are connected-to V, and directed to 
the elements of V,  and let Ei = {Ei,zl ,..., Ei , iM}  
be an ordered set of edges directed from V, to ele- 
ments of E. The manner in which fi and Ei are 
ordered is determined by interactions and/or commu- 
nications between the nodes. To illustrate the use 
of this notation, consider the system given in Exam- 

Ei,j = {Ei , j , l ,  Ei , j ,2 , - .  .}e 
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ple 2.1. The ordered set of vertices for , V2, and V7 
are v2 = {Vil = &,I$, = V2,Q3 = V 3 , h 4  = V7} and 
V7 = {Vfl  = VI, V?, = V7, = V2, Va = & } ,  respec- 
tively. Furthermore, the corresponding sets of ordered 
edges are = (E2,il  = E ‘ L * I , E ~ , ~ ~  = E2,2,E2,i3 = 

E7,7,E7,j3 = E7,2yE7,j4 = E7,6}. 

2.2 Symmetric Distributed Nonlinear Sys- 

This section defines what it means for a distributed 
robotic system to be symmetric. Recall, the motivating 
idea is that there is a subset of individual robots that 
can be interchanged without changing the dynamics of 
the system. Mathematically, this will be represented 
by the fact that vector fields from various nodes will 
be “equivalent.” Since the vector fields directed from 
different nodes are defined on different spaces, we need 
a definition of equivalence which is more than just re- 
quiring them to be “identical.” 

E2,3,E2,il = E2,7} and E 7  == {E7,fl = E7,1,E7,f7 = 

tems 

DEFINITION 2.2: (VECTOR FIELD EQUIVALENCE) 
Two vector fields, g1 And g 2  axe equivalent, denoted 
g1 - 9 2 ,  if there exists a diffeomorphism, II, : M H M ,  
such that 

Equivalently, we can define Ei,j - Ek,l by only consid- 
ering the j t h  and lth components of gi and g k ,  respec- 
tively. Recall the definition of the push forward of a 
vector field is @*g = T$ o g o $-’. 

@* 0 91 = g2.  

Typically equivalence is related to a permutation 
of coordinates. Recall that the symmetric group of 
order p ! ,  denoted S,, is the group of permutations of 
p objects. The group S, is commonly referred to as 
the symmetry group. From Example 2.1, the vector 
fields g2 and g7 are equivalent. To see this, let $ be 
the diffeomorphic permutation of states given by 
$ ( [ 2 1 i 2 2 , 2 3 , 2 4 , 2 5 , 2 6 , 2 7 , ] T )  = 121,23,54,25,26,27,22] T 

then $* o g2 = g7 since 
T 

$-l92(2) = [27,1, z;, O,O,O, 27,] 

= g7.  

(3) 
Using this group, we can now define a symmetric dis- 
tributed system as follows. 



DEFINITION 2.3: (SYMMETRIC DISTRIBUTED 
SYSTEM) 
Let a symmetry orbit, 0 C V, be a subset of V con- 
taining p vertices, i.e., 0 = {Vkl, V k z , .  . . , V k p } ,  let 
F c V be the subset of V \ 0 c V containing n - p 
fixed vertices, i.e., F = {Vfl,. . . , V,,-,}, let I&, be the 
ordered set of vertices connected to V k f ,  and let p E S,. 
The system C is a symmetric nonlinear distributed sys- 
tem if 

gki  - g p ( k i )  V i  E (1,. . . , p }  and Vp E S,. 
Equivalently, a system is a symmetric nonlinear dis- 
tributed system if 

Ep(k),p(k)f and Ekf,k Iv E p ( k ) ~ , p ( k ) ,  

Vk E { k l , .  . . , k,}, Vl E (1,. . . , (kl)m}, and Vp E S,. 

The system from Example 2.1 is a symmetric dis- 
tributed system where the symmetry orbit contains 
robots 2 through 7 and the system is characterized by 
an 5’s symmetry corresponding to all permutations of 
the indices (2, .  . . ,7}, which can be verified by way of 
computations similar to that in Equation 3. 
2.3 Equivalent Symmetric Nonlinear Dis- 

We will now define an equivalence relation among 
symmetric nonlinear distributed systems. An equiv- 
alence class of systems can be defined using the de- 
veloped equivalence relation. It will be shown that 
for this class of systems, controllability of the entire 
equivalence class can be determined by determining 
controllability of just one its members; in particular, 
the member that has the fewest vertices in its symmet- 
ric orbit. 

Before we define nonlinear equivalence for dis- 
tributed systems, we must develop a method that al- 
lows us to compare relative size of two systems. Let 
C1 and E2 be symmetric nonlinear distributed systems 
and let Gzl = {Vl,El} and Gxz = {Vz,Ea) denote 
their corresponding digraphs. We say &, 2 Gz2 if the 
number of vertices in &, is greater than the number 
of vertices in Gxl. 

tributed Systems 

DEFINITION 2.4: (EQUIVALENT NONLINEAR 

Let C1 and C Z  be symmetric nonlinear distributed 
robotic systems and &, 2 Ex,. Since each system is 
a symmetric nonlinear distributed system there exist 
symmetry orbits 01 C VI and 0 2  c VZ containing p 
and q ( p  2 q) vertices, respectively, i.e., 

and 

DISTRIBUTED ROBOTIC SYSTEMS) 

0 1  = { v , k , , , ,  q k , ) w . .  . > V,k , ) J  

0 2  = {V,k,), 7 V , k 2 ) 2  , . * 9 q k &  1. 

