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Abstract— We obtain an intrinsic vector-valued symmetric bi-
linear form that can be associate with an underactuated simple
mechanical control system. We determine properties of the form
which serve as necessary conditions for driving underactuated
simple mechanical control systems to rest. We also determine
properties of the form that serve as sufficient conditions for
driving a simple mechanical systems underactuated by one
control to an ε-neighborhood of rest from an arbitrary initial
configuration and velocity. These conditions are computable and
coordinate invariant. We focus on the case where the symmetric
form is real-valued and indefinite on the entire configuration

manifold. Our technical results give rise to a nonlinear control
law that drives these systems to an ε-neighborhood of rest given
an arbitrary initial configuration, velocity and ε > 0.

I. INTRODUCTION

A. Background

Mechanical systems form a large subset of nonlinear con-

trol systems which have numerous diverse and challenging

applications. Such areas include autonomous aerospace and

marine vehicles, robotics and automation, and multi-body

systems. Moreover, the areas of overlap between mechanics

and control possess mathematical elegance that makes them

appealing to study independent of applications. There cur-

rently exists a limited understanding of the set of reachable

states from nonzero velocity states for simple mechanical

control systems [1]. The underlying mathematical structure

of mechanical systems is that of second-order dynamics on

the tangent bundle of the configuration manifold where the

state of the system is defined by a configuration and velocity.

Controllability results that are limited to zero velocity states

do not provide an adequate characterization of the behavior

of mechanical systems and limit the extension of local

accessibility and controllability results to the larger class of

hybrid nonlinear mechanical systems [2].

Underactuated mechanical control systems are interesting

to study both from a theoretical and a practical point of view.

Theoretically, they are a challenge to control due to nonzero

drift. Practically, they appear in numerous applications re-

sulting from design choices motivated by cost reductions or

in some cases they are the result of a failure in fully actuated

mechanical systems.
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In general, the problem of determining controllability for

underactuated nonlinear control systems is very difficult.

Sussmann’s work [3] on sufficient conditions for small-time

local controllability forms the cornerstone of many existing

analyses of mechanical control systems. Lewis and Murray

[4] have extended the general results of Sussmann to simple

mechanical systems in the zero velocity setting by taking

advantage of the inherent structure in the governing equations

of motion. The reachable set from zero initial velocity can

be constructed using symmetric products and Lie brackets.

It is well-known that each of these results are not feedback

invariant. Consequently, several efforts have been made to

obtain conditions in the zero velocity setting from properties

of a certain intrinsic vector-valued quadratic form which does

not depend upon the choice of basis for the input distribution

[1], [5].

A slightly weaker notion of controllability for locomotive

systems is referred to as fiber controllability [7]. Fiber

controllability refers to the system’s ability to control certain

states with no concern for other. A nice example is the

mathematical model of a swimming robot [9]. Cortes et al.

[8] provide sufficient conditions local fiber controllability for

mechanical systems with symmetries and constraints in the

zero velocity setting.

B. Statement of Contribution

We seek to develop a geometric tool that can be used to

characterize the set of reachable velocities. The basic strategy

is to pick a specific target in the tangent bundle and develop

necessary and sufficient conditions for reaching that target.

Our target is the zero section of the tangent bundle or rest

since the current controllability results for simple mechanical

systems are restricted to zero initial velocity [6]. We ask

the following two questions for simple mechanical control

systems:

1) Starting from a given configuration and velocity, is it

possible to reach rest?

2) If so, is it possible to design a nonlinear control law

that will drive this system to rest?

We obtain computable results which are dependent upon

coordinate invariant properties of an intrinsic vector-valued

symmetric bilinear form that can be associated with a simple

mechanical control system. Specifically, we provide neces-

sary conditions for reaching rest from an arbitrary initial

configuration and velocity (see Section III.C, Theorem 12).

We also provide sufficient conditions and a nonlinear control

law for driving a class of simple mechanical system under-

actuated by one control to an ε-neighborhood of rest from an
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arbitrary initial configuration and velocity (see Section III.C,

Theorem 15).

Our unique approach is to use the governing equations of

motion to partition or foliate the phase manifold. Similar

to fiber controllability, an implicit notion throughout this

paper is that of global foliation controllability. We develop

a method to measure a simple mechanical control system’s

ability to move among leaves of the input foliation. Our

analysis may also be extended to a larger class of nonlin-

ear mechanical systems with isotropic dissipation [10] and

constrained mechanical control systems [11]. These results

are applied to the forced planar rigid body.

