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Abstract— This paper develops a motion planning algo-
rithm which exploits symmetry in distributed systems to
reduce complexity and motion planning design time. The
motion planning computations are carried out on a reduced
order system, then extended to larger-order equivalent
systems in such a way that the objectives of the larger
system are satisfied and collision avoidance is guaranteed.
The algorithm maintains a rigid body formation as a group
robots follows a specified trajectory at the beginning and end
of the trajectory. At this point, our algorithm is open loop.
A simulation of four robots maintaining a square formation
is presented to demonstrate the utility of the algorithm.

I. INTRODUCTION

This paper considers the motion planning problem for
symmetric distributed robotic systems which consist of,
perhaps many, robots working together to perform a
specified task. As the number of robots increases, so does
the overall dimension and complexity of the system. There
have been many efforts exploring high level planning
and coordination between groups of robots [15], [4], [7],
[8], [13]; however, none of these attempted to directly
exploit any of the symmetry properties that distributed
systems may posses. The aim of this work is to consider
discrete symmetries to “reduce” the order of complexity of
large-scale distributed systems. In this paper, we consider
nonlinear robotic systems with equations of motion of the
following, general form

ẋ =

m
∑

i=1

gi(x)ui, (1)

where the gi(x) are smooth analytic vector fields and the
ui’s are admissible control inputs.

The problem is to find an algorithm which produces a
set of inputs that steers a group of robots from a given
initial position and orientation to a final position and
orientation while maintaining a rigid body formation at
the beginning and end of the trajectory. While rigid body
formation control for systems of mobile robots clearly has
been achieved before [2], [3], [5], [11], [12], [16], [17],
the main contribution of this paper is the development
of a motion planning algorithm which exploits symmetry
of a distributed robotic system to simplify the design

process and reduce the time necessary to develop motion
plans for large, complex systems. This paper considers
motion planning for symmetric distributed robotic systems
in which there is no state information communicated
between individual robots. Extending these results to an
entire equivalence class of systems, as we have done for
controllability in [9], will be the subject of a future paper.

The type of symmetry we consider is when certain
robots of the overall system can be interchanged without
affecting the dynamics of the overall system. The general
idea is that a distributed system is comprised of sets
of multiple, repeated instances of identical that can be
interchanged. Motion planning is designed considering
only one of these robots and then is mapped to the other
robots in such a way that the total computational burden
is far less than if the motion were planned for each robot
separately. Furthermore, collision avoidance is guaranteed.

The remainder of this paper is organized as follows.
A description of symmetric distributed systems is given
in Section II. This is followed by the development of an
equivalence relation between vector fields, which leads to
the definitions of symmetric systems. A brief summary of
piecewise constant motion planning is given in Section III.
This leads to the motion planning algorithm for symmetric
distributed systems. Section IV presents simulation results
demonstrating the utility of the motion planning algorithm
on a system of four mobile robots maintaining a square
formation.

II. DRIFTLESS SYMMETRIC DISTRIBUTED
SYSTEMS

This section outlines background material from the
authors’ previous work [9], [10] necessary to formulate
our motion planning algorithm for symmetric nonlinear
distributed systems. In this section, we provide the def-
initions and notation related to our representation of a
driftless distributed system, define a symmetric nonlinear
distributed system, and define an equivalence relation be-
tween different symmetric nonlinear distributed systems.
The equivalence relation naturally leads to an equivalence
class of control systems.



A. Driftless nonlinear distributed systems

We will consider smooth analytic driftless systems of
the form

Σ : ẋ = g1,1(x)u1,1 + g1,2(x)u1,2 + · · · (2)

+ g2,1(x)u2,1 + g2,2(x)u2,2 + · · ·

...

+ gn,1(x)un,1 + gn,2(x)un,2 + · · · ,

for all x ∈ M where M is a smooth manifold, gi,j are
smooth analytic vector fields on M .

Since we are considering distributed systems, the sys-
tem is assumed to be organized into individual robots, cor-
responding to which are certain vector fields and control
inputs. In Equation (2), the first subscript on the g’s and
u’s identifies the robot to which the vector field and con-
trol input corresponds, and the second subscript indexes
different vector fields and inputs within that subsystem.
Let g̃i(x), then it represents the ordered set of vector fields
associated with the ith robot, i.e., g̃i(x) = {gi,1, gi,2, . . .}.

