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Abstract— This paper presents results related to the multi-
agent formation control problem. Symmetries in the system
are exploited to simplify the stability analysis and control
synthesis problem for symmetric systems. The type of symmetry
considered is a discrete symmetry where individual agents are
either identical or have dynamics that are diffeomorphically
related. These results are applicable to both distributed as well
as non-distributed coordination methods and are demonstrated
with simulation results for systems taken from the literature.

I. I NTRODUCTION

Formation control for multiple mobile robotic systems has
a long history, with the main focus being on the use of
potential functions for coordination (see for example [15],
[3], [13] and the citations therein). The use of potential
functions has an obvious appeal in that they facilitate stability
analyses using Lyapunov functions. The drawbacks are well-
known also, which include among other things, the existence
of multiple local minima in complex environments, the fact
that realistic potential functions representing the realities
of sensor ranges introduce mathematical limitations on the
potential functions which complicate and limit the stability
analysisetc. As observed in [12], many of the prior efforts
have assumed specific dynamics with the correct observation
that they probably generalize; however, our approach in this
paper is intended to be much more general. Perhaps the work
closest to this present work be that of [12] wherein a control
Lyapunov function is assumed to exist for each agent, from
which formation functions and bounds on formation speed
can be derived to ensure stability. The added benefit of the
results in this paper is that our formulation provides the type
of cases and underlying structure for systems to which the
results in [12] will apply. Furthermore, our results here apply
to a broader class of systems, such as fully distributed ones,
to which the results in [12] do not necessarily apply.

The main contributions of this paper are 1) a nonlinear
extension of the results in [1], [14] which is a more straight-
forward representation of system symmetries than our previ-
ous work; 2) the presentation of a unified theoretical frame-
work that seems to be underlying many of the formation
control algorithms in the literature; and, 3) a general stability
theorem that is applicable to such systems regardless of the
number of components. These results will allow a control
design engineer to focus the analysis on a smaller, more
tractable system with a guarantee that stability conclusions
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Fig. 1. System building block in one spatial dimension.

will hold for a much larger system. It is emphasized that
the two examples presented in Section IV were originally
published with analyses that were not limited to the number
of components — the contribution here being making the
underlying theoretical formulation explicit.

This paper essentially extends the previous work of one
of the authors related to the properties of symmetric systems
[9], [7], [8], [11], [10] to consider nonlinear system stability.
The main application in this paper is formation control of
multiple robotic agents, and it is applied to two cases, one
of which is decentralized and the other of which is not.

The previous work cited considers system symmetries
that are defined by a group action on the configuration
manifold for a distributed system that was induced by the
action of a permutation group. The main drawback of such
an approach is that, in the general case, identifying such
symmetries can be problematic. However, in the case of
most engineering and robotics systems, where the individual
robots are the components that are symmetric, symmetry
identification is much less of a problem. Rather than using
this prior approach, this paper will introduce a more straight-
forward approach which is a nonlinear extension of the
approach used in [1], [14]. However, it is emphasized that
the prior approaches [6], [9], [7], [8], [11], [10], [5] offer a
general approach to the problem that can be used in cases
more general than the ones addressed here.

II. SYMMETRIC SYSTEMS

The approach is to extend the basic system component
from [1] to the nonlinear case. The “basic building block” in
one spatial dimension is illustrated in Figure 1. The outputs
from the component arew−(t) and w+(t), and the inputs
are u, v−(t) andv+(t). The signalsv± represent the effects
of the coupling with the other components andu are the
usual control inputs which need to be designed for stability,
performance, robustness,etc.