II. GEOMETRIC MODEL

A. Simple Mechanical Control Systems

We consider a simple mechanical control system which is

comprised of an n-dimensional configuration manifold M; a

Riemannian metric G which represents the kinetic energy; a

R-valued function V on M which represents the potential

energy; m linearly independent one forms F1, . . . ,Fm on

M which represents the input forces; and U = Rm which

represents the set of inputs. We do not require the set of

inputs to be a subset of Rm. This allows use to focus on

the geometric properties of our system that inhibit or allow

motion in the foliation as opposed to a limitation on the set

of inputs. We represent the input forces as one forms and use

the associated dual vector fields Ya = G♯(Fa), a = 1, . . . ,m
in our computations. Formally, we denote the control system

by the tuple Σ = {M,G,Y ,V,U} where Y = {Ya | Ya =
G

♯(Fa) ∀ a} is the input distribution. Note we restrict

our attention to control systems where the input forces are

dependent upon configuration and independent of velocity

and time. DoCarmo [12] provides an excellent introduction

to Riemannian geometry. A thorough description of simple

mechanical control systems is provided by Bullo and Lewis

[6].

It is well known that the Lagrange-d’Alembert principle

can be used to generate the equations of motion for a forced

simple mechanical system in coordinate invariant form [13].

If we set the Lagrangian equal to the kinetic energy minus

potential energy, then the equations are given by

∇γ̇(t)γ̇(t) = −gradV (γ(t))+ ua(t)Ya(γ(t)) (1)

where ∇ is the Levi-Civita connection corresponding to G,

u is a map from I ⊂ R 7→ R
M , γ : I → M is a curve on M

and t ∈ I. Therefore, a controlled trajectory for Σ is taken

to be the pair (γ,u) where γ and u are defined on the same

interval I ⊂ R. Note the usual summation notation will be

assumed over repeated indices throughout this paper.

The natural coordinates on TM are denoted by

((q1, . . . ,qn), (v1, . . . ,vn)) where (v1, . . . ,vn) are the co-

efficients of a tangent vector given the usual basis

{ ∂
∂q1 , . . . , ∂

∂qn }. We will denote a point in T M by vq. We may

lift the second-order differential equation defined by (1) to

T M. This gives rise to the following system of first-order

differential equations on T M

dqk

dt
= vk, (2)

dvk

dt
= −Γk

i jv
iv j + uaY k

a −gradV k,

where Γk
i j is the usual Christoffel symbol and i, j,k = 1, . . . ,n.

Equation (2) is the local representation of the following

vector field on T M

ξ̇ (t) = Z (ξ (t))+ ua(t)Y vlft
a (π (ξ (t))) (3)

−gradV vlft (π (ξ (t))) .

where ξ (t) is the total state, Z is the geodesic spray, π is

the canonical projection TM 7→ M, and Y
vl f t
a ,gradV vl f t are

the vertical lifts of the vector fields Ya,gradV on M. Recall

that the vertical lift of a vector field X at the point vq is

denoted by Xvlft
vq

and is the tangent vector at t = 0 to the

curve t 7→ v + tX .

A critical tool used to analyze distributions and mechanical

control systems is the symmetric product. Given a pair of

vector fields X ,Y , their symmetric product is the vector field

defined by

〈X : Y 〉 = ∇XY + ∇Y X .

We denote the closure of the distribution Y with respect

to the symmetric product by Sym∞(Y ). Recall that a distri-

bution Y is geodesically invariant if and only if it is closed

with respect to the symmetric product [14].

The Lie derivative of a real-valued function f on M with

respect to the vector field X = X i ∂
∂qi is defined in coordinates

by

LX ( f ) = X i ∂

∂qi
( f ).

