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Abstract—Metabolism modeling has the potential to provide
guidance on medicine manufacture and medical treatment in
an efficient and economic way. A pancreas model developed
from a mathematical description of the relevant physiology
will demonstrate insulin dynamics and provide a platform for
comparing metabolic abilities among different health condi-
tions. As a part of whole body metabolism model, the pancreas
model is composed of three compartments: insulin clearance
(Id), generation (Ig) and release into plasma (Ir). Based on data
from intravenous glucose tolerance tests (IVGTT) available in
the literature, a deterministic optimal search method called
DIRECT (DIviding RECTangles) was implemented to find the
model parameters. Validation was performed on data sets that
are diffrent from those used for the optimization.

Keywords-metabolism modeling;pancreas model;DIRECT;

I. I NTRODUCTION

The health and quality of life problems associated with
metabolic disorders such as diabetes and obesity are of
increasing concern to society and hence an increasing focus
area for researchers. According to theAmerican Diabetes
Association, the economic cost of diabetes in 2007 was
approximately$174 billion [1]. A mathematical model of the
components of whole body metabolism would be of great
benefit because it would enable simulations using computer
models as a supplement to or replacement for traditional ex-
perimental methods. In human metabolic pathways, glucose
and insulin are two of the primary substances maintaining
and regulating daily energy needs. During the process of
glucose uptake and transportation to peripheral locationsfor
consumption or storage, insulin regulates its rates of delivery
and related chemical reactions. As a whole, the network
of glucose and insulin regulates an important part of the
energy balance in the body. The parameters in mathematical
models will reflect the complexity and characteristics of
glucose and insulin kinetcis and difference in parameter
ranges between normal and diabetic models may lead to
important physiological insight.

Since the 1970s, Bergman and his coworkers developed
a minimal model for the glucose and insulin metabolic
system and proposed several parameters to represent glucose
tolerance in humans, such as glucose effective rate, insulin

sensitivity,etc. [2]–[7]. This model brought about the com-
partmental modeling concept with three variables: plasma
glucose (G), plasma insulin (I) and remote insulin (X). One
of the drawbacks of the minimal model was that it described
the metabolism empirically rather than mechanistically. Sub-
sequently many analysis tools were developed based on the
minimal model. For example, Vicini [8] utilized labeled
glucose in the experiments. He expanded labeled glucose
modeling into a two-compartment model and introduced
three new metabolic indexes to represent the metabolic rates.
Toffolo [9] improved upon this model afterward by assuming
the insulin-independent glucose disposal as a fraction of
steady-state glucose disposal.Monte Carlo and estimators
were implemented in some analysis, [10], [11].

The minimal model was extended in various aspects.
Jauslin [12] designed a model for oral glucose tolerance
tests. Grodsky proposed a hypothesis of insulin heteroge-
neous storage with a bell shape threshold distribution of glu-
cose [13], [14]. In other models, endogenous glucose release
from liver and kindey was connected to the minimal model
as additive compartments [15]–[18]. Heart compartment,
compartment distribution volumes,β-cells weight,etc., were
also incorporated in models as circulatory connections [19]–
[23]. Among these models, most of them were constructed
without validation.

In this paper we presented a pancreas model describing
insulin dynamics based on its physiological characteristics.
It reflected organs’ ability to remove insulin in plasma,
the glucose transportation abilityvia glucose transporters
(GLUT2), the insulin productivity and membrane ion chan-
nels controllability ofβ-cells. This model was composed
of three compartments: an exponential decay compartment
(Id) representing the insulin clearance rate, a generation
compartment (Ig) representing insulin generation rate inside
β-cells and a release compartment (Ir) representing insulin
releasing rate into plasma. Simulations were based on the
data sets of IVGTT found in the literature. Ultimately this
pancreas model will be incorporated into a whole body
metabolism model in the future. Furthermore, the model
parameters may imply different health statuses as a guide



for medical analysis and medicine manufacture.
To find the parameters, we implemented a deterministic

optimal search method, DIRECT, to obtain the minium of
the object function [24], [25], which in the present case is a
measure of the difference of the response of our model from
a set of published experimental data. An advantage of this
optimization method is that, while it is not guaranteed to
find a global minimum, the search is global, and hence not
restricted to finding only local minima. It defines a hyper-
cube from the parameters and divides it into hyper-rectangles
in every direction from the center. Then it calculates object
functions at the centers of each hyper-rectangle, determines
candidate hyper-rectangles called Potentially Optimal Rect-
angles (POR) through the algorithm ofGift Wrapping, and
continues to divide these candidate PORs until the search
criteria is achieved. The parallel computing environment is
the module of MPICH-1.2.7. At the end, we validated the
model from different IVGTT data sets.