The systems C1 and C2 are equivalent symmetric non- 
linear distributed systems if 

1. Ek,(&f)l  Ek,(i,)2 V k  E {kl,. . * , k q } , V l  E 

(1, .  * .  7 (&>m); 

2. F1 = V1\01 and F2 = V2\02 contain the same 
number of vertices, i.e., F1 = F2 = {Vi, .  . . , Vm}; 
and, 

3. Ek,(kf), -- Ek,(&), Vk E {I,.. . ,m},Vl E 

(1,. * .  , ( h ) m } .  
Denote the equivalence class of systems defined by this 
equivalence relation by g .  

Basically, this definition simply requires that all of 
the robots in the symmetry orbit of the smaller sys- 
tem be equivalent to  robots in the symmetry orbit of 
the larger system. Since it is a symmetry orbit, then 
the robots from the orbit from the smaller system are 
automatically similar to all the robots in the orbit of 
the larger system. Intuitively, all that has happened to 
go from the smaller to larger system is that identical 
robots have been inserted into the symmetry orbit of 
the smaller system to create the larger system. 

3 Reduction and Controllability 

LLcontrollable’) for the system 
First, it is necessary recall the definition of the term 

5 = f(z) + g1(z)u1+ * * .  + gm(2)um. 

DEFINITION 3.1: (CONTROLLABILITY) 
A system is small time locally controllable (“STLC,” 
or simply “controllable”) if the set of states that are 
reachable in time T contains a neighborhood of z g  for 
all T > 0. 

Let C denote the smallest subalgebra of Vm(A4) (the 
Lie algebra of smooth vector fields on a manifold A4 
whose product is the Lie bracket, [., .]) that contains 
f ,  91,. . . ,gm. If dim(C) = dim(M) at a point z, then 
the system described by Equation 2 satisfies the Lie 
Algebra Rank Condition (“LARC”) at x. The following 
is well known as “Chow’s Theorem.” 

THEOREM 3.2 If the system described by Equation 2 
is  such that fi(x) = 0 V i  and satisfies the LARC at a 
point xo then it is  S T L C f r o m  20. 

If an edge contains a drift vector field, then Theo- 
rem 3.2 only proves accessibility, i.e., the set of reach- 
able points from 50 is open, but may not contain an 
neighborhood of 50. Controllability for systems with 
drift requires a stronger result. First, distinguish be- 
tween “good” brackets and “bad” brackets as follows. 
Call a Lie bracket ‘Lbad” if it contains an odd number 
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of vector fields and an even number of each of the drift- 
less vector fields, gi , j ,  where the term “even” includes 
zero. If a Lie bracket is not Libad”, then it is “good.” 
For example, 

f 
[ill , 921 

[f, [ g l ,  g z ] ]  
[ g i ,  [ g i ,  9211 

(1 total vector field) is bad. 
(2 total vector fields) is good. 
(3 total vecto; fields) is bad. 
(3 total vector fields) is good. 

Note that even though [ g l ,  [ g l ,  9211 has an odd number 
of vector fields it is still a good Lie bracket because it 
also contains an odd number of driftless vector fields. 
The following is a general theory for local controllabil- 
ity [24]. 

THEOREM 3.3  If a system, E, satisfies LARC and all 
bad brackets are spanned by  lower order good brackets, 
then C is STLC. 

The following proposition is the main result of the 
paper. 

PROPOSITION 3.4 If any one member, E,, of the 
equivalence class of symmetric distributed control sys- 
tems, satisfies Theorem 3.3, then all larger members 
of the equivalence class, Ci E where i > n of sym- 
metric distributed control systems are STLC. 

Proof First we prove accessibility. Assume that 
C, E E, satisfies the LARC. Partition the configura- 
tion manifold into submanifolds corresponding to each 
node in the control system, i.e., let M = II~=114. Let 
C, contain n nodes with m nodes in the symmetry 
orbit, and denote Ai to be the subdistribution of x,, 
which spans the tangent bundle to the submanifold 
associated with node i. We will show that if Cn is sat- 
isfies the LARC, then Cn+l satisfies the LARC, and 
then the result follows by induction. 

