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Abstract— This paper studies bifurcations and multiple so-
lutions of the optimal control problem for mobile robotic
systems. While the existence of multiple local solutions to an
optimization problem is not unexpected, the nature of the
solutions are such that a relatively rich and interesting structure
is present, which potentially could be exploited for controls
purposes. In particular, this paper studies a group of unicycle-
like autonomous mobile robots operating in a 2-dimensional
obstacle-free environment. Each robot has a predefined initial
state and final state and the problem is to find the optimal
path between two states for every robot. The path is optimized
with respect to the control effort and the deviation from a
desired formation. The bifurcation parameter is the relative
weight given to penalizing the deviation from the desired
formation versus control effort. Numerically it is shown that
as this number varies, bifurcations of solutions are obtained.
Additional theoretic results of this paper relate to the symmetric
properties of these bifurcations and the number and existence of
multiple solutions for large and small values of the bifurcation
parameter. Understanding the existence and nature of multiple
solutions for optimization problems of this type is also of
practical importance due the the ubiquity of gradient-based
optimization methods where the search method will typically
converge to the nearest local optimum.

I. INTRODUCTION

Distributed systems with multiple agents have been the
focus of many research efforts in recent years. The appli-
cations of distributed systems are everywhere: robotic un-
derwater vehicles [1], satellite clustering [2], electricpower
system [3], search and rescue operations [4] etc.

The approaches to the multi-robotic formation control
problem are many and varied. Roughly, they can be cate-
gorized into three groups: leader-follower methods [5]–[7],
behavior-based methods [8]–[10] and virtual structure meth-
ods [11]–[13]. In the leader-follower methods, each robot has
at least one designated leader. Leaders can be some robots
in the group or virtual robots that represent pre-computed
trajectories supplied by a higher level planner. The other
robots are followers that try to maintain a specified relative
configuration to their leaders. Behavior-based methods draw
inspiration from biology. In nature, animals in a group can
combine their sensors to avoid their predators and search
sufficient food. The behavior of each robot is prescribed
and the final control is derived by weighting the relative
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importance of each behavior. The virtual structure methods
involve the maintenance of a geometric configuration during
robot movement using the idea that points in space should
maintain a fixed geometric relationship. If robots behaved in
this way, they would be moving inside a virtual structure.

In this paper, the problem addressed is to control a
formation of robots moving along an optimal path between
an initial configuration and a final configuration. The path
is optimized with respect to a combination of the control
effort and the deviation from a desired formation. Using
standard methods from optimization, since each robot has
its own predefined initial state and final state, the procedure
to find the optimal path is to solve a boundary value problem
(“BVP”) for a set of second order ordinary differential
equations (“ODEs”).

The existence of multiple nontrivial solutions of BVPs
for nonlinear second order ODEs have been investigated by
many authors. For example, for

x′′ +a(t) f (x) = 0

x(0) = 0

x(1) = 0,

the properties of the solutions depend on the limiting behav-
ior of the function f (u). Erbe and Wang [14] studied the
existence of positive solutions of the equation with linear
boundary conditions. Also, if

f0 = lim
s→+0

f (s)
s

f∞ = lim
s→+∞

f (s)
s

,

they showed the existence of at least one positive solution
in two cases, superlinearity (f0 = 0, f∞ = ∞) or sublinearity
( f0 = ∞, f∞ = 0). In [15], Erbe, Hu and Wang showed that
there were at least two positive solutions in the case of super-
linearity at one end (zero or infinity) and sublinearity at the
other end. Naito and Tanaka [16] and Ma and Thompson [17]
established precise condition concerning the behavior of the
ratio f (s)/s for the existence and nonexistence of solutions.
Their main results were that the BVP had at leastk solutions
if the ratio f (s)/s crossed thek eigenvalues of the associ-
ated eigenvalue problem. For a class of systems of second
order ODEs, Marcos dóO, Lorca and Ubilla [18] used
the fixed-point theorem of cone expansion/compression type,
the upper-lower solutions method and degree arguments to
study the existence. nonexistence, and multiplicity of positive
solutions of the BVP.



This paper first presents numerical results illustrating bi-
furcations and multiple solutions of the BVP associated with
the optimal control problem. Then, it presents a theoretical
result relating to the existence of multiple solutions in the
limiting cases of small and large values of the bifurcation
parameter. Finally, it proves the existence of symmetric solu-
tions which guarantees that for any solution, a corresponding
symmetric solution exists. The practical benefit of this result
is that if a solution is found numerically, the symmetric
solution can be computed from that algebraically.

