Stratified Motion Planning on Nonsmooth Domains
with Robotic Applications

Yejun Weif and Bill Goodwine!

Abstract— This paper presents an extension of stratified
motion planning results to the case where the base mani-
fold upon which the motion planning occurs is not smooth.
Robotic applications of this work include motion planning
for legged robots over known, nonsmooth terrain and ma-
nipulation of nonsmooth objects with multiple robotic ma-
nipulators.

Keywords— Stratified motion planning, legged locomotion,
robotic manipulation.

I. INTRODUCTION

This paper presents an extension of a control strategy
which considers motion planning for robotic systems which
are characterized by switching dynamics. Previous work
by the authors developed a “stratified motion planning”
algorithm which provided an analytical means for motion
planning for systems with switching dynamics [1], [2], [3],
[4]. One application of this previous work is legged loco-
motion over smooth terrain where the switching dynamics
occur when various feet make and break contact with the
ground. Another application is robotic manipulation of
smooth objects where the switching dynamics occur when
the robotic fingers make and break contact with the ma-
nipulated object. This paper presents an extension of this
algorithm to handle the case where the terrain or object is
nonsmooth, as is schematically illustrated in Figure 1. The
analytical nature of the algorithm guarantees that as long
as the robot is controllable, a solution will be determined.

The main difficulty with stratified systems in general,
is to determine a method to analytically incorporate, ei-
ther in an analysis tool or control synthesis algorithm, the
discontinuous nature of the equations of motion for the sys-
tem. Incorporating the discontinuities of the equations of
motion into a general motion planning algorithm is diffi-
cult because almost all general motion planning methods
assume that the equations of motion are smooth.

Prior research efforts concerning legged locomotion have
typically focused either on a particular morphology such
as in [5], [6], [7], [8] or a particular locomotion assump-
tion such as in [8], [9]. Some more general results exist,
such as in [9], [10], [11]. In contrast to robotic legged lo-
comotion, many results in robotic grasping and manipula-
tion are formulated in a manner that is independent of the
morphology of the gripper, such as in [12]. Many efforts
considered the analysis of grasp stability and force closure
[13], [14], [15], motion planning assuming continuous con-
tact [16], [17], [18] and haptic interfaces [19], [20], [21].
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Fig. 1.

Nonsmooth object manipulation.

Finger gaiting has been implemented in certain instances
[22], [23], [24] and also partially considered theoretically [3],
[25], [26], [27]- In contrast with the current work, none of
these methods directly use the inherent geometry of strat-
ified configuration spaces to formulate results which span
many different morphologies and assumptions.

II. SMOOTH STRATIFIED SYSTEMS

This section outlines the stratified motion planning
method for smooth systems, which forms the basis for the
extension to nonsmooth stratified case. Many details are
necessarily omitted, and the interested reader is referred to
[1], [2], [3], [4] for a complete exposition.

A simple example will provide an intuitive understanding
of the geometry of stratified systems. Consider two robotic
fingers intermittently engaging a smooth object. The set
of configurations corresponding to one of the robots engag-
ing the object is a smooth codimension one submanifold
(one less dimension than the entire configuration space) of
the configuration space. The same is true when the other
robot engages the object. Similarly, when both robots en-
gage the object, the system is on a smooth codimension
two submanifold of the configuration space formed by the
intersection of the single contact submanifolds. Each sub-
manifold is referred to as a stratum.

More generally, let Sy denote the system’s entire config-
uration manifold and S; C Sy denote the smooth codimen-
sion one submanifold of Sy that corresponds to all con-
figurations where only the ith robot engages the object.
Denote, the intersection of S; and S;, by Si;; = S; N S;.
Stratum S;; physically corresponds to the set of states
where both the ¢th and jth robots engage the object. Fur-
ther intersections can be be recursively defined: S;;; =



S;NS; NS, = 8;N S, etc. The lowest-dimensional stra-
tum will be called the bottom stratum. In the case of the
grasping problem in Figure 1, the bottom stratum is when
all four fingers are in contact with the object. All our pre-
vious efforts have assumed that all the strata are smooth
manifolds, which, as illustrated subsequently, will not be
true in the case of nonsmooth objects or terrain.

Definition 1: Let Sy be a manifold, and n functions ®; :
So —» R, ¢ = 1,...,n be such that the level sets S; =
<I>i_1(0) C Sy are regular submanifolds of Sy, for each i,
and the intersection of any number of level sets, S;,i5...i,, =
@;1(0) N @;21(0) N---N <I>i_ml(0), m < n, is also a regular
submanifold of Sy. Then Sy and the functions ®; define a
stratified configuration space.