B. Forced Planar Rigid Body

In this section we introduce the geometric model of the

forced planar rigid body (Fig. 1).

e1

e2

b2

b1

F2

F1

h

F3

Fig. 1. Forced Planar Rigid Body

The configuration manifold for the system is the Lie group

SE(2) and the potential function is assumed to be identically

zero. Let us use coordinates (x,y,θ ) for the planar robot
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where (x,y) describes the position of the center of mass and

θ describes the orientation of the body frame {b1,b2} with

respect to the inertial frame {e1,e2}. In these coordinates,

the Riemannian metric is given by

G = mdx⊗dx + mdy⊗dy + Jdθ ⊗dθ ,

where m is the mass of the body and J is the moment

of inertia about the center of mass. The inputs for this

system consist of forces applied to an arbitrary point and

a torque about the center of mass. We assume that the point

of application of the force is a distance h > 0 from the center

of mass along the b1 body-axis. Physically, the input force

can be thought of as a variable-direction thruster on the body

which can be resolve into components along the b1 and b2

directions. The control inputs are given by

F1 = cosθdx + sinθdy,

F2 = −sinθdx + cosθdy−hdθ ,

F3 = dθ .

III. GEOMETRIC ANALYSIS

A. Construction

In this section we expand upon and adapt the definition of

an affine subbundle found in Hirschorn and Lewis [5]. We

restrict our attention to configuration manifolds that admit

a well defined global set of basis vector fields however our

results generalize under appropriate conditions. Recall that

an input distribution Y on M is a subset Y ⊂ TM having the

property that for each q ∈ M there exists a family of vector

fields {Y1, . . . ,Ym} on M so that for each q ∈ M we have

Yq ≡ Y ∩TqM = spanR{Y1(q), . . . ,Ym(q)}.

We refer to the vector fields {Y1, . . . ,Ym} as generators for

Y . Let Y ⊥ denote the orthonormal frame {Y⊥
1 , . . . ,Y⊥

n−m}
that generates the G-orthogonal complement of the input dis-

tribution Y . It is clear that {Yq,Y
⊥

q } form a basis for TqM at

each q∈ M. Note that Y = {Y1, . . . ,Ym} is a set of m linearly

independent vector fields while Y
⊥ = {Y⊥

1 , . . . ,Y⊥
n−m} is a set

of n−m orthonormal vector fields. This basis will be used to

define an affine subbundle and construct an affine foliation

of the tangent bundle.

An affine subbundle on M is a subset A ⊂ TM having the

property that for each q ∈ M there exists a family of vector

fields {Y0, . . . ,Ym} so that for each q ∈U we have

Aq ≡ A∩TqM

= {Y0(q) = Y⊥
1 (q)+ · · · +Y⊥

n−m(q)}
+spanR{Y1(q), . . . ,Ym(q)}.

An affine foliation, A , on T M is a collection of disjoint

immersed affine subbundles of TM whose disjoint union

equals T M. Each connected affine subbundle A is called

an affine leaf of the affine foliation. Now let us apply this

framework to a simple mechanical control system.

Definition 1 (Input Foliation): Let (M,G,V,Y ,U) be a

simple mechanical control system with the input distribution

Y generated by {Y1, . . . ,Ym} and the corresponding G-

orthogonal distribution Y
⊥ generated by {Y⊥

1 , . . . ,Y⊥
n−m}. An

input foliation AY is an affine foliation whose affine leaves

are affine subbundles given by

As(q) = {vq ∈ T M | 〈〈Y⊥,vq〉〉 = s,s ∈ R
n−m}.

Remark 2: The input foliation is parametrized by s ∈
Rn−m. Note that when s = 0, A0 = Y and A0(q) = Yq where

Y is an immersed submanifold of T M and Yq is a linear

subspace of TqM. Thus, the input distribution Y is a single

leaf of the affine foliation.

Now we introduce the notion of the generalized symmetric

Christoffel symbols.

Definition 3: We define the generalized symmetric

Christoffel symbols for ∇ with respect to the basis of vector

fields {X1, . . . ,Xn} on M as the n3 functions Γ̃k
i j : M → R

defined by

1

2
〈Xi : X j〉 = Γ̃k

i jXk.

Remark 4: If we let Xi = ∂
∂qi then we recover the usual

Christoffel symbols.

We may define the velocity vector γ̇(t) = γ̇ i(t) ∂
∂qi of the

curve γ(t) in terms of the family of vector fields {Y ,Y ⊥}.

The new expression for γ̇(t) is in the form

γ̇(t) = wa(t)Ya(γ(t))+ sb(t)Y⊥
b (γ(t)) (4)

where sb(t) = 〈〈γ̇(t),Y⊥
b 〉〉γ(t). We now provide a local

expression for a measure of a simple mechanical control

system’s ability to move among the leaves of the input

foliation AY .

Lemma 5: Let (M,G,V,Y ,U) be a simple mechanical

control system with an input foliation AY defined above.