II. M ATHEMATICAL MODELING

A. Model Establishment

In this paper, the pancreas model describes insulin se-
cretion and clearance rates, which are determined by glu-
cose concentration, glucose transporters,β-cells’ abilities
of insulin generation and release. The three compartments:
insulin generation (Ig), insulin release (Ir) and insuline
clearance (Id) are illustrated in Figure 1.
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Figure 1. Proposed pancreas model.

Glucose entersβ-cells faciliated by the transporters
GLUT2, which has been described in the literature by
Michaelis-Menten kinetics withKm=7-20 mM [26]. The
highKm reflectsβ-cells’ sensitivity to different glucose con-
centrations. The rate of glucose enteringβ-cells (mmol/min),
is defined as

d

dt
G1 = Vmax

[G]

K1 + [G]
, (1)

whereG1 (mmol) represents the amount of glucose entering
β-cells; Vmax (mmol·min−1) represents the maximum glu-
cose removal rate;[G] (mM) represents the glucose concen-
tration in plasma; andK1 (mM) represents the Michaelis-
Menten constant. SinceVmax can be combined with other
parameters, as described subsequently, it is not included in
the parameters space for the optimization.

After entering the membranes of theβ-cells, glucose stim-
ulates the synthesis of insulin which is then stored in vesicle
granules. Proinsulin is the precursor of insulin synthesis.
The ratio of proinsulin to insulin during a hyperglycemic
clamp is decreasing and at the end acheives a constant
level, illustrating the saturation of insulin generation under
a specific glucose concentration [27]. A sigmoid relation
between proinsulin synthesis and glucose concentration in
rats was given in [28], [29]. So the insulin generation rate,
Ig (mU·min−1), is given by

Ig =
K2

1 + e−K3×(G1−K4)
+ K5, (2)

whereG1 (mmol) represents the amount of glucose trans-
ported intoβ-cells; K2 (mU·min−1) represents the differ-
ence between the maximal and basal generation rates;K3

(mmol−1) represents the glucose ability to stimulate insulin
synthesis;K4 (mmol) represents the glucose amount to
stimulate the insulin generation rate increased to half of the
maximal ability; andK5 (mU·min−1) represents the basal
insulin generation rate.

Glucose inside theβ-cells is metabolized to generate en-
ergy, which may turn off the K+-ATP-dependent channels to
produce membrane depolarization. This depolarization turns
on calcium channels to stimulate insulin release into plasma
[30], [31]. Insulin is released by exocytosis of the vesicle
granules following a sigmoid function [32]. The insulin
release rate,Ir (mU·min−1), represents the dynamics of
membrane ion channels and may be represented as follows

Ir =
K6

1 + e−K7×(G1−K8)
+ K9, (3)

whereG1 (mmol) represents the amount of glucose trans-
ported intoβ-cells; K6 (mU·min−1) represents the differ-
ence between the maximal and basal insulin release rates;
K7 (mmol−1) represents the ability of glucose to stimulate
insulin release;K8 (mmol) represents the glucose amount
insideβ-cells to trigger the insulin release rate increased to
half of the maximal ability; andK9 (mU·min−1) represents
the basal insulin release rate.

The amount of insulin stored inβ-cell granules,Ii (mU),
is defined in Table I whereIiold (mU) represents current
amount of insulin in granules; andIinew (mU) represents
the amount of insulin in granules after a time interval∆t

(min). The reason for the definition is that, although many
ion channels may open due to the high glucose concentration
in plasma (which will carry more glucose intoβ-cells), there



Table I
DEFINITION OF INSULIN AMOUNT IN GRANULES (Ii) AND INSULIN

RELEASE RATE(Ir ) FOR A TIME INTERVAL ∆t.

Iiold > Ir · ∆t Iinew = Iiold + (Ig − Ir) · ∆t
Ir = Equation 3

Iiold 6 Ir · ∆t Iinew = Ig · ∆t
Ir = Iiold/∆t

may not be sufficient insulin in vesicle granules for release.
Hence, the initial insulin storage amount,K10 = Ii0 (mU),
serves as another parameter in the model.

In the body, the pancreas releases insulin into plasma
via the portal vein, 60% of which is immediately removed
by the liver. After entering circulation, the kidney removes
approximately 50% of peripheral insulin [31], [33]. Insulin
is bound to receptors and most of it is degraded by the
insulin-degrading enzymes in the intracellular space while
the remaining insulin reenters plasma. The dynamics of
insulin removal follow a Michaelis-Menten function [34],
[35]. So the clearance rateId (mU·l−1

·min−1) is

Id = −K11
I

I + K12
, (4)

whereK11 (mU·l−1
·min−1) represents the maximal insulin

removal rate; andK12 (mU·l−1) represents the Michaelis-
Menten constant.