II. PROBLEM STATEMENT

We adopt a simplified version of the robotic unicycle as
a prototypical model. The simple kinematics of this kind of
robot are described by

ẋ = u1 (1)

ẏ = u2.

The problem is to find the controlsui1(t),ui2(t) for each robot
i which steer a formation of robots of this type from the start
configuration to its goal configuration, while maintaining
a rigid body formation at the beginning and end of the
trajectory and minimizing the global performance index

J =
∫ t f

0

n

∑
i=1

(

(ui1)
2 +(ui2)

2
)

+
n−1

∑
i=1

k
(

di −d
)2

dt

subject to the robotic kinematic constraints in Equation 1,
where n > 2 is the number of robots,di = ((xi − xi+1)

2 +
(yi −yi+1)

2)1/2 is the Euclidean distance fromith to (i +1)th
robots, d is the desired distance between two adjacent
robots, andk is a non-negative weighting constant. The
cost function minimizes a combination of the control effort
(first summation) and the deviation from a desired formation
(second summation).

Applying Pontryagin’s maximum principle to solve the
optimal control problem, we obtain the optimal inputs

ui1 =
1
2

pi1

ui2 =
1
2

pi2,

and equations of motion

ẋi =
1
2

pi1 (2)

ẏi =
1
2

pi2

ṗi1 =
2k(xi −xi−1)

(

di−1−d
)

di−1
+

2k(xi −xi+1)
(

di −d
)

di

ṗi2 =
2k(yi −yi−1)

(

di−1−d
)

di−1
+

2k(yi −yi+1)
(

di −d
)

di
.

Because they correspond to the robots at the end of the
formation, the last two equations in Equation 2 only have
the second term wheni = 1 and they only have the first term
when i = n.

The cases considered in this paper are limited to the
boundary conditions

xi(0) = c+(i −1)d, (3)

xi(1) = 0,

yi(0) = 0,

yi(1) = c+(i −1)d,

wherec is a constant. These boundary conditions correspond
to an initial formation with the robots arranged along thex-
axis starting with the first robot at atx = c with a distance
d between each robot and a final formation with the robots
arranged along they-axis starting with the first robot aty= c
with a distance ofd between each robot. It is important
to note that if the initial and final formations are not
parallel, then straight-line trajectories satisfying theboundary
conditions will not, in general, maintain the desired distance
between the robots.

III. B IFURCATION RESULTS

For a distributed system containingn robots, when the
weighting constantk is given, an optimal trajectory can be
obtained numerically by solving the equations of motion
given by Equation 2 using the shooting method (see [19]).

A. Solutions for a five robot system

The figure on the left in Figure 1 illustrates three different
solutions that satisfy the equations of motion in Equation 2
and boundary conditions in Equation 3 fork = 24.5, c = 6
andd = 2 for a formation of five robots. Since the differences
among these trajectories are difficult to distinguish on such
a small graph, the figure on the right illustrates them for the
third (middle) robot with the difference magnified by a factor
of 10.
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Fig. 1. Optimal paths for the five robot system withk = 24.5.

Since k is a parameter in differential equations, it will
clearly affect the solutions. In fact, ask is varied, the nature
and number of solutions changes. Section IV shows that there
is a unique solution whenk is small and in the limit ask
approaches infinity, the number of solutions also approaches
infinity. In order to present the relationship between the num-
ber of solutions andk, we construct a bifurcation diagram
as follows: since a straight line connecting end points is the
optimal solution whenk = 0, we will designate that as a



nominal trajectory. One measure of the difference between
solutions would be their deviation from the straight line
nominal solution at some specified time. As long as the
different solution are not intersecting at that time, this would
provide a measure of difference between different solutions.
In all the bifurcation diagram illustrated subsequently,t =
0.25 is used. For different formations and different type
of robots, a different value oft may be a better choice;
however, for all the systems studied in this paper,t = 0.25
appeared to adequately represent the relationship among the
solutions. Also, alternative measures of differences between
the solutions may, in general, be superior, this simple choice
appears to suffice for all the cases considered in this paper.

