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agent formation control problem. Symmetries in the system
are exploited to simplify the stability analysis and contrd

synthesis problem for symmetric systems. The type of symmmst vt (t) wt (t)
considered is a discrete symmetry where individual agentsra 7 =
either identical or have dynamics that are diffeomorphicaly
related. These results are applicable to both distributed a well w (1) —
as non-distributed coordination methods and are demonstreed
with simulation results for systems taken from the literature.

Abstract— This paper presents results related to the multi- T X(t)

u(t)
I. INTRODUCTION

Formation control for multiple mobile robotic systems has
a long history, with the main focus being on the use of
potential functions for coordination (see for example [15]

[3], [.13] and the cit.ations thergin). The uselgf pgtenti%ill hold for a much larger system. It is emphasized that
functions has an obvious appeal in that they facilitateiltyb cE: two examples presented in Section IV were originally

Fig. 1. System building block in one spatial dimension.

analyses using Lyapunov functions. The drawbacks are we ublished with analyses that were not limited to the number

known also, which include among other things, the existen components — the contribution here being making the
of multiple local minima in complex environments, the faCtunderIying theoretical formulation explicit

that realistic potential functions representing the tesli
of sensor ranges introduce mathematical limitations on t
potential functions which complicate and limit the stalili
analysisetc. As observed in [12], many of the prior efforts

This paper essentially extends the previous work of one
nﬁ the authors related to the properties of symmetric system
[9], [71, [8], [11], [10] to consider nonlinear system sthiyi

e ) } .The main application in this paper is formation control of
have assumed specific dynamics with the correct Observat'%ltiple robotic agents, and it is applied to two cases, one

that th_ey_ probably generalize; however, our approach & thbf which is decentralized and the other of which is not.
Paper1s mte_nded to be much more general. Perhgps the Workl’he previous work cited considers system symmetries
closest to this present work be that of [12] wherein acontrcﬂ1at are defined by a group action on the configuration

Lyapunov function is assumed to exist for each agent, frOIéluanifold for a distributed system that was induced by the

which formation functions and bounds on formation speed .. ; ;
can be derived to ensure stability. The added benefit of tl}f“on of  permutation group. The main drawback of such

$h approach is that, in the general case, identifying such
results in this paper is that our formulation provides theety bp ' 9 ' fying

f nd underlving structure for tems 1o which tS mmetries can be problematic. However, in the case of
of cases and uhderlying structure for systems 1o c ost engineering and robotics systems, where the indiVidua
results in [12] will apply. Furthermore, our results herglgp

o a broader cl f svst h as fully distributed robots are the components that are symmetric, symmetry
0 a broader class of systems, such as 1ully distributed,ongge yfication is much less of a problem. Rather than using
to which the results in [12] do not necessarily apply.

.___this prior approach, this paper will introduce a more stiaig
Yorward approach which is a nonlinear extension of the

exterionof e resutsn 1, 1] o & o STy ach s 1 1], (1] Howeve. 15 emphasized
i h 7 11], [1 i
ous work; 2) the presentation of a unified theoretical fram%ﬂ‘le prior approaches [6], [9], [7], [8], [11], [10], [5] offea

K that o b derlvi f the i jeneral approach to the problem that can be used in cases
wor at seems 1o be underlying many of the formatioig, , general than the ones addressed here.
control algorithms in the literature; and, 3) a generalifitgb
theorem that is applicable to such systems regardless of the Il. SYMMETRIC SYSTEMS

number of components. These results will allow a control The approach is to extend the basic system component

design engineer tq focus the analysis on a smaller, MOtm [1] to the nonlinear case. The “basic building block” in
tractable system with a guarantee that stability conchssio one spatial dimension is illustrated in Figure 1. The owgput
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We wish to express component-by-component, the usual The simplest type of symmetric system would be when all
dynamics of a nonlinear control system expressed by the components are identical with periodic interconnedjo
m and example of which would be a fleet of autonomous robots
x= f(x)+ z gj(X)u;j, that are in a formation where each robot communicates in
=1 an identical manner to its two nearest neighbors.

where x € R" and the vector fieldsf (x),gj(x) € TR™ In  pefinition 1 Consider a system of the form of Equation 1.

the general case, the vector fieldsand g; depend on s system is @ymmetric system spatially connected in one
the coupling with the other components, so the equationfension if it has periodic interconnections and
governing the dynamics of this component are given by