We wish to express component-by-component, the usual
dynamics of a nonlinear control system expressed by

ẋ = f (x)+
m

∑
j=1

g j(x)u j,

where x ∈ R
n and the vector fieldsf (x),g j(x) ∈ TR

n. In
the general case, the vector fieldsf and g j depend on
the coupling with the other components, so the equations
governing the dynamics of this component are given by

ẋi(t) = fi
(

xi(t),v
+
i (t),v−i (t)

)

+
m

∑
j=1

g j,i
(

xi(t),v
+
i (t),v−i (t)

)

u j(t)

w−
i (t) = f̂−i

(

xi(t),v
+
i (t),v−i (t)

)

,

w+
i (t) = f̂ +

i

(

xi(t),v
+
i (t),v−i (t)

)

,

which is the direct nonlinear extension of the system de-
veloped in [1]. For a system of interconnected components
where the incoming signals,v±(t) are from the outgoing
signals from the component’s neighbors, the entire system
is coupled because thew±(t) signals depend on the compo-
nent’s input signals,v±(t). The class of the types of coupling
that could be represented by this formulation is very broad
and could include, for example, when there is a physical
joining of agents, as with reconfigurable, modular robots.

For mobile robots where there is no physical contact
between the robots and the topology of the structure of the
system is such that a component only receives a limited num-
ber of inputs (from its nearest neighbors, for example), the
nature of the coupling between the robots can be expressed
in a much simpler manner. In particular, it is only through
the control inputs that the output from the other components
affects the dynamics of an agent, which is expressed by

ẋi(t) = fi (xi(t))+
m

∑
j=1

g j,i (xi(t))u j(t)

w−
i (t) = f̂−i (xi(t)) ,

w+
i (t) = f̂ +

i (xi(t)) ,

(1)

where writing

u j,i(t) = u j,i
(

t,xi(t),v
+
i (t),v−i (t)

)

(2)

makes this explicit. If the control is determined only by static
state feedback, thenu j,i(t) = u j,i

(

xi(t),v
+
i (t),v−i (t)

)

.
In a manner analogous to the approach in [1], we can

build up a system withN components by requiringperiodic
interconnections in one dimension, i.e.,

v+
i+1(t) = w+

i (t), v−i−1(t) = w−
i (t),

where all mathematical operations on indices are mod(N). In
this case, feedback can be expressed in terms of the outputs
from the neighbors and Equation 2 can be written as

u j,i = u j,i
(

t,xi(t),w
+
i−1(xi−1(t)),w

−
i+1(xi+1(t)

)

or in the case of feedback only,

u j,i = u j,i
(

xi(t),w
+
i−1(xi−1(t)),w

−
i+1(xi+1(t)

)

.

The simplest type of symmetric system would be when all
the components are identical with periodic interconnections,
and example of which would be a fleet of autonomous robots
that are in a formation where each robot communicates in
an identical manner to its two nearest neighbors.

Definition 1 Consider a system of the form of Equation 1.
This system is asymmetric system spatially connected in one
dimension if it has periodic interconnections and

fi(x) = fk(x), g j,i(x) = g j,k(x),

f̂−i (x) = f̂−k (x), f̂ +
i (x) = f̂ +

k (x)

for x ∈ R
n, for all i,k = 1, . . . ,N and for eachj = 1, . . . ,m. A

system under state feedback is afeedback symmetric system
if it is a symmetric system and

u j,i(x1,w
+
i−1(x2),w

−
i+1(x3)) = u j,k(x1,w

+
k−1(x2),w

−
k+1(x3))

for (x1,x2,x3) ∈ R
n ×R

n ×R
n, for all i,k = 1, . . . ,N and for

each j = 1, . . . ,m. �

To allow more general topologies than connections in one
spatial dimension, define the index setsVi and Wi which
index multiple inputs and outputs respectively for component
i. The outputs from componenti are denoted bywl

i(t), l ∈Wi

and the inputs are denoted byvl
i(t), l ∈ Vi.

The dynamics of a component are give by

ẋi(t) = fi (xi(t))+
m

∑
j=1

g j,i (xi(t))u j(t)

wl
i(t) = f̂ l

i (xi(t)) , ∀l ∈Wi

(3)

with

u j,i(t) = u j,i

(

t,xi(t)v
l1
i (t),vl2

i (t),vl3
i (t), . . .