We assume that the equations of motion on each stratum
are of the form

& =gri(z)ura + -+ gr,n, (21,0, (1)

where the first subscript, I = 4142 . ..1%,,, indexes the stra-
tum upon which the equations are defined. We assume that
the robot is able to control switches among strata. The
motion planning algorithm for smooth stratified systems is
based upon the method presented in [28]. The approach is
to construct an extended system on the bottom stratum in
which the original set of equations of motion is appended
with Lie bracket vector fields associated with which are fic-
titious inputs. For the extended system, motion planning
along a nominal trajectory is trivial since it is constructed
so that the span of all the vector fields is full rank. Formal
algebraic computations utilizing indeterminates, b;, formal
exponential expansions of the form

b b}
e’ =1—|—bi+2—z!+"';
which can be related to solutions of the original equations
1 and approximations to Lie brackets of the form

97 0 9% 0 812 0 81 (2) = 57 (@) + O(),  (2)

where ¢9' (zg) represents the solution of the differential
equation £ = gy(x) at time e starting from zg, provide
the mechanism to determine the real control inputs. The
exact form of the nominal trajectory is not critical for the
performance of the algorithm, it is only important that it
be a path from the starting configuration to the desired
ending configuration. Typically, a straight line is utilized.
In fact, the nominal trajectory is not exactly followed since
approximations of the form of Equation 2 are used to move
in a Lie bracket direction.

For stratified system, if it is the case that the Lie bracket
between the vector fields which switch the system among
strata and any other vector fields is zero, then it is straight
forward to show that vector fields defined on multiple strata
can be considered simultaneously in the motion planning
algorithm on the bottom stratum (a detailed explanation
can be found in [4]). This is useful because it effectively
increases the control authority of the robot by being able

to utilize vector fields defined on multiple strata. For holo-
nomic manipulators or robotic legs, this Lie bracket will al-
ways be zero (see [2] for a complete discussion). A descrip-
tion of the algorithm extended to handle the nonsmooth
case, is presented in Section III.

III. NONSMOOTH STRATIFIED SYSTEMS

In this section we consider the geometry of a nonsmooth
stratified system and the manner in which the motion plan-
ning algorithm outlined in Section II can be extended to
the nonsmooth case. Consider the case of the four fingers
manipulating the cube illustrated in Figure 1. If each finger
has, say, three revolute joints, then the overall configura-
tion space for the system is Sy = SE(3) x $®**, where SE(3)
describes the configuration of the cube and S3** represents
the configuration of the joints. As described in Section II,
if the object were smooth, then the set of all configurations
where one finger contacts the object defines a smooth codi-
mension one submanifold of Sy. However, since the object
is not smooth, the set of configurations where the finger
contacts the cube will be the union of six smooth mani-
folds with boundary. The six manifolds correspond to each
face of the cube, and their boundaries correspond to the
edges of the cube. (See [29] for a complete development of
manifolds with boundary).

In general, we use stratum Sy, , k,1,, where 1 < I <
J < K <L <4 and m,n,p and ¢ are different integers
between 1 and 6, to represent the configuration when four
fingers I,J, K and L are in contact with surfaces m,n,p
and q respectively. Similarly, stratum St,, s, k, represents
the configuration when three of the four fingers, I,J and
K, are in contact with the surfaces m,n and p of the object
respectively. The level of the stratum is the codimension
of the strata. The bottom stratum is the union of all the
lowest dimensional, bottom strata. Thus, the bottom stra-
tum for the structure our system is on the 4th level and is
the union of all the strata with codimension 4 representing
that all the four fingers are in contact with the cube. Sim-
ilarly, all the strata representing three of the four fingers
are in contact with the cube are in level 3. Part of the
combinatorial structure of the stratified system is shown
in Figure 2, where the nodes in the figure represents dif-
ferent strata, the edges connecting the nodes indicate that
it is possible for the system to move from one stratum to
another. Thus, if the nodes are connected by an edge, the
system can move between the strata, if there is no edges
between two nodes, the system cannot move between them
directly. Whether or not an edge connects two nodes is, of
course, problem dependent.

For the example stratified system of four fingers manip-
ulating a cube object, the bottom stratum is the union of
P§ = 360 manifolds with boundary (this assumes that it is
desirable to exclude the possibility of two fingers contacting
a single face of the cube simultaneously). The combinato-
rial size of the stratified graph could affect the planning
efficiency in that many strata could impact the problem;
however, it would also be beneficial in that the increased
number of vector fields that are available from multiple



So

@ ---- Level 0
Sy 53;

@ 0"
o o o ’6 S“@

--. Levell

-- Level 2

2334 323 S12,3,! 5123 %52233 Sam
© 0 69 O O e
Suzgsiss” slz“ sz“ slzg,, 51234 szaa 515234 %ﬁzQam ?Jszssm
OO0 0 O OO0 O - tovrs

Fig. 2. The structure of the nonsmooth stratified system.

strata would make planning actually easier.