We assume that M is partitioned into a set of m regular
submanifolds, Mi, such that M is the Cartesian product
of the Mi, i.e., M =

∏m
i=1Mi. Each submanifold Mi

represents a subsystem or robot of the distributed system.
In this paper, each Mi would represent the configuration
space for robot i in the system and {ui,1, ui,2, . . .} would
be the control inputs for that robot.

B. Symmetric nonlinear distributed systems

Now we will consider what it means for a nonlinear
distributed system to be symmetric. Recall from the intro-
duction that the motivating idea is that there is a subset
of individual robots that can be interchanged without
changing the dynamics of the overall team of robots.
Mathematically this will be represented by the fact that
vector fields from various robots will, in some sense, be
equivalent. Since the vector fields from different robots
are defined on different spaces, we need a definition of
equivalence which is more than just requiring that they be
‘identical’.

DEFINITION II.1 Two vector fields, g1 And g2 are equiv-
alent, denoted g1 ∼ g2, if there exists a diffeomorphism,
ψ : M 7→M , such that

ψ∗g1 = g2,

where ψ∗ is the push forward of ψ,

ψ∗g(x) = Tψ ◦ g ◦ ψ−1(x),

and T is the usual tangent operation (see [1]).

The definition of vector field equivalence applies to
general submanifolds without any assumptions regarding
the relationship between the coordinate systems defined

on different robots; however, often each robot is param-
eterized identically so that the diffeomorphism, ψ, in
Definition II.1 is a simple permutation of states.

Since typically equivalence is determined by a permu-
tation of coordinates, we first review the symmetric group
and it’s action on a set. Recall that the symmetric group
of order p!, denoted Sp, is the group of permutations of
p objects. A permutation of a set X = {1, . . . , p} is a
one-to-one mapping of X onto itself. Such a permutation
ρ is written,

ρ =

(

1 2 · · · p
k1 k2 · · · kp

)

,

which represents that 1 is mapped to k1, 2 is mapped to
k2, etc. The following example further illustrates vector
field equivalence.

EXAMPLE II.2 Consider a system of five robots where
each robot is parameterized by one state and let g2 and
g3 be given by,

g2(x) =













x1

cosx2

x2 + 1
0

x2x5













, g3(x) =













x1

x3x2

cosx3

x3 + 1
0













and,

ψ : M 7→M

defined by

ψ(x1, x2, x3, x4, x5) = (x1, x5, x2, x3, x4),

which corresponds to interchanging robot 2 with node 3.
Also, ψ is related to ρ ∈ S4 where

ρ =

(

1 2 3 4 5
1 3 4 5 2

)

,

where the x1 coordinate is fixed and coordinates
x2, . . . , x5 are mapped according to ρ. The inverse map-
ping is

ψ−1(x1, x2, x3, x4, x5) = (x1, x3, x4, x5, x2).

Invariance of a system with respect to interchanging robot
2 and 3 requires that

ψ∗g2 = g3 and ψ−1
∗ g3 = g2.



In detail,

ψ∗g2(x1, x2, x3, x4, x5)

= Tψ ◦ g2 ◦ ψ
−1(x1, x2, x3, x4, x5)

= Tψ ◦ g2(x1, x3, x4, x5, x2)

= Tψ ◦











x1

cosx3

x3 + 1
0

x3x2











=











1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0





















x1

cosx3

x3 + 1
0

x3x2











=











x1

x3x2

cosx3

x3 + 1
0











= g3(x).

A similarly straight-forward computation shows that
ψ−1
∗ g3(x) = g2(x).

Given an equivalence relation among vector fields, we
now define a symmetric nonlinear distributed system.

DEFINITION II.3 Let a symmetry orbit, O, be subset of
p robots in Σ, let F be the subset of Σ containing n− p
fixed robots, and let ρ ∈ Sp. The system Σ is a symmetric
nonlinear distributed system if

g̃i ∼ g̃ρ(j) ∀i ∈ {1, . . . , p} and ∀ρ ∈ Sp,

where g̃i is the ordered set of driftless vector fields
corresponding to robot i in O.

III. NONLINEAR MOTION PLANNING FOR
SYMMETRIC SYSTEMS

The motion planning algorithm developed in this paper
is an extension of piecewise constant motion planning
algorithm from [6]. A complete description of this motion
planning algorithm is beyond the scope of this paper, so
only an outline will be provide in this section. This section
also provides a method for ensuring that there are no
collisions between robots.

A. Piecewise motion planning

Piecewise constant motion planning works exactly for
systems whose controllability Lie algebra is nilpotent, i.e.,
there exists a k > 0, such that [gi1 , . . . , [gip−1

, gi], . . .] =
0, ∀p > k and for all vector fields gi. For systems that are
not nilpotent, the method provides only an approximate
solution and explicit error bounds on the resulting error
are given in [6].