)

wherel1, l2, . . . ∈ Vi and in the case of state feedback,

u j,i(t) = u j,i

(

xi(t)v
l1
i (t),vl2

i (t),vl3
i (t), . . .

)

.

Periodic interconnections are defined in a manner similar
to the case of one spatial dimension. In particular, if there
exist orderings of each of the setsVi andWi and

v j
i (t) = wi

j(t) ∀ j ∈ Vi,∀i ∈W j

then the system has periodic interconnections, which requires
thatVi andWi have the same size. For periodic interconnec-
tions, the input under feedback can be written as

u j,i

(

t,xi(t),w
l1
i (xl1(t)),w

l2
i (xl2(t)),w

l3
i (xl3(t)), . . .

)

for l1, l2, . . . ,∈Wi or in the case of state feedback only

u j,i(t) = u j,i

(

xi(t),w
l1
i (xl1(t)),w

l2
i (xl2(t)),w

l3
i (xl3(t)), . . .

)

.

The following example illustrates this type of scenario.

Example 1 A recurring example in this paper will be planar
agents with second order dynamics used in [13]. Each robot
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Fig. 2. System topology for Example 1.

has a location and velocity inR2, with equations of motion
for the ith robot given by

d
dt









xi

ẋi

yi

ẏi









=









ẋi

0
ẏi

0









+









0
1
0
0









u1,i +









0
0
0
1









u2,i.

The goal formation is a regularN-polygon and each robot
communicates with its two neighbors and the next two
agents, as is illustrated in Figure 2. In Figure 2, each node
in the graph is a component similar to that illustrated in
Figure 1; however, in this case each component has four out-
puts, each of which is simply its position and similarlyeach
node has four inputs which are the outputs of the connected
components,i.e.,

w j
i =

[

xi

yi

]

, v j
i =

[

x j

y j

]

where j ∈ {i−2, i− i, i+1, i+2}. In the figure, each arrow
represents both an input and output.

Let the desired formation distance between componentsi
and j be

di j =







1, |i− j| = 1
sin( 2π

N )
sin( π

N )
, |i− j| = 2

which are the distances between the corresponding vertices
for a regularN-polygon with unit side length.

Define the inputs to be as in [13] by

[

u1,i

u2,i

]

= −∑
j









2
(√

(xi−x j)2+(yi−y j)2−di j

)

(xi−x j)√
(xi−x j)2+(yi−y j)2

2
(√

(xi−x j)2+(yi−y j)2−di j

)

(yi−y j)√
(xi−x j)2+(yi−y j)2









− kd

[

ẋi

ẏi

]

where kd is a positve constant damping gain andj ∈
{i−2, i−1, i+1, i+2}.

This is a feedback symmetric system. In detail, by con-
struction the dynamics for each agent are the same,i.e.,
fi(x) = f j(x) andg j,i = g j,k. The index sets are

Vi = Wi = {i−2, i−1, i+1, i+2}.

Each agent outputs its position, sowl
i (x)= f̂ l

i (x)=
[

xi yi
]T

.
Finally, since the inputs are a function of the state of
componenti and the components to which it is connected

[

u1,i

u2,i

]

=

[

u1,i
(

xi,vi−2
i ,vi−1

i ,vi+1
i ,vi+2

i

)

u2,i
(

xi,v
i−2
i ,vi−1

i ,vi+1
i ,vi+2

i

)

]

.

Thus, the system satisfies all the elements of the definition
of a symmetric feedback system. �

Finally, we want to “build up” a system.