For &+I,  recall that the relationship between C, 
and Cn+l was that a vertex, V,, was added to the 
symmetry orbit. We will consider separately the fixed 
nodes, nodes in the symmetry orbit not V, and not 
adjacent to V,, the nodes adjacent to  V, and V, it- 
self. For a node, vi, in the orbit not adjacent to 
V,, denoted by Ai, let the collection of vector fields 
{ X I , .  . . ,X,} E 5, span Ai. Then in Cn+l the same 
set of vector fields will span Ai in En+l where the vec- 
tor fields, Xi are defined relative (in position) to V,. If 
an adjacent node, say V k ,  is a fixed node, i.e., not in the 
symmetry orbit, then A, will still span TVk because 
vector fields have only been added to that node, and 
the existing vector fields are unchanged. For Vj and 
the adjacent vertices, by symmetry 3p E Sm+l such 
that Vj = Vp(l), where 6 is a nonadjacent node. Let 

the collection of vector fields { X I , .  . . , X,} spans TK,  
then {v*X1,. . . ,v*X,} must span TK because of the 
invariance of the system. Recall that if some of the Xi 
are Lie brackets, the result still holds since Lie brackets 
are natural with respect to the push forward of diffeo- 
morphisms (see Proposition 4.2.23 of [25]). Similarly, 
for the vertices adjacent to  V,, 3v E Sm+l such that 
Vv!ll is mapped to them, which shows that A for the 
adjacent nodes in the symmetry orbit must span their 
tangent spaces. Since 3Ai such that spanAi = T K ,  
A,+l = Ai spans TM = T K .  Since M is 
a manifold, by Frobenius’ theorem, A,+, is involutive. 
Therefore, &+I is full rank, and hence accessible. 

For controllability, we must show that all bad brack- 
ets in the larger system must be spanned by lower or- 
der good brackets. This follows from an argument very 
similar to that which proved accessibility. In Cn+l one 
drift vector field has been added to the system relative 
to E,, and all new bad brackets in &+I must contain 
this drift term. However, by symmetry,-if X is a bad 
bracket, 3v E Sm+l such that v,X = X, where X is 
a bad bracket that is already spanned by lower order 
good brackets, and since v is a homomorphism with 
respect to the Lie bracket product, there must exist 
good brackets, Y,  such that the set {v*Y,} span the 
bad bracket X .  Therefore, all bad brackets in &+I 

are spanned by lower order good brackets. Therefore, 

Since the main good bracket, bad bracket controlla- 
bility result from 1241 only provides a sufficient condi- 
tion for controllability, Proposition 3.4 requires more 
than the smaller system being STLC, it must satisfy 
the more restrictive condition that it satisfy the good 
bracket, bad bracket condition. For driftless systems, 
STLC of the smallest system is sufficient for controlla- 
bility, however. 

Cn+l is STLC. 

COROLLARY 3.5 If any one member, Cn of the equiv- - 
alence class of symmetric distributed systems, C is 
STLC and is driflless, i.e., fi E 0 Vi, then all larger 
members of Xi E where i > n are STLC. 

The necessary condition requires further assump 
tions regarding the largest degree of Lie bracket nec- 
essary for to be involutive. Detailed computations 
illustrate that states from one node can “propagate” to 
affect other nodes via Lie brackets. In fact, they can 
“propagate” one node for each order of Lie bracket. 
We note that even though this proposition does not 
provide the necessary condition for controllability of a 
larger system, the sufficient condition is of greater en- 
gineering utility due to the fact that it can be used to 
determine controllability of a larger system by analyz- 
ing a smaller system. 
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Let f, 91, g2, and g3, and 94 be the vector fields given 
in the reduced equation. Taking Lie brackets 

4 Example 
This section provides a simple example that demon- 

strates the utility of the main result. Consider a group 
of 5 mobile robots moving in formation, where each 
robot is described by I I  [;I= cos e 

sin e 
0 

0 
0 
1 

U1 + U 2  

where u1 is the linear velocity input and u2 is the an- 
gular velocity input from [26]. The group of robots 
will follow the nominal trajectory of a leading robot, 
which appears as a drift vector field in the system. The 
equation describing this system is 

we find that dim(span(g1,. . . ,911)) = 9 and f (x) = 0 
at any point, x, where the angular positions of the 
robots are the same, so by Theorem 3.3 the reduced 
system is controllable from these same points. Further- 
more, by Proposition 3.4 implies that the full system 
is also controllable from these points as well as is the 
entire equivalence class of systems. 

5 Conclusions and Future Work 
In this paper, we have considered the controllabil- 

ity of nonlinear distributed robotic systems with drift. 
The main result was proving that controllability of 
large-scale systems can be determined on a reduced 
order system. In fact, it was shown that the controlla- 
bility of an entire equivalence class of robotic systems 
can be determined from testing only one of its mem- 
bers, namely its smallest member. 

A group of unicycle type mobile robots was used to 
demonstrate the main proposition of this paper. Ex- 
tending this work to the formation control of symmet- 
ric robotic systems is currently being explored. The 
goal of this research is to design formation control al- 
gorithms (see [27], [28], [29]) on reduced order systems, 
which can be extended to symmetrically equivalent 
large-scale systems. Another avenue of future work is 
to examine stability properties for symmetric robotic 
systems. Additionally, we would like to examine the 
more useful control synthesis problem. We would like 
to exploit the symmetry properties presented in this 
paper to formulate "reduced order" methods to syn- 
thesize controllers. 
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Figure 4 displays a digraph of this system. This equa- 
tion is a symmetric nonlinear robotic system with drift. 
Now, consider the reduced order system, 
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