The plots in Figure 2 illustrate this measure of the differ-
ence between solutions for each robot in the five robot system
as k is varied from 0 to 25. In these bifurcation diagrams,
the first robot is the one with the shortest trajectory, the
fifth robot is the one with the longest trajectory and they are
ordered sequentially. Observe that the bifurcation diagrams
for robots 1 and 5 are symmetric to each other aboutd = 0
axis and the bifurcation diagrams for robots 2 and 4 are
similarly symmetric (even though each follows a trajectory
with a different length). Finally, the bifurcation diagramfor
robot 3 is symmetric to itself aboutd = 0 axis.

A close analysis of the actual trajectories that the robots
follow illustrated in the figure on the right in Figure 1
reveals that the trajectories themselves arenot symmetric
(the two trajectories with pronounced curves intersect, but
not at a point on the straight line solution). A measure that is
based upon the deviation from the nominal solution appears
to be necessary to determine the real symmetric nature of
the solutions. Section V contains the analysis that these
symmetries must, in fact, exist.

B. Solutions for a seven robot system

Figures 3 and 4 illustrate similar results for a seven robot
system. Figure 3 illustrates the trajectories whenk = 24.5,
c = 4 and d = 2. Again, because the difference is hard
to distinguish in the small left figure, the right figure in
Figure 3 illustrates the trajectory with the deviation fromthe
nominal trajectory for the fifth robot magnified by a factor
of ten. Figure 4 illustrates the bifurcation diagrams for the
solutions versusk constructed in a manner identical to that
of the system of five robots. Observe that, similar to the
five robot case, the bifurcation diagrams for robots 1 and
7 are symmetric to each other aboutd = 0 axis as is the
bifurcation diagrams for robots 2 and 6 and robots 3 and 5,
and the bifurcation diagram for robot 4 is symmetric to itself
aboutd = 0 axis.

IV. A SYMPTOTIC ANALYSIS

In the two cases of very smallk and very largek, we may
use an asymptotic expansion to investigate the effect ofk on
the number of solutions to the BVP. As will be shown, this
analysis is consistent with the existence of a unique solution
for small values ofk and many solutions for very largek,
which is the pattern indicated in the numerical bifurcation
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Fig. 2. Bifurcation diagrams for a five robot system.
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Fig. 3. Optimal paths for a seven robot system withk = 23
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Fig. 4. Bifurcation diagrams for a 7-robotic system

results that show an increased number of bifurcations and
an increased number of solutions ask gets large.

A. Small k

We use a standard perturbation method (see [20]) to solve
equations 2 fork≪ 1. If we let

xi = xi,0 +kxi,1 +k2xi,2 +k3xi,3 + · · ·+k jxi, j + · · · ,
yi = yi,0 +kyi,1 +k2yi,2 +k3yi,3 + · · ·+k jyi, j + · · · ,

pi1 = pi1,0 +kpi1,1 +k2pi1,2 +k3pi1,3 + · · ·+k j pi1, j + · · · ,
pi2 = pi2,0 +kpi2,1 +k2pi2,2 +k3pi2,3 + · · ·+k j pi2, j + · · · ,

and substitute into the equations of motion (Equation 2), a
set of linear differential equations is obtained for each power
of the expansion parameterk. Space limitations prevent the
inclusion of the entire resulting equation, but we can consider
it term-by-term in powers ofk.

Specifically, if z represents eitherx or y, then the
following table illustrates the resulting recursive structure
of the equations. Any entry that is zero corresponds to
a variable that is identically zero. Furthermore, as is the
typical case in an asymptotic expansion, any variable only
depends on lower order ones, which in this table correspond
to variables to the left of it. Specifically, we have

zi,0 zi,1 zi,2 · · · zi,m−1 zi,m · · ·
z1,0 z1,1 z1,2 · · · z1,m−1 z1,m · · ·
z2,0 0 z2,2 · · · z2,m−1 z2,m · · ·
z3,0 0 0 · · · z3,m−1 z3,m · · ·

...
...

...
.. .

...
... · · ·

zm,0 0 0 · · · 0 zm,m · · ·
...

...
...

.. .
...

... · · ·
zn−2,0 0 0 · · · −z3,m−1 −z3,m · · ·
zn−1,0 0 −z2,2 · · · −z2,m−1 −z2,m · · ·
zn,0 −z1,1 −z1,2 · · · −z1,m−1 −z1,m · · ·

where m is the smallest integer larger than or equal to
n
2. So, if zi,i is known and sincezi, j ( j > i) depends on
zi−1, j−2,zi−1, j−1,zi, j−2,zi, j−1,zi+1, j−2,zi+1, j−1, we can solve
them in the order ofj = i +1, i +2, · · · .