Definition 2 Given a a symmetric system spatially con-
nected in one dimension withN components we will call
the system withN +1 componentsequivalent to it if

fi(x) = fk(x), g j,i(x) = g j,k(x),

f̂−i (x) = f̂−k (x), f̂ +
i (x) = f̂ +

k (x)

for x ∈ R
n, for all k = 1, . . . ,N and for all i = 1, . . . ,N + 1

and for eachj = 1, . . . ,m. The N + 1 system isfeedback
equivalent to theN system if

u j,i(x1,w
+
i−1(x2),w

−
i+1x3) = u j,k(x1,w

+
k−1(x2),w

−
k+1(x3))

for (x1,x2,x3) ∈ R
n × R

n × R
n, for all k = 1, . . . ,N, i =

1, . . . ,N +1 and for eachj = 1, . . . ,m. �

For the more general case than one spatial dimension,
an N + 1 component system will be equivalent to theN
component system if

fi(x) = fk(x), g j,i(x) = g j,k(x)

for x ∈ R
n, for all k = 1, . . . ,N and for all i = 1, . . . ,N + 1

and for eachj = 1, . . . ,m and there exists an ordering for
eachWi such thatf̂ j

i (x) = f̂ l
k(x) for j ∈Wi andl ∈Wk. The

N +1 system isfeedback equivalent to theN system if

u j,i

(

xi(t),w
i
l1
(xl1(t)),w

i
l2
(xl2(t)),w

i
l3
(xl3(t)), . . .

)

=

u j,k

(

xk(t),w
k
m1

(xm1(t)),w
k
m2

(xm2(t)),w
k
m3

(xm3(t)), . . .
)

(4)

for (x1,x2,x3) ∈ R
n × R

n × R
n, for all k = 1, . . . ,N, i =

1, . . . ,N + 1, for each j = 1, . . . ,m, for l1, l2, . . . ,∈ Wi and
for m1,m2, . . . ,∈Wk.

Example 2 Returning to Example 1, the manner in which
it was constructed was independent of the number of com-
ponents,N. Furthermore, if we order

Wi = {i−2, i−1, i+2i+2}

for eachi, the requirement of Equation 4 is satisfied. Hence,
a system of sizeN + 1 and a system of sizeN defined by
Example 1 are equivalent. �

For notational convenience, we will stack all the states
and vector fields from each component into one system
description, ˙x = f (x)+ g(x)u(t) where

x =











x1

x2
...

xN











,u =











u1

u2
...

uN











, f (x) =











f1(x1)
f2(x2)

...
fN(xN)











,g(x) =











g1(x1)
g2(x2)

...
gN(xN)











.



III. STABILITY OF SYMMETRIC SYSTEMS

This section presents the main theoretical result, which is
that if a symmetric system is stable, then anylarger system
that is constructed from the original system is also stable.In
a way, this is intuitively obvious, but this section formalizes
and proves it. The following sections apply the result to a
few of the well-known methods for formation control.

Proposition 1 Given a feedback symmetric system in one
spatial dimension of sizeN, assume that it is stable in
the sense of Lyapunov and furthermore that the Lyapunov
function is of the form

V (x) =
N

∑
i=1

Vi(xi,w
+
i−1(xi−1),w

−
i−1(xi+1)),

V̇ (x) = ∇V · ( f (x)+ g(x)u(x)) ≤ 0,

and theVi are symmetric in the sense that

Vi(xi,w
+
i−1(xi−1),w

−
i+1(xi+1) =

V j(x j,w
+
j−1(x j−1),w

−
j+1(x j+1) ∀i, j = 1, . . . ,N.

Then an equivalent feedback system of sizeN + 1 is also
stable in the sense of Lyapunov. �

Proof: By direct computation,

V̇ =
N

∑
i=1

N

∑
j=1

∂Vi

∂x j

(

f j(x j)+g j(x j)u(x j,w
−
j+1(x j+1),w

+
j−1(x j−1))

)

=
N

∑
i=1

i+1

∑
j=i−1

∂Vi

∂x j

(

f j(x j)+g j(x j)u(x j,w
−
j+1(x j+1),w

+
j−1(x j−1))

)

.