The basic idea of piecewise continuous motion plan-
ning is to decompose the desired trajectory into multiple

subtrajectories along vector fields which, when evaluated
at a point, form a basis for the tangent space of the
configuration space. For underactuated systems, the basis
will contain motion in the directions of a Lie brackets.
Recall, a Lie bracket in coordinates is given by

[g1, g2] =
∂g2
∂xi

g1(x) −
∂g1
∂xi

g2(x).

Motion in a Lie bracket direction can be approximated
using the following four segment flow,

φt
[g1,g2]

(x0) = φ
√

t
−g2

◦ φ
√

t
−g1

◦ φ
√

t
g2

◦ φ
√

t
g1

(x0) (3)

where φt
g(x0) represents the flow along the vector field g

for time t starting at point x0. Using basis vector fields,
any smooth trajectory can be represented by the Chen-
Fleiss series,

St(q) = ehs(t)Bsehs−1(t)Bs−1 · · · eh2(t)B2eh1(t)B1 , (4)

where [h1, . . . , hs] are functions know as Phillip Hall
coordinates, B1, . . . , Bs are Phillip Hall basis elements,
and S is the series representation of a given trajectory.
Phillip hall basis elements are related to the original
system and their Lie brackets and are chosen such that the
the basis elements are full rank over the desired trajectory.

The Chen-Fliess series satisfies the following differen-
tial equation, referred to as the formal differential extended
system,

Ṡ(t) = S(t)(B1v1 + · · · +Bsvs), (5)

where v1, . . . , vs are fictitious inputs. The inputs are
referred to as fictitious because they are inputs associated
with basis vector fields and may not be available to the
actual system.

By differentiating Equation 4 and equating it to Equa-
tion 5, we can solve for the ḣ’s in terms of the fictitious
inputs, which results in a ordinary differential equation,

ḣ = Q(h)v, h(0) = 0, (6)

where Q(h) is a coefficient matrix in terms of the Phillip
Hall coordinates. The solution of this differential equation
represents the evolution of the system in response to the
fictitious inputs.

B. Motion planning for symmetric distributed systems

Motion planning for a nonlinear symmetric system
of p robots in R

m×p using rigid body formation is
accomplished as follows. Let each robot consist of n
states, where n ≥ m. First, determine a rotation matrix
R(wt) ∈ SO(m) such that R(wT ) produces the desired
final orientation of the rigid formation, where w is the
rotational velocity of the rigid formation. Next, choose
a trajectory, q(t) ∈ C1, connecting the initial center
of the formation to a desired final center for a given
t ∈ [0, T ]. This can be done using any C1 function. Note



that q(t) ∈ R
m. Therefore, the trajectory of a robot i in

the rigid body is given by,

pi(t) = R(wt)Pi + q(t), (7)

where P ∈ R
n is the initial starting position of robot i

relative to the center of the formation. The rigid formation
uniquely determines the position of each robot, but it
does not constrain the robot’s orientation. Let r(t) ∈ C1

describe the changing orientation of the robots. The rigid
body trajectory for robot i can be written as,

γi(t) = A(wt)P̂i + q̂(t) + r̂(t),

where P̂ is the robot i’s initial state (position and orien-
tation) with respect to the center of the rigid body, A(wt)
is an augmented rotation given by,

A(wt) =

[

R(wt) 0
0 1

]

,

q̂(t) is an augmented trajectory given by,

q̂(t) =

[

q(t)
0

]

,

and r̂(t) is given by,

r̂(t) =

[

0
r(t)

]

.

Taking the derivative of the trajectory, we find

γ̇i(t) = Ȧ(wt)P̂i + ˙̂q(t) + ˙̂r(t).

Select s linearly independent Phillip Hall basis elements,
{B1, . . . , Bs}, and determine the corresponding fictitious
inputs. To do this, define an ordered matrix C̃ composed
of all the linearly independent vector fields,

C̃(γi(t)) = [g1(γi(t)), g2(γi(t)), . . . , gs(γi(t))].

Recall that some of the gi’s will be Lie brackets between
vector fields in the original system. The basis elements
were chosen so they have full rank over the entire trajec-
tory. Therefore, C̃ is invertible. The fictitious inputs for
robot i are given by,

vi = C̃−1(γi(t))γ̇i(t).

where v = [v1, . . . , vn]T . The Phillip Hall coordinates
corresponding to the fictitious inputs are determined by
solving Equation 6 and the initial condition h(0)=0. This
gives the control inputs for the extended system. Inputs in
the extended system that are associated with motion in a
Lie bracket direction are approximated using Equation 3.