The following holds along the curve γ(t) satisfying (1):

d

dt
sb(t) = −1

2
wa(t)wp(t)〈〈〈Ya : Yp〉,Y⊥

b 〉〉 (5)

−1

2
wa(t)sr(t)〈〈〈Ya : Y⊥

r 〉,Y⊥
b 〉〉

−1

2
sr(t)wp(t)〈〈〈Y⊥

r : Yp〉,Y⊥
b 〉〉

−1

2
sr(t)sk(t)〈〈〈Y⊥

r : Y⊥
k 〉,Y⊥

b 〉〉

−〈〈gradV,Y⊥
b 〉〉

where a, p ∈ {1, . . . ,m}, b,k,r ∈ {1, . . . ,n−m}.

Proof: Recall from Definition 1 that

sb(t) = 〈〈Y⊥
b , γ̇(t)〉〉 (6)

holds along γ(t). We could precede by substituting (4) into

(6) and differentiating taking advantage of the compatibility

associated with the Levi-Civita connection. Alternatively,

we use the notion of a generalized symmetric Christoffel

symbol. It follows from the construction of Y ⊥ that the bth
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component of Γ̃b
i j along the the orthonormal vector field Y⊥

b

can be expressed as a projection using G.

We observe that (5) is quadratic in the parameter w(t).
Now we relate an intrinsic vector-valued symmetric bilinear

form to the measure derived in Lemma 5.

Definition 6: Let (M,G,V,Y ,U) be a simple mechanical

control system with the input distribution Y generated by

{Y1, . . . ,Ym} and the corresponding G-orthogonal distribution

Y ⊥ generated by {Y⊥
m+1, . . . ,Y

⊥
n }. We define the intrinsic

vector-valued symmetric bilinear form to be B : Yq ×Yq →
TqM/Yq given in coordinates by

Bb
ap =

1

2
〈〈〈Ya : Yp〉,Y⊥

b 〉〉,

where a, p ∈ {1, . . . ,m},b ∈ {1, . . . ,n−m}.

Remark 7: The intrinsic vector-valued symmetric bilinear

form defined above tells us exactly how the velocity com-

ponents w parallel to the input forces influence the velocity

components s orthogonal to the input forces. The remain-

der of the paper will focus on characterizing computable,

coordinate invariant properties of B.

Remark 8: If Σ is underactuated by one control then b = 1

and B is a real-valued symmetric bilinear form.

B. Control Definitions

The following section contains several control definitions

which are used in the statement of our main results.

Definition 9: We say that Σ is ε-stabilizable to rest (ε-

STR) if for any ε > 0 there exists a piecewise continuous

function ũ : T M → Rm such that the solution to the initial

value problem

ξ̇ (t) = Z(ξ (t))+ ũa(ξ (t))Y vl f t
a (ξ (t)), ξ (0) = (q0,v0),

satisfies |v(T )| < ε for some q ∈ M and finite T .

Definition 10: Given a m × m semi-definite real-valued

symmetric bilinear form B of rank(k) where k ≤ m, we

can always construct a k× k definite real-valued symmetric

bilinear form B̃ by eliminating m−k linearly dependent rows

and columns. We say that B̃ is the minimal definite real-

valued symmetric bilinear form on M.

Definition 11: Let B be a real-valued symmetric bilinear

form on M.

(ii) The positive set M+ is the set of q ∈ M such that

wT B̃w > 0 holds for w 6= 0.

(ii) The negative set M− is the set of q ∈ M such that

wT B̃w < 0 holds for w 6= 0.

(iii) The indefinite set M+/− is the set of q ∈ M such that

wT B̃w may take positive, negative and zero value for

w 6= 0.

(iv) The degenerate set M /0 is the set of q ∈ M such that

wT B̃w = 0 holds for all w.

C. Control Results

The following section contains the main results of this

paper. Our goal is to determine conditions that can be

expressed in terms of properties of a real-valued symmetric

bilinear form.

Theorem 12: Let Σ = {M,G,V = 0,Y ,U} be a simple

mechanical system underactuated by an arbitrary number of

controls. If Sym∞(Y ) 6= T M then Σ cannot be driven to rest

from an arbitrary initial configuration and velocity.

Proof: It follows from (5) that if Sym∞(Y ) 6= T M then

either dsb

dt
= 0 for all b or there exists at least one dsb

dt
6= 0 and

is linear in s and w. Clearly, as s approaches zero so does
dsb

dt
. Therefore, Σ can never reach Sym∞(Y ) which contains

rest.