By the assumption on the symmetry inV and the fact that
the system is symmetric,

V̇ = N ∑
j=N,1,2

∂V1

∂x j

(

f j(x j)+g j(x j)u(x j,w
−
j+1(x j+1),w

+
j−1(x j−1))

)

.

SinceV̇ (t) ≤ 0,

∑
j=N,1,2

∂V1

∂x j

(

f j(x j)+g j(x j)u(x j,w
−
j+1(x j+1),w

+
j−1(x j−1))

)

≤ 0.

(5)

By the same construction, for theN +1 equivalent system,

V̇ =

(N +1) ∑
j=N,1,2

∂V1

∂x j

(

f j(x j)+g j(x j)u(x j,w
−
j+1(x j+1),w

+
j−1(x j−1))

)

which is less than or equal to zero by Equation 5.
A theorem and proof for a more generally connected

system follows by identical arguments, except the sum over
the connected components is over the whole set of connected
components, rather than just the two neighbors that are
present in the one spatial dimension case. A theorem and
proof for a time varying Lyapunov function also follows from
the same arguments.

IV. EXAMPLES

This section will complete Example 1 and present an
additional example.

Example 3 Continuing Example 1, for a fleet of 5 agents,
which has a strongly-connected topology, define a Lyapunov
function as

V =
1
2

5

∑
i=1

[

(

ẋ2
i + ẏ2

i

)

+∑
j

(

√

(xi − x j)2 +(yi − y j)2−di j

)2
]

,

(6)
where j ∈ {i−2, i− i, i+1, i+2} and di j is the desired
distance between robots defined previously. By construction,
this Lyapunov function satisfies the hypothesis of Proposi-
tion 1. ComputingV̇ gives

V̇ = ∇V · ( f + gu)

=
5

∑
i=1

















∑ j 2

(√
(xi−x j)2+(yi−y j)2−di j√

(xi−x j)2+(yi−y j)2
(xi − x j)

)

ẋi

∑ j 2

(√
(xi−x j)2+(yi−y j)2−di j√

(xi−x j)2+(yi−y j)2
(yi − y j)

)

ẏi

















·

















ẋi

−∑ j
2
(√

(xi−x j)2+(yi−y j)2−di j

)

(xi−x j)√
(xi−x j)2+(yi−y j)2

− kd ẋi

ẏi

−∑ j
2
(√

(xi−x j)2+(yi−y j)2−di j

)

(yi−y j)√
(xi−x j)2+(yi−y j)2

− kd ẏi

















=
5

∑
i=1

−kd
(

ẋ2
i + ẏ2

i

)

.

By Proposition 1, this will also hold for anyN. Simulation
results for a five-agent system are illustrated in Figures 3
and 4 withkd = 0.25. Figure 3 shows the trajectories for the
individual agents, and Figure 4 shows the final configuration.
Simulation results for a 17-agent system are illustrated in
Figures 5 and 6 withkd = 0.5. Figure 5 shows the trajectories
for the individual agents, and Figure 6 shows the final
configuration, illustrating stability of the system independent
of the number of agents.

One must be careful in what can be concluded fromV̇ ≤ 0
in an example like this. LaSalle’s theorem only applies in an
invariant compact set, and sinceV is invariant with respect
to translations and rotations of a formation, it can not be
directly applied in any global sense. A reader is referred to
[13] for the details of the proof for local asymptotic stability
to a formation. Furthermore, an additional complication
addressed in [13] and somewhat in [2] is the issue of whether
the formation isunambiguous. In the present example, the
formation with five vehicles is unambiguous, but the larger
one with 17 robots is not, although the simulation converged
to the intended formation. �

Example 4 This example considers formation control of a
fleet of unicycle-like vehicles. Rather than being a distributed
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algorithm, a global formation function is minimized. This
example is motivated by the results in [12].