Finally the dynamic of insulin concentration is defined as:

d

dt
I = Id +

Ir

Vp

, (5)

whereVp (l) represents the plasma volume. The volume of
plamsa is determined from [36] assuming its value propor-
tional to the subject’s body weight. If a subject’s weight was
not provided, a standard of 70kg was assumed.

B. Optimal Search

There are 12 parameters (Ki, i = 1, · · · , 12) to be deter-
mined in the model. We adopted the experimental data from
[3], [8], [17], [37]–[39] and divided them into two groups
for optimization (4 data sets) and validation (3 data sets).
In these experiments, IVGTTs were performed on normal
subjects and the time span of each experiment was at least
180 minutes. The pooled samples of data sets in each group
were implemented in simulations [40].

We used a deterministic optimal search method called
DIRECT for optimization [24], [25]. One of its advantages
is that it is a global search method in a multi-dimension
parameters space with simple boundaries. Initially the pa-
rameters space is a unit hyper-cube with each side denoted
as K̂i ∈ [0, 1], whereK̂i was a scale of the corresponding
parameterKi = AiK̂i with magnitudeAi. The coordinates
of every point in this hyper-cube may be substituted into
the pancreas model for simulations. To compare data from

simulations and clinical experiments with a total sample size
of m, we defined the objective functionf as following:

f =

√

√

√

√

m
∑

j=1

(

xj − xj0

xj0

)2

, (6)

wherej ∈ [1, m] represents the sample size of the pooled
samples data for optimization; andxj , xj0 represent the
corresponding data of simulation and pooled samples at the
sample time point respectively. These data pointsxj , xj0

represent plasma insulin levels at a given time and plasma
glucose concentration.

C. Results

The simulation results of optimization and validation
are demonstrated in Figure 2 with the determined
parameters: K1=22.182 mM, K2=44.460 mU·min−1,
K3=3150.211 mmol−1, K4=3.074×10−3 mmol,K5=44.155
mU·min−1, K6=180.262 mU·min−1, K7=2026.597
mmol−1, K8=2.945×10−3 mmol, K9=9.892 mU·min−1,
K10=326.932 mU, K11=88.897 mU·l−1

·min−1, and
K12=84.934 mU·l−1. The validation proved that the
pancreas model fitted the clinical data very well.

Furthermore, the simulation results of each data set (ID1,
2, and 3) in the validation group are demonstrated respec-
tively in Figure 3 showing that the pancreas model still
can capture the dynamics of insulin response in individual
expemeriments.

III. C ONCLUSION

In this paper we presented a physiological pancreas
model succesfully describing insulin dynamics inβ-cells.
Its parameters can be determined as a global optimumvia
DIRECT demonstrated in Figure 2 and 3. The optimization
and validation results showed the agreement between the
model and the clinical experiments. One of the model’s
advantages is its intrinsic ability of describing the pan-
creas physiological characteristics such as glucose trans-
portation (K1), insulin generation (K2, K3, K4, K5), release
(K6, K7, K8, K9), granules reservoir (K10) and removal
(K11, K12). The pancreas model not only can be applied
to derive a set of parameters for a general normal subject
as stated in this paper, but also it can record an individual’s
pancreas health dynamics. We can learn from the history of
the parameters about how the characteristics of pancreas are
changing which is benefit of long term metabolism analysis
and provides guidance on medical research for finding phar-
maceutic targets. Last but not least, this pancreas model can
be connected as a component to a whole body metabolism
model for extended research [41]. Since the insulin plays
an important role in regulating energy in the whole body,
its accurate representation will help understanding complex
metabolic pathways.
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Figure 2. Simulation results of optimization and validation.

In the future, this pancreas model may be improved in
serveral areas. First of all, insulin amount in pancreas gran-
ules varies for different individuals which might be obtained
via non-invasive image techniques or determined by multi-
injection of glucose or insulin. The different insulin release
peaks reflects the insulin amount and generation ability.
Secondly, the governing equation of insulin generation may
be revised to a better function if more details obtained inside
β-cells about this process. Thirdly as mentioned in some
literatures [42]–[44],β-cells have a property of oscillation.
We can extend our current model to a multi-scale problem to
investigate the relation between smaller time scale oscillation
and the insulin release in a larger time scale.

In summary, the model presented in this paper describes
pancreas in a physiological way. The model parameters were
acheivedvia a deterministic global optimal search. Simula-
tion results agreed with experimental data. This model might
be used for describing health situation for a general group of
subjects or for an individual which is beneficial for medical
research. Also it can be expanded for further physiological
modeling.
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