In detail, the j = 0 (k0) terms gives the set of linear
equations

ẋi,0 =
1
2

pi1,0,

ẏi,0 =
1
2

pi2,0,

ṗi1,0 = 0,

ṗi2,0 = 0,

with boundary conditions

xi0(0) = x10(0)+(i −1)d

yi0(0) = 0

xi0(1) = 0

yi0(1) = y10(1)+(i −1)d,



which have solutions

xi,0 = −xi,0(0)t +xi,0(0),

yi,0 = yi,0(1)t,

pi1,0 = −2xi,0(0),

pi2,0 = 2yi,0(1).

Naturally, these are straight lines, which is expected when
the only component of the cost function is the control effort
and the 0th order solution does not containk.

In all cases (all powers ofk and all robots), an analysis
of the resulting expansion shows thatxi, j = −xn+1−i, j and
yi, j =−yn+1−i, j . Also, for 1≤ j < i ≤ n+1

2 , xi, j = 0 andyi, j =
0 (the higher order terms for the “outer” robots are zero up
to a certain order. Hence we only need to consider the cases
where 1≤ i ≤ n

2 and i ≤ j.
In the case wherej = i = 1,

ẋ1,1 =
1
2

p11,1

ẏ1,1 =
1
2

p11,2

ṗ11,1 = 2d(t −1)

(

1−
1

√
2t2−2t +1

)

ṗ12,1 = −2dt

(

1−
1

√
2t2−2t +1

)

.

Since the right hand sides of the last two equations are
continuous and bounded functions oft on the intervalI =
[0,1], they are integrable and the integrals are differentiable
(see [21]), which indicates the integrals are continuous.
Hencex1,1, y1,1 exist and are unique since the right hand
side of thep equations may be directly integrated twice to
obtain thex andy solutions. Since we integrate twice, there
are two undetermined constants, which can be determined
by the two zero boundary conditions.

When i = j and j > 1,

ẋi, j =
1
2

pi1, j

ẏi, j =
1
2

pi2, j

ṗi1, j = −2xi−1, j−1 +
2t

(

−yi−1, j−1 + t(xi−1, j−1 +yi−1, j−1)
)

(

2t2−2t +1
)3/2

ṗi2, j = 2yi−1, j−1 +
2(t −1)

(

−yi−1, j−1 + t(xi−1, j−1 +yi−1, j−1)
)

(

2t2−2t +1
)3/2

.

The right hand sides of the last two equations are the
sum of integrable functions or product of them, so they are
differentiable (see [21]). Similar to the argument forx1,1 and
y1,1, xi,i andyi,i therefore exist and unique.

Space limitations prevent the detailed inclusion of the
expressions for the off-diagonal terms. However, they have
the same essential structure that the right hand side of the
co-state equations is a linear combination of the lower order
solutions in the expansion. Since all the lower order solutions
are continuous and bounded functions oft, they may be
directly integrated to compute the actual solution.

Since all the terms in the expansion may be solved by
direction integration of functions that are continuous and
bounded, a solution for each term exists. Hence, fork≪ 1,
this asymptotic analysis give a computable construction for
the solutions, and also indicates that the solution is unique.
In other words, for smallk, only one solution exists.

B. Large k

For large k (1
k ≪ 1), a similar asymptotic expansion is

used to solve equations 2 but instead ofk, ε = 1
k is used as

the expansion parameter. Let

xi = xi,0 + εxi,1 + ε2xi,2 + ε3xi,3 + · · ·+ ε jxi, j + · · · ,
yi = yi,0 + εyi,1 + ε2yi,2 + ε3yi,3 + · · ·+ ε jyi, j + · · · ,

pi1 = pi1,0 + ε pi1,1 + ε2pi1,2 + ε3pi1,3 + · · ·+ ε j pi1, j + · · · ,
pi2 = pi2,0 + ε pi2,1 + ε2pi2,2 + ε3pi2,3 + · · ·+ ε j pi2, j + · · · .

We obtain the following equation for leading order ofε,

ẋi,0 =
1
2

pi1,0

ẏi,0 =
1
2

pi2,0

0 =
2k

(

xi,0−xi−1,0
)(

di−1,0−d
)

di−1,0
+

2k
(

xi,0−xi+1,0
)(

di,0−d
)

di,0

0 =
2k

(

yi,0−yi−1,0
)(

di−1,0−d
)

di−1,0
+

2k
(

yi,0−yi+1,0
)(

di,0−d
)

di0
.