It follows from (1) that if we choose ua sufficiently large,

wa can achieve any value for each a = 1, . . . ,m. We need to

show that it is possible to do this with an arbitrarily small

influence on the configuration q and orthogonal velocity

component s.

Lemma 13: Let us assume that the set of control inputs

ua(t) be continuous over the interval (t,t + δ ). Then given

any ε > 0 and δ > 0 there exists a constant M such that

ua < M, wa can achieve any value in time δ such that |q(t +
δ )−q(t)|< ε and |s(t +δ )− s(t)|< ε for each a = 1, . . . ,m.

Proof: If ua(t) is continuous on the open interval (t,t +
δ ) then it follows from (1) that dw

dt
(t) is continuous over

the same interval. This implies that w(t), s(t) and q(t) are

continuous on the closed interval [t,t +δ ]. Then by the Mean-

Value Theorem for vector-valued functions we conclude that

the rate of change of s(t) and q(t) achieves a bounded value

on the open interval between t and t + δ . Since s(t) and

q(t) change in a bounded fashion over (t,t +δ ) then we can

always find a sufficiently large M such that ua < M and wa

achieves any value for all a = 1, . . . ,m.

Lemma 14: Let Σ = {M,G,V,Y ,U} be a simple mechan-

ical system underactuated by one control. If γ̇(t0) ∈ Yγ(t0)

then Σ is ε-stabilizable to rest from an arbitrary configura-

tion.

Proof: This is an application of Lemma 13.

Now we state our main result.

Theorem 15: Let Σ = {M,G,V,Y ,U} be a simple me-

chanical system underactuated by one control. If the Lie

derivative of the det(B̃(q)) with respect to Ya for some a =
1, . . . ,m is nonzero for all q∈ cl(M+) and q∈ cl(M−) then Σ
is ε-stabilizable to rest from an arbitrary initial configuration

and velocity.

Proof: Given Lemma 14, it is sufficient to show that Σ
can be driven to the affine leaf A0 = Y given an arbitrary

initial configuration q0 and velocity (w0,s0). It follows from

Lemma 13 that there exists a set of bounded inputs ua such

that wa can achieve any value consistent with B̃ and not leave

the regions M+, M−, or M+/−. Further, since ds
dt

depends

on wa in a quadratic fashion whereas the configuration q

depends on wa linearly then it is also true that there exists a

set of bounded inputs ua such that given a configuration that

lies in the appropriate region, s can be driven to rest without

leaving that region.

The basic idea for the remainder of the proof is that M can

be partitioned into regions M+, M−, M+/−, and M /0. Let us
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examine the six possible cases. (i) If the initial configuration

q0 ∈ M+/− then there exists a set of inputs u to drive w

so that wT Bw < 0 or wT Bw > 0 and ds
dt

< 0 or ds
dt

> 0. This

implies that s0 can always be decreased or increased and thus

driven to s = 0 from above or below. (ii) Let q0 ∈ M+ and

s0 < 0. Therefore, for all q∈M+ there exists a set of inputs u

to drive w so that wT Bw > 0 and ds
dt

> 0. This implies that s0

can be increased and thus driven to s = 0 from below. (iii) Let

q0 ∈ M− and s0 > 0. Therefore, for all q ∈ M− there exists

a set of inputs u to drive w so that wT Bw < 0 and ds
dt

< 0.

This implies that s0 can be decreased and thus driven to

s = 0 from above. (iv) Let q0 ∈ M+ and s0 > 0. If the closure

cl(M+) is invariant and ds
dt

> 0 for all q ∈ M+ then Σ cannot

be driven to s = 0. Let us assume that LYa(det(B̃(q))) 6= 0 for

q ∈ cl(M+) and some a = 1, . . . ,m. This implies that there

exists a set of inputs u to drive q to either M− or M+/−. The

proof is now a consequence of (iii) or (i), respectively. (v)

Let q0 ∈ M− and s0 < 0. If the closure cl(M−) is invariant

and ds
dt

< 0 for all q ∈ M− then Σ cannot be driven to s = 0.