On the bottom level, Figure 2 shows that the system
cannot move from one stratum to another since there are
no edges between them. While this figure is not meant to
be a precise representation of the four finger/cube manip-
ulation problem (due to the fact that the bottom stratum
is comprised of 360 strata), the lack of edges between the
strata in the bottom stratum is physically reasonable for
such a system because it would imply that a finger can
switch from one of the bottom strata to another without
disengaging the object. Clearly, however, the system ac-
tually can be moved from one stratum to another on the
bottom level by moving up to the strata in the upper levels
and then move down to the stratum in the bottom level.

For motion planning, since the bottom stratum is not
simply a smooth manifold, the nominal trajectory will not
necessarily be contained within a single stratum. Consider
the case of the cube when all four fingers start and finish
on different faces of the cube. Since the nominal trajectory
is computed in the bottom stratum the nominal trajectory
will need to switch among the various strata from which
the bottom stratum is comprised.

The algorithm is as follows:

1. Check that the Lie bracket decoupling assumption holds
and that the system is controllable (see [1], [30]).

2. Determine a nominal trajectory in the bottom stratum.
Consistent with smooth stratified motion planning, gait
stability considerations may necessitate that the overall
trajectory be divided into multiple subtrajectories (see [4]).
Essentially, for a legged robot, the size of the subtrajectory
will dictate the step size. A subtrajectory that is too long
will require large step sizes, which may destabilize the robot
gait. In [4], explicit, but conservative, bounds on the size of
the subtrajectory are computed which guarantee stability.
3. Construct the extended stratified system on the bottom
strata. This is of the form

* 9m (2)Um
+ InUn

g1 (z)vy + -+
+ gm+1Um41 "

from higher strata
+  Gn+1Uny1 + -0+ gpUp,

any Lie brackets

where the {g1,...,9p} span TSy and are the control vector
fields from multiple strata, the inputs vy,...,v, are real,
and the inputs vp41,...,vp are fictitious. This equation
may be different for each of the strata that comprise the
bottom stratum.
4. Construct the formal equation, which is simply Equa-
tion 3 on each bottom stratum written in indeterminates,
S(t) =

S(t)(bivy + - - - + bsvs),

where the S(t) are polynomial Lie series (see [28]).
5. Construct the Chen-Fleiss series, namely,

ha(t)bs gho—1(8)ba—1 . .. gh1(t)b1

St)=e ;
differentiate it with respect to time and equate the coef-
ficients of the b;’s in the resulting equation with the co-
efficients of the corresponding b;’s in the equation in the
previous step, to construct ordinary differential equations
for the backward Philip Hall coordinates, h;.

6. Solve the differential equations from the previous step to
determine the h;’s to determine how long the system should
flow along each basis element, b;, to reach the goal point.
If the b; represents a Lie bracket, then an approximation
of the form of Equation 2 should be used.

7. If two sequential b;’s belong to different strata, then the
decoupled vector field (checked in step 1) must be actuated
to switch strata.

IV. EXAMPLE

The algorithm was also verified via simulation on a very
simple hexapod robot model as illustrated in Figure 3. The
surface upon which the robot is locomoting is parameter-
ized by
|mod(z, 2)] [mod(y, 2)

4

which produces the partial “checker-board” height pattern
in Figure 3. The equations of motion for the hexapod are
taken to be

h(:c,y) =

= cosf (a(h1)ur + B(ha)us)
= siné (a(hy)ur + B(hs)uz)

6 = lo(hy)uy —1B(ho)us
<Z'?1 = U1; <7§2 = U2
di = wuz; do = wuy

where (z,y,6) represents the planar position of the center
of the body of the robot, ¢; is the front to back angular
deflection of legs 1-4-5, ¢, is the angular deflection of legs
2-3-6, [ is the leg length and d; is the distance of the legs
off the ground. The functions o and 8 are defined by

o(ds) ={ h

Figure 3 illustrates the motion of the hexapod as it tra-
verses the terrain based upon the nominal trajectory

(z(s),y(s),0(s)) =

ifdy =0
ifd; >0

1 ifd=0
ﬂ(d”‘{o if do >0

(4)

(s,8,2ms)
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Fig. 3. Hexapod motion.

where s € (0,1) parameterizes the path it follows. In such
a case, the robot walks diagonally across the floor while
“spinning” one complete revolution as it completes one unit
diagonally in the z and y directions. To maintain gate sta-
bility, the trajectory is divided into 30 identical subtrajec-
tories.

To make the presentation a manageable length, we as-
sume that the robot’s equations of motion are the same
regardless of which combination of feet are on the lower
level or up on the square bumps; although, we emphasize
that this is not at all required by the theory previously
presented. Furthermore, since all the bumps have the same
height, then the bottom stratum is composed of all 26 = 64
possible different combinations of the various feet being ei-
ther on the lower plane or higher bumps.