The last two equations may be simplified to

(xi,0−xi−1,0)
2 +(yi,0−yi−1,0)

2 = d
2
, (4)

which transparently shows that the limit for largek simply
requires that the distance constraint be exactly maintained.

Since the third and fourth equations are algebraic (as is
Equation 4), then the costates,p are unconstrained and hence
any path that maintains the desired distance between the
robots and satisfies the boundary conditions is a solution.
This makes intuitive sense: in the limit ask→ ∞, the control
effort becomes negligible relative to the distance constraint.
Hence, in the limit of very largek, the asymptotic analysis
indicates that there is an infinite number of solutions. As long
as the separation distance is maintained and the boundary
conditions are satisfied, any path is optimal.

V. SYMMETRIES IN THE BIFURCATION DIAGRAMS

This section proves that the symmetries found in
the numerically-constructed bifurcation diagrams must be
present. This is of practical value because it reduces the
computation time necessary in a search over multiple solu-
tions since a second solution can always be found from any
solution that is obtained (unless the solution is symmetric
with itself).

Suppose(x1,x2, · · · ,xn,y1,y2, · · · ,yn) is a solution of Equa-
tion 2 with the boundary conditions in Equation 3, and let

xi = (xs)i +(xd)i ,

yi = (ys)i +(yd)i ,



where

(xs)i = (c+(i −1)d)(1− t),

(ys)i = (c+(i −1)d)t.

The subscriptss indicate a “straight-line” solution and
the subscriptsd indicate the component of the solu-
tion that is a “deviation” from the straight line. If
v(t) = ((xd)1,(yd)1, · · · ,(xd)n,(yd)n), then (xd)i ,(yd)i , i =
1,2, · · · ,n, satisfy the following equations with homogeneous
boundary conditions:

−(ẍd)i(t) = fi(v(t)), (5)

−(ÿd)i(t) = gi(v(t)),

where f1 = h1, g1 = l1, fn = −hn−1, gn = −ln−1, and for
i = (2,3, · · · ,n−1)

fi = hi −hi−1,

gi = l i − l i−1

where, for alli = (1,2, · · · ,n)

hi =

(

d
di

−1

)

(

−d+dt+(xd)i − (xd)i+1
)

,

l i =

(

d
di

−1

)

(

−dt+(yd)i − (yd)i+1
)

,

di =
(

(

−d+dt+(xd)i − (xd)i+1
)2

+
(

−dt+(yd)i − (yd)i+1
)2

)
1
2

The system (5), is equivalent to the system of integral
equations

(xd)i =
∫ 1

0
G(t,s) fi(v(s))ds, (6)

(yd)i =
∫ 1

0
G(t,s)gi(v(s))ds,

where G(t,s) is the Green’s function of the differential
operator−ü = 0 with homogeneous boundary conditions,
whereu = xdi or u = ydi , and

G(t,s) =

{

t(1−s), t ≤ s

s(1− t), t > s
.

If Ai , Bi andF are maps such that

Aiv(t) = k
∫ 1

0
G(t,s) fi(v(s))ds,

Biv(t) = k
∫ 1

0
G(t,s)gi(v(s))ds,

Fv(t) = (A1(v)(t),B1(v)(t), · · · ,An(v)(t),Bn(v)(t),

then determining a solution to equation (6) is equivalent to
finding a fixed point to equation

Fv(t) = v(t). (7)

The following proposition proves that if a solution is
known, then the “opposite” deviation from the straight-line
solution is also a solution for the robot on the other side of
the formation.