. _ fi(x) = fk(x), iiX) =gjk(x),
(1) = 1 (50,9 (0% (1)) S0 = ) 909 =gj{x)
5" 014 (% (0. (0.4 () UV A =
+3 g5 (Xi(t),vi" (t),v; uj _ _
;1 P ' ' : forxe R", foralli,k=1,... N and foreach =1,...,m. A
W (t) = £~ (% (), v (£), v~ (1)) system under state feedback iseadback symmetric system
! N P A if it is a symmetric system and
W|+(t) = fi+ (Xl (t)vvi-i_(t)vvi (t)) )

which is the direct nonlinear extension of the system de-ujvi(Xl’Wi—tl(XZ)vWi+l(X3)) = Uj (X, Wie_q (X2), Wi, 1 (X3))
veloped in [1]. qu a s_ystem of interconnected compqnenfar (X1, %2, %) € R"x R"x R", for all i,k=1,....N and for
where the incoming signals/=(t) are from the outgoing eachj=1,...,m. -
signals from the component’s neighbors, the entire system
is coupled because the* (t) signals depend on the compo- To allow more general topologies than connections in one
nent’s input signals/* (t). The class of the types of coupling spatial dimension, define the index setsand W which
that could be represented by this formulation is very broaifidex multiple inputs and outputs respectively for compune
and could include, for example, when there is a physical The outputs from componenare denoted by (t), | € Wi
joining of agents, as with reconfigurable, modular robots. and the inputs are denoted Byt), | € V.

For mobile robots where there is no physical contact The dynamics of a component are give by
between the robots and the topology of the structure of the

m
system is such that a component only receives a limited num- Xi(t) = fi (xi(t)) + Z gji (% (1)) uj(t)
ber of inputs (from its nearest neighbors, for example), the =1 3)
nature of the coupling between the robots can be expressed W‘i(t) = Ai' (%), Vvlew
in a much simpler manner. In particular, it is only through
the control inputs that the output from the other componeni’ﬁ'th
affects the dynamics of an agent, which is expressed b
g ” P g 33 (0) = g (L OO0 ), ..
X(t) = fi (6 (1)) + JZng'»i (% (1)) uj (t) wherely,l,,... € V; and in the case of state feedback,
~ . - 1)
w () = i~ (xi(1)), uji(t) = uj, ()Q(t)\/]il(t),\/iz(t),\/iS(t),...).
w' (t) = fi (x(t))
| ] ? . . . . . _
. Periodic interconnections are defined in a manner similar
where writing to the case of one spatial dimension. In particular, if there
uji(t) = ugi (6, (0), Vi (1), v (1)) (2) exist orderings of each of the ses andV; and
makes this explicit. If the control is determined only bytista vij (t)= Wj (t) VjieV,VieWw,

state feedback, them; j(t) = uj; (xi(t),vi" (t),v; (t)). o _ _ _
In a manner analogous to the approach in [1], we caiien the system has periodic interconnections, which regui

build up a system wittN components by requiringeriodic ~ thatVi andVi have the same size. For periodic interconnec-
interconnections in one dimension, i.e., tions, the input under feedback can be written as

Wit ® =W (), Y40 =W (1), U (1 (0), W 0, (0) W2 05, (), W2 04, (1) )

where all mathematical operations on indices are (hbdin for 11,1 € Wi or in the case of state feedback only
this case, feedback can be expressed in terms of the outputs = """’

from the neighbors and Equation 2 can be written as uji(t) = uj; (Xi (t),V\)il(Nl(t)),W!z(X|2(t)),W!3(Xls(t)),~~~) .
Uji = Uj,i (t,Xi (t),Witl(xi—l(t))7Wi_+1(xi+l(t))

or in the case of feedback only,

The following example illustrates this type of scenario.

Example 1 A recurring example in this paper will be planar
Uji = Uji (X (1), Wy (Xi—1(t)), Wi 4 (Xiga () . agents with second order dynamics used in [13]. Each robot



Each agent outputs its position,sb(x) = ! () =[x yi]".
Finally, since the inputs are a function of the state of
componeni and the components to which it is connected

[ul.i] _ |:U1,i (Xi,\lgfz,vifl,\/”l,\/”z)

Upi ™ (thgfz,vifl,vi+17vi+2) .

Thus, the system satisfies all the elements of the definition
of a symmetric feedback system. O

Finally, we want to “build up” a system.

Definition 2 Given a a symmetric system spatially con-
nected in one dimension witN components we will call
the system withN + 1 componentgquivalent to it if

fi(x) = f(x), 9j.i(X) = gjk(X),

A._ = f— A+ = f+
has a location and velocity iR?, with equations of motion fir (0 = fic (), it 09 =1
for theith robot given by for xeR", forallk=1...,Nand for alli=1,... N+1
and for eachj =1,...,m. The N+ 1 system isfeedback

P

Fig. 2. System topology for Example 1.