Let us assume that LYa(det(B̃(q))) 6= 0 for q ∈ cl(M−) and

some a = 1, . . . ,m. This implies that there exists a set of

inputs u to drive q to either M+ or M+/−. The proof is

now a consequence of (ii) or (i), respectively. (vi) Finally,

let us assume that q ∈ Memptyset . The boundary of M+ and

M− is Memptyset . If we assume that LYa(det(B(q))) 6= 0 for

q ∈ cl(M+) and q ∈ cl(M−) then LYa(det(B(q))) 6= 0 for all

q∈ M /0. This implies there exists a there exists a set of inputs

u to drive q to either M−, M+ or M+/−. The proof is now

a consequence of (i), (ii) or (iii), respectively.

IV. APPLICATION

A. Control Analysis

This section contains the application of the preceding

theory to the forced planar rigid body (FPRB). The example

is simple and intended to illustrate our theory. Let us simplify

our calculations by assuming m = 1, J = 1 and h = 1.

We begin by constructing the control vector fields given

{F1,F2,F3}:

Y1 = cosθ
∂

∂x
+ sinθ

∂

∂y
,

Y2 = −sinθ
∂

∂x
+ cosθ

∂

∂y
− ∂

∂θ
,

Y3 =
∂

∂θ
.

Let us consider the case when the input distribution is

given by Y12 = {Y1,Y2}. We construct the single element in

the orthonormal set Y ⊥ = {Y⊥} given Y12 by inspection:

Y⊥ =
−sinθ√

2

∂

∂x
+

cosθ√
2

∂

∂y
+

1√
2

∂

∂θ
.

Next, we compute the coefficients of the intrinsic real-

valued symmetric bilinear form B. The only non-zero coef-

ficients are the off-diagonal terms

B12 = −1

2
〈〈〈Y1 : Y2〉,Y⊥〉〉 =

√
2

4
,

B21 = −1

2
〈〈〈Y2 : Y1〉,Y⊥〉〉 =

√
2

4
,

Now we expand the expression wT Bw to get

Bi jw
i(t)w j(t) =

√
2

2
w1(t)w2(t) (7)

Equation (7) is a bivariate quadratic function in w1 and w2.

The graph of this function is a saddle. This follows from the

second derivative test:
(

∂ 2Q12

∂w1∂w1

)(

∂ 2Q12

∂w2∂w2

)

−
(

∂ 2Q12

∂w1∂w2

)2

= −1

2
.

Following a similar procedure, we calculate the intrinsic

real-valued symmetric bilinear forms associated with the

input distributions Y13 = {Y1,Y3} and Y23 = {Y2,Y3} which

are shown in Table I.

TABLE I

BIVARIATE QUADRATIC EQUATIONS

Input Distribution Bi jw
iw j

Y13 −w1(t)w3(t)
Y23 −w2(t)w2(t)+w2(t)w3(t)

Again, the graph of the bivariate quadratics associated with

Y13 and Y23 are saddles. It then follows from Theorem 15

that FPRB given the input distributions Y12, Y13, and Y23 is

ε-STR from an arbitrary initial configuration and velocity.

Now we analyze a forced planar rigid body with a single

control force. Let us consider the two cases when the input

distribution is given by Y1 = {Y1} and Y3 = {Y3}. We

observe that in each case the input distribution is geodesically

invariant. It then follows from Theorem 12 that FBRB given

the input distributions Y1 and Y3 cannot be driven to rest

from an arbitrary initial configuration and velocity.

Finally, let us consider the case when Y2 = {Y2}. We

check for geodesic invariance by computing the following

symmetric products

〈Y2 : Y2〉 = cosθ
∂

∂x
+ sinθ

∂

∂y
,

〈Y2 : 〈Y2 : Y2〉 = sinθ
∂

∂x
− cosθ

∂

∂y
.

We observe that the span{Y2,〈Y2 : Y2〉,〈Y2 : 〈Y2 : Y2〉} =
T M. Since the Sym∞(Y2) = T M and the system is under-

actuated by two controls, our theorems are not applicable.

However, we are able to conclude the following weaker

result.

We begin by constructing the two elements of the or-

thonormal set Y ⊥ by inspection:

Y⊥
1 = −cosθ

∂

∂x
+−sinθ

∂

∂y

Y⊥
2 = − sinθ√

2

∂

∂x
+

cosθ√
2

∂

∂y
+

1√
2

∂

∂θ
.
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Now we construct the quadratics:

ds1

dt
= −1

2
s2(t)s2(t)+ w2(t)w2(t), (8)

ds2

dt
=

1

2
s1(t)s2(t)−

√
2

2
w2(t)s1(t). (9)

It follows from (8) and (9) that it is not possible to

simultaneously increase s1(t) and s2(t) nor is it possible to

simultaneously decrease s1(t) and s2(t). We observe that the

threshold for increasing or decreasing s1(t) and s2(t) occurs

at

w2(t) =
1√
2

s2(t).