Proposition 1: Supposev(t) is a fixed point of equation 7.
Let

(x̂d)n+1−i = −(xd)i (8)

(ŷd)n+1−i = −(yd)i

and v̂(t) = ((x̂d)1,(ŷd)1, · · · ,(x̂d)n,(ŷd)n), then v̂(t) is also a
fixed point of equation 7

Proof: The proof is by direct substitution. Substituting
for the definition of the hat terms for each gives:

di =

√

(

−d+dt+(xd)i − (xd)i+1
)2

+
(

−dt+(yd)i − (yd)i+1
)2

=

√

(

−d+dt− (x̂d)n+1−i +(x̂d)n−i
)2

+
(

−dt− (ŷd)n+1−i +(ŷd)n−i
)2

=

√

(

−d+dt+(x̂d)n−i − (x̂d)n−i+1
)2

+
(

−dt+(ŷd)n−i − (ŷd)n−i+1
)2

= d̂n−i

hi =

(

d
di

−1

)

(

−d+dt+(xd)i − (xd)i+1
)

=

(

d

d̂n−i
−1

)

(

−d+dt− (x̂d)n+1−i +(x̂d)n−i
)

=

(

d

d̂n−i
−1

)

(

−d+dt+(x̂d)n−i − (x̂d)n−i+1
)

= ĥn−i

l i =

(

d
di

−1

)

(

−dt+(yd)i − (yd)i+1
)

=

(

d

d̂n−i
−1

)

(

−dt− (ŷd)n+1−i +(ŷd)n−i
)

=

(

d

d̂n−i
−1

)

(

−dt+(ŷd)n−i − (ŷd)n−i+1
)

= l̂n−i

and

f1 = h1 = ĥn−1 = − f̂n
g1 = l1 = l̂n−1 = −ĝn

fi = hi −hi−1 = ĥn−i − ĥn+1−i = − f̂n+1−i

gi = l i − l i−1 = l̂n−i − ĥn+1−i = −ĝn+1−i

fn = −hn−1 = −ĥ1 = − f̂1
gn = −ln−1 = −l̂1 = −ĝ1

which give us

fi = − f̂n+1−i ,

gi = −ĝn+1−i .

for all i from 0 to n. Then

(x̂d)i = −(xd)n+1−i = −
∫ 1

0
G(t,s) fn+1−ids=

∫ 1

0
G(t,s) f̂ids

(ŷd)i = −(yd)n+1−i = −
∫ 1

0
G(t,s)gn+1−ids=

∫ 1

0
G(t,s)ĝids.

Hence ˆv(t) = (x̂d)1,(ŷd)1, · · · ,(x̂d)n,(ŷd)n) is a solution of
equation 7.

Equation 8 gives an algebraic expression for the symmetric
solutions, which is useful because the theorem proves they
satisfy the boundary value problems and hence reduces the
computational burden of determining additional solutions.
Note that the relationship is not simply the opposite deviation
from the straight line solution, but is the opposite deviation
from the straight line for adifferent robot.



VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper considers the optimal control problem for a
formation of multiple robots. The trajectory of each robot
is optimized with respect to a combination of the control
effort and the deviation from a desired formation, which in
this paper is simply a formation that maintains a specified
distance between adjacent robots. The paper first presents
numerical results illustrating the structure of bifurcations and
multiple solutions of the BVP associated with the optimal
control problem. Then it shows that an asymptotic analysis
indicates that there is a unique solution whenk is small and
in the limit ask approaches infinity, the number of solutions
also approaches infinity. Then, it presents a theoretical result
relating to the existence of symmetric solutions. It guarantees
that for any solution, a corresponding symmetric solution
exists. The practical benefit is that if a solution found
numerically, the symmetric solution can be computed from
that algebraically. Also, if a gradient-based search method
is used, understanding of the structure of the relationship
among multiple solutions is necessary to find the desired
resul.t Finding multiple solutions may be desirable if the
cost function does not include all the optimization criteria;
for example, if obstacles are present but not accounted for
in the cost function.

B. Future work

Future work is directed in several areas. The results
are likely to be much more general than the particular
case presented in this paper. Determining the most general
classes of robots and formations that maintain the symmetry
properties of the results and similar bifurcation structure is
of interest. Also, the asymptotic analysis is only of any use
for the limiting values fork. Determining conditions for the
existence of a bifurcation for any value ofk, similar to that
for initial value problems, would be useful.
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[18] J. Marcos doÓ, S. Lorca, and P. Ubilla, “Local superlinearity for ellip-
tic systems involving parameters,”Journal of Differential Equations,
vol. 211, no. 1, pp. 1–19, 2005.

[19] J. Stoer and R. Bulirsch,Introduction to Numerical Analysis. New
York: Springer–Verlag, 1980.

[20] J. Kevorkian,Perturbation Methods in Applied Mathematics. New
York: Springer–Verlag, 1981.

[21] R. Carlson,A Concrete Introduction to Real Analysis. Boca Raton:
CRC, 2006.