Following the steps in the algorithm:

1. The inputs u3 and u4 move the feet in and out of contact
with the ground. Clearly, when the feet are out of contact
with the ground, all the other variables (x,y, 0, ¢; and ¢)
are independent of the foot height. Thus, the Lie bracket
decoupling assumption holds.

2. The nominal trajectory is given in Equation 4. We will
denote the strata composing the bottom stratum by Speoo00
(all feet on the lower level) through Si11111 (all feet on the
upper level). An easy numerical computation shows that
the system traverses 45 members of the bottom strata as s
goes from 0 to 2. In particular, the first and last 5 strata
and associated s—values are:

S000010 0.0

Soo1001 | 0.0001
Soo1000 | 0.0816
Soooo0o0 | 0.1051
Sooo100 | 0.1318
So10100 | 1.8682
5010110 1.8792
So10010 | 1.8950
Soooo1o | 1.9185
Soo0110 2.0

3. Denoting (z,y,0,$1,¢2,d1,ds) by (x1,...,27), the
stratified extended system is
[ 21 ] [ Tcost ] [ Icost ]
To lsint [sint
d I3 1 -1
— | x4 = 1 v+ 0 Vo
N 0 1
Tg 0 0
| Iy ] L 0 ] L 0 ]
[0 ] [0 ] [ —2lsint ]|
0 0 2l cost
0 0 0
+ 0 lvs+ | 1 |vg+ 0 V5.
1 0 0
0 0 0
| 0] | 0] i 0 ]

The first two vector fields correspond to motion when all
feet are in contact with the surface, the third and fourth
vector fields correspond to motion when the feet are out of
contact with the surface and the seventh is the Lie bracket
between the first two vector fields.

4. The formal equation is simply

S(t) = S(t) (b1U1 +---+ b5U5) y

where b; through bs represent the five vector fields in the
stratified extended system.

5. Differentiating the Chen-Fliess series and equating the
coefficients of the b; in the formal equation gives the fol-
lowing set of differential equations:

ill =1 h4 = V4
f}z =wvy hs =hyvy +vs
h3 = V3.

6. The v;’s are determined by differentiating the nominal
trajectory with respect to time, equating it with the strat-
ified extended system and solving for the v;’s. From these
fictitious inputs, the backward Philip Hall coordinates can
be determined from the set of differential equations in the
previous step. For the nominal trajectory in Equation 4
divided into 30 subtrajectories, on the 25th step, at which
point the state of the system is z = 1.6, y = 1.6 and
0 = 5.02655 the values for the fictitious inputs and the
backward Philip Hall coordinates are:

vy = 0.080931 hi = 0.080931
vy = —0.109469 hay = —0.109469
vs = 0.0599014 hs = —0.080931
vy = 0.109469 hs = 0.109469
vs = —0.080931 hs = 0.051042.

A plot of the motion of the robot near the end of its
motion is illustrated in Figure 3. The black dots repre-
sent the foot placement locations, illustrating the complex
pattern of foot placements necessary to achieve the motion.



We emphasize that this was a greatly simplified example in
that all the bumps had the same height (so that it was only
necessary to check if a foot was on a bump, rather than dif-
ferentiate among the bumps; furthermore, the kinematics
of the robot were assumed to be very simple and unchanged
regardless of on which of the strata of which the bottom
stratum is composed the robot is. Introducing more realis-
tic complexity is not theoretically problematic; however, it
would result in a much more cluttered and hard to follow
presentation.

The algorithm has also been experimentally verified us-
ing a robotic platform with four PUMA 560 manipulators
and a vision based control strategy to supplement the open
loop method presented here. The details of the vision sys-
tem as well as a complete description of the performance
of the system can be found in [31].

V. CONCLUSIONS AND FUTURE WORK

This paper presented an extension of the stratified mo-
tion planning algorithm to the case where the domain is
nonsmooth, but known. The extension was rather straight
forward in that, while the structure of the stratified space
increased in complexity significantly due to the fact that
the bottom stratum is actually a set of multiple strata, the
only necessary modification to the algorithm is the need to
compute the nominal trajectory through multiple bottom
strata. The theory was illustrated with a simple example.

Avenues of related current and future work include sup-
plementing the algorithm with a means for visual sensing,
extending motion planning algorithms other than the one
from [28] to the smooth and nonsmooth stratified case; and,
the development and dissemination of a general stratified
motion planning Mathematica toolkit.
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LisT oF CAPTIONS

1. Nonsmooth object manipulation.
2. The structure of the nonsmooth stratified system.
3. Hexapod motion.