Each of the robots has dynamics given by

ẋi = u1,i cosθi, ẏi = u1,i sinθi, θ̇i = u2,i,

whereu1,i and u2,i are the inputs, which are the kinematic
linear and angular velocities of the unicycle, respectively. It is
well known that this model is dynamic feedback linearizable
[4]. Defining

ξ̇i = v1,i cosθ + v2,i sinθ
u1,i = ξi

u2,i =
−v1,i sinθi + v2,i cosθi

ξi

which gives the system

ẋi = ξi cosθi, θ̇i =
1
ξi

(−v1,i sinθi + v2,i sinθi) ,

ẏi = ξi sinθi, ξ̇i = v1,i cosθi + v2,i sinθi,

which clearly has a singularity atξi = 0, which corre-
sponds to zero velocity. If the desired trajectory is given
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x

Fig. 5. Trajectories for distributed control for a 17-vehicle system.

by
(

xd
i (t),y

d
i (t)

)

, then the inputs

u1,i = ẍd
i −

(

xi − xd
i

)

−
(

ẋi − ẋd
i

)

u2,i = ÿd
i −

(

yi − yd
i

)

−
(

ẏi − ẏd
i

)

achieve asymptotic tracking. To see this, define

ex,i = xi − xd
i , ey,i = yi − yd

i

from which the error dynamics using those inputs are

d
dt









ex,i

ėx,i

ey,i

ėy,i









=









ėx,i

−ex,i − ėx,i

ėy,i

−ey,i − ėy,i









.

DefiningVi = 1/2
(

e2
x,i + ė2

x,i + e2
y,i + ė2

y,i

)

gives

V̇i =









ex,i

ėx,i

ey,i

ėy,i









·









ėx,i

−ex,i − ėx,i

ėy,i

−ey,i − ėy,i









= −ė2
x,i − ė2

y,i.

SinceV is positive definite, radially unbounded and contin-
uously differentiable, from LaSalle’s invariance principle we
can conclude global asymptotic stability.

So, for this system the global Lyapunov functionV =

∑N
i=1Vi can be defined, and by Proposition 1,V̇ ≤ 0 for all N

since it was true forN = 1. Simulation results are illustrated
in Figures 7 and 8 for six and 13 unicycles respectively.
In each case the desired trajectory is given byxd

i = t and
yd

i = sin(t)+ i− N
2 . Eachx mark on the figures represent a

specific times, which illustrate that not only do the robots
track the desired trajectories in space, they also are doingso
at the desired time.

As with the previous example, one must take care to
draw the proper conclusions froṁV ≤ 0. The main results
in [12] were, similar to this paper, a means to combine
individual Lyapunov functions in a useful manner. In partic-
ular, that paper presented definition of a formation function
and bounds on the formation speed that ensure stability of
the system to the desired formation. In such a case, the
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Fig. 6. Final formation for distributed control for a 17-vehicle system.
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Fig. 7. Trajectories for six unicycle robots.

proper interpretation from the Lyapunov function requires
consideration of the additional requirements for Lyapunov
stability of nonautonomous systems which requires, among
other things, for the Lyapunov function to be bounded above
and below by classK functions, a stricter bound oṅV , etc.�

V. CONCLUSIONS

This paper considered the stability of coordinated and
distributed systems, with an application focus on coordinated
control of systems of mobile robots. Unlike our prior work,
it formulated the problem as a nonlinear extension of the
work in [1], [14], which was directed toward spatially
periodic systems “built-up” from periodically interconnected
components. Observing that many of the formation control
algorithms in the literature are not limited by the number of
components, but often are limited by assuming specific dy-
namics, the main contribution was to formulate an theoretical
framework in which stability of many distributed systems can
be considered. The result was demonstrated on two systems,
one of which was fully distributed and the other of which
was no decentralized.
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Fig. 8. Trajectories for 13 unicycle robots.
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