The motion plan for developed for this robot can now
be extended to other equivalent robots using the following
Proposition.

PROPOSITION III.1 Let Σ be a robotic system containing
p robots, such that, Σ : ẋ = g1(x)u1 + · · · + gn(x)un. If

Σ is symmetric distributed system, then the Phillip hall
coordinates of any two robots, i and j, in the symmetry
orbit of the system with a desired trajectory given by
Equation 7, are related by,

ḣi = Q(h)vi = Q(h)(ψ∗C̃j(ψ(γj(t))))
−1ψ∗γ̇j(t). (8)

Proof: Consider the trajectory given by Equation 7 for
two robots, i and j, which are in the symmetry orbit. Let
Σi : ẋi = g1(xi)u1 + · · · + gm(xi)un and Σj : ẋj =
f1(xj)u1 + · · ·+ fm(xj)un trajectories of the two system
are related by the diffeomorphism, ψ, such that

γi(t) = ψ(γj(t)) =⇒ γ̇i(t) = ψ∗γ̇j(t).

Let C̃i be the ordered matrix of vector fields corresponding
with system Σi. The ordered matrices of vector fields, C̃,
are also related by the diffeomorphism,

C̃i(γi(t)) = ψ∗C̃j(ψ(γj(t)))

= [ψ∗fk1
(ψ(γj(t))), . . . , ψ∗fkm

(ψ(γj(t)))],

which implies that C̃−1
i (γi(t)) = (ψ∗C̃j)

−1(ψ(γj(t))).
Therefore, the fictitious inputs, vi, are also related through
the diffeomorphism,

vi = C̃i(γi(t))
−1γ̇i(t)

= (ψ∗C̃j(ψ(γj(t)))
−1ψ∗γ̇j(t).

Diffeomorphisms are natural with respect to Lie brack-
ets, i.e,

[ψ∗f, ψ∗g] = ψ∗[f, g],

which implies that if system Σi is nilpotent of order k,
then Σj is also nilpotent of order k. Therefore, Qi(h) =
Qj(h) = Q(h). Therefore,

ḣi = Q(h)vi = Q(h)(ψ∗C̃j(ψ(γj(t)))
−1ψ∗γ̇j(t).

�

C. Collision avoidance

The overall approach is to decompose the complete
trajectory into subtrajectories that are small enough to
ensure there is no collision in the system. Since we are
considering small motions, we will consider the system
locally in R

n. For the trajectory, γ, given in Equation 7
for t ∈ [0, T ], let Ri = mint∈[0,T ] ‖γi(t) − γj(t)‖, such
that i 6= j, i.e. the closest any robot gets to robot i while
following the trajectory. Also, let ∆i = ‖γi(T ) − γi(0)‖.
Consider a linear trajectory Γi(t) = γi(0) + t(γi(T ) −
γi(0)) connection the initial position to the final position.
Recall, the fictitious inputs are calculated by solving
γ̇i(t) = [g1(γi(t)), . . . , gs(γi(t))]vi. Applying this to the
linear trajectory, Γi(t), we find

‖Γ̇i‖ = ‖γi(T )−γi(0)‖ < ‖[g1(γi(t)), . . . , gs(γi(t))]‖‖vi‖.

From this equation, we find that the fictitious inputs are
bounded by a constant, αi, i.e., ‖vi‖ < αi‖Γ̇i‖ = αi∆i.



By construction of the real inputs from the fictitious
inputs, ‖u‖ < αi∆

1/k where k is the order of the
highest Lie bracket needed to make C̃ full rank. Let
xi,max = maxt∈[0,T ] ‖xi(t) − γi(0)‖ denote the flow that
is maximally distant from the starting point. Note, this is
not necessarily γi(T ). Now, pick a ball, Bi of radius Ri

centered at the initial point. Let ηi be the maximum norm
of all the first order vector fields for all points in the ball
Bi. The distance, ‖xi,max −γi(0)‖ is necessarily bounded
by the sum of the norms of each individual flow associated
with one real control input, ul

i,j . That is,

‖xi,max − γi(0)‖ ≤
∑

l

∑

j

‖

∫ 1

0

glu
l
i,jdt‖.

We know, ‖ul
i‖ ≤ αi∆

1/k
i and ‖gl(x)‖ ≤ ηi for all xi.