This implies the weaker result that FPRB given the input

distribution Y2 cannot be driven directly to rest from above

or below the distribution Y2.

B. Nonlinear Control Law

The computable sufficient conditions associated with The-

orem 15 naturally gives rise to a nonlinear control law for

simple mechanical systems underactuated by one control and

where M = M+/−. The nonlinear control law consists of

three separate temporal stages. We fix the control input over

each stage or time interval. Here are the objectives for each

interval.

1) Drive wa(t) to a control velocity wa
c(t) for all a =

1, . . . ,m necessary for achieving a desired rate of

change ds
dt

.

2) Fix wa
c(t) and drive s(t) to zero.

3) Drive wa
c(t) to zero for all a = 1, . . . ,m.

Let us consider FPRB when the input distribution is

given by Y13 = {Y1,Y3}. Our nonlinear control law is il-

lustrated in Figure 2 and 3 given the initial velocity val-

ues {w1(0) = −10,w2(0) = 20,s(0) = 10} and {w1(0) =
10,w2(0) = 20,s(0) = −30}, respectively.
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Fig. 2. Plot of velocity components vs. time given s(0) = 10

Note that the temporal length of each stage and the

distance the velocity component s is from zero at the end

of the final stage can be reduced by choosing a larger input

over each stage.
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Fig. 3. Plot of velocity components vs. time given s(0) = −30

V. FUTURE WORK

Simple mechanical systems underactuated by one control

is a special case and is the simplest case next to fully actuated

systems which can always be driven to rest. Future research

will focus on characterizing coordinate invariant properties

of the intrinsic vector-valued symmetric bilinear form that

allow motion in the input foliation.

REFERENCES

[1] F.Bullo and A.Lewis. Low-order controllablility and kinematic reduc-

tions for affine connection control systems. SIAM Journal on Control
and Optimization 44(3), pages 885-908, 2005.

[2] F. Bullo and M. Zefran. Modeling and controllability for a class
of hybrid mechanical systems, IEEE Transactions on Robotics and
Automation 18(4):563-573, 2002.

[3] H.J. Sussmann. A general theorem on local controllability. SIAM
Journal of Control and Optimization, 25(1):158-194, 1987.

[4] A. Lewis and R. Murray. Configuration controllability of simple me-

chanical control systems. SIAM Journal on Control and Optimization,
35(3):766-790,1997.

[5] R. Hirschorn and A. Lewis. Geometric local controllability: second-

order conditions. Proceedings of the 41st IEEE Conference on
Decision and Control, 1:368-369, December 2002.

[6] F. Bullo and A. Lewis. Geometric Control of Mechanical Systems.
Springer Science+Business Media, New York, NY, 2005.

[7] A.Kelly and R.Murray. Geometric phases and robotic locomotion. J.
Robotic Systems, 12(6):417-431, 1995.

[8] J. Cortes, S. Martinez, J.P. Ostrowski, and H. Zhang. Simple mechan-

ical control systems with constraints and symmetry. SIAM Journal on
Control and Optimization, 41(3):851-874,2002.

[9] J.E.Colgate and K.Lynch. Mechanics and control of swimming: a

review. IEEE J. Oceanic Engineering, 29(3):660-673, 2004.
[10] J. Cortes, S. Martinez and F. Bullo. On nonlinear controllability and

series expansions for Lagrangian systems with dissipative forces. IEEE
Transactions on Automatic Control, 47(8):1396-1401, 2002.

[11] A. Lewis Simple mechanical control systems with constraints. IEEE
Transactions on Automatic Control, 45(8):1420-1436, August 2000.

[12] M.P. do Carmo. Riemannian Geometry. Birkhauser, Boston, MA,
English edition, 1992.

[13] R. Abraham and J. Marsden. Foundations of Mechanics. The
Benjamin-Cummings Publishing Company, Reading, MA,second edi-
tion, 1978.

[14] A. Lewis. Affine connections and distributions with applications

to nonholonomic mechanics. Reports on Mathematical Physics,
42(1):135-164,1998.

2440