Therefore,

‖xi,max − γi(0)‖ ≤
∑

l

∑

j

ηiαi∆
1/k,

and since ∆i = ‖γi(T )− γi(0)‖, by choosing the desired
final point close enough to the stating point, the robots will
not collide. Because ∆i is raised to the power of 1/k, if
k is large, then ∆i may need to be exceedingly small.
This approach is very conservative and the appropriate
step length may best be identified experimentally.

IV. EXAMPLE

Consider a group of four simple robotic unicycles each
described by [14],





ẋ
ẏ

θ̇



 =





cos θ
sin θ

0



u1 +





0
0
1



u2 (9)

where u1 is the linear velocity input and u2 is the angular
velocity input. All robots are identically parameterized, so
the diffeomorphism, ψ, is simply a translation mapping.

The robots are initially in a square formation centered
about the origin a distance of unity apart. The robots are to
follow a linear path, q(t) = [t, t, 0]T for a time t ∈ [0, 1]
with the orientation of the square rotating by an angle π.
The initial and final points are illustrated in Figure 1 (a).

Motion planning is done on one robot and then extended
to the other robots. Equation 9 describing the mobile
robots is not nilpotent; however, it is nilpotentizable
(see [6]). Using inputs,

u1 =
1

cos(θ)
w1 (10)

u2 = cos2(θ)w2,

the system becomes




ẋ
ẏ

θ̇



 =





1
tan θ

0



w1 +





0
0

cos2 θ



w2,

which is nilpotent of order 2. The motion plan for the
transformed systems using piecewise constant inputs will
be exact. Solving equation 6 for the desired motion, we
find that the Phillip Hall coordinates for the ith robot are,

[

hk
1i

hk
2i

hk
3i

]

=

[

cos(πt)P 0

1i + sin(πt)P 0

2i + t− P k
1i

0
− sin(πt)P 0

1i + cos(πt)P 0

2i + t− P k
2i

]

,

where P 0
1 i and P 0

2 i are the initial x and y positions of
the ith robot, respectively. The desired motion is greater
than the maximum collision bound, so the motion must
be divided into segments. Each segment, i, of robot i has
different h values denoted hk

i . Since the state of the robots
changes with each step, we denote the starting state at the
kth segment of the motion as P k

i . For example, the initial
state of robot 1 is P 0

1 = [−1, 1, 0]T , so the corresponding
Phillip Hall coordinates for the initial step are,





h0

11

h0

21

h0

31



 =





− cos(πt) + sin(πt) + t+ 1
0

sin(πt) + cos(πt) + t− 1



 .

After determining the motion plan for a robot j, the
motion plan is extended to the other robots using Propo-
sition III.1. The resulting Phillip hall coordinates for the
ith robot are,
[

hk
1i

hk
2i

hk
3i

]

=

[

cos(πt)ψ(P 0

1j) + sin(πt)ψ(P 0

2j) + t− ψ(P k
1j)

0
− sin(πt)ψ(P 0

1j) + cos(πt)ψ(P 0

2j) + t− ψ(P k
2j)

]

.

Figure 1 displays a simulation of the four robots. Figure 1
(a) displays the robots initial and final positions shown as
’o’ and ’x’, respectively. Figure 1 (b)-(e) show the motion
during each of the four subtrajectories necessary to move
to final position without a collision. The complete motion
plan for the mobile robotic system is given in Figure 1 (f).
Note, the maximum step size determined by the collision
bound given in Section III-C is conservative. The step size
for this example was computed experimentally.

V. CONCLUSIONS AND FUTURE WORK

A motion planning algorithm for nonlinear symmetric
systems that exploits the symmetry of a system has been
developed. The algorithm is based on piecewise constant
inputs [6], which is exact for nilpotent systems. A bound
on the maximum step size is provide that ensures the
motion is collision free. A simulation of a group of
mobile robots was used to demonstrate the utility of this
algorithm.

The motion plan developed in this paper is for noninter-
acting symmetric robots. Future work is directed toward
removing this restriction and developing a motion plan-
ning algorithm for symmetric distributed systems that can
be designed on a “reduced order” equivalent system. We
are also exploring a more general formation control which
would consider time-varying formations. Furthermore, we
are experimentally testing motion control algorithms on a
group of small distributed robots.
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Fig. 1. Plot (a) displays the initial and final
configurations shown as “o” and “x”, re-
spectively. Plots (b) - (e) displays the motion
plan in four steps to avoid collisions. Plot
(f) displays the combined motion plan of all
four steps.
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