X X; 0 0 equivalent to the N system if
E Xi _ 0 T Upi+ 0 Uo i + — + —
at lvil = v ol Y1 o| i UJ,i(Xl,Wi_l(Xz),Wi+1X3) = Uj,k(Xlakal(X2)7Wk+1(X3))
Vi 0 0 1 for (xg,%2,x3) € R" xR"x R", for all k=1,... N, i =

The goal formation is a regulad-polygon and each robot 1,...,N+1andforeacj=1...m =

communicates with its two neighbors and the next two For the more general case than one spatial dimension,

agents, as is illustrated in Figure 2. In Figure 2, each nodt N + 1 component system will be equivalent to the
in the graph is a component similar to that illustrated icomponent system if
Figure 1; however, in this case each component has four out-

puts, each of which is simply its position and similarlyeach i) =), 9ji(X) = gjx(X)
node has four inputs which are the outputs of the connectéer x ¢ R", for all k=1,...,N and for alli=1,...,N+1
componentsi.e., and for eachj =1,...,m and there exists an ordering for
. . _ ' eachW such thatf! (x) = fi(x) for j € Wi andl € Wk. The
w = [;(‘] , V= [ﬂ N+ 1 system isfeedback equivalent to theN system if
i i
wherej € {i—2,i—i,i+1,i+2}. In the figure, each arrow  id (X‘ (t),V\/il(x|1(t)),V\/}2(x|2(t)),w}3(x|3(t)),...) =
represents both an input and output. U (e () WE (e (0 WK (X (E)) W (X (1)), 4
Let the desired formation distance between componients J’k( ). Wiy Om, (1)) Wiy (i (1)) Wi O (1))- ) )
andj be for (x1,Xo,%3) € R"xR"x R", for all k=1,...,N, i =
1 li—jl=1 1,...,N+1, for eachj=1,...,m, for Iy,lo,....,e¢ W; and
dij {Sin(%) iil=2 for my,m,..., € Wh.
YA == . . .
sin(§) : Example 2 Returning to Example 1, the manner in which

which are the distances between the corresponding vertidbdvas constructed was independent of the number of com-
for a regularN-polygon with unit side length. ponentsN. Furthermore, if we order

Define the inputs to be as in [13] by Wi={i—2,i—1i+2i+2}

2( (Xi—Xj)z-‘r(yi—yj)z—dij)(Xi—xj) for eachi, the requirement of Equation 4 is satisfied. Hence,
u] NCENEENG Xi a system of sizeN +1 and a system of sizB defined by
Upi| _; 2( (Xi*Xj>2+(yi*Yj>2*dij>(Yi*Yj) —kd Vi Example 1 are equivalent. O

V(=X 2+ (Vi —y;)? For notational convenience, we will stack all the states

where kg is a positve constant damping gain arjde and vector fields from each component into one system

(i—2i—Li+1i+2). description x= f(x) +g(x)u(t) where

This is a feedback symmetric system. In detail, by con- X1 up f1(x1) 01(X1)
struction the dynamics for each agent are the saimeg, X2 uz f2(x2) 02(%2)
fi(x) = fj(x) andgj; = gj . The index sets are X= u=| .|, fx= 9 =] .

Vi=Wi={i—-2i-1i+1i+2}. XN UN fn(xn) ON (XN)



IIl. STABILITY OF SYMMETRIC SYSTEMS IV. EXAMPLES

This section presents the main theoretical result, which is This section will complete Example 1 and present an
that if a symmetric system is stable, then dagger system additional example.
that is constructed from the original system is also stdble.
a way, this is intuitively obvious, but this section fornzas
and proves it. The following sections apply the result to
few of the well-known methods for formation control.

Example 3 Continuing Example 1, for a fleet of 5 agents,
which has a strongly-connected topology, define a Lyapunov
function as

(%) + (\/(Xi =Xj)%+ (Vi _yj)z_dij>2 7
]

5
Proposition 1 Given a feedback symmetric system in ongy :}
spatial dimension of sizéN, assume that it is stable in 221

the sense of Lyapunov and furthermore that the Lyapunov (
function is of the form where j € {i—2,i—i,i+1,i+2} and d;; is the desired
distance between robots defined previously. By constmctio
V| (%, W 3 (%1), W4 (Xi12)), th|s Lyapunov funpno_n satisfies the hypothesis of Proposi-
tion 1. Computingv gives
< .
V() =0V (f() +g(x)u(x) <0, V= V- (F 4 u)
and theV; are symmetric in the sense that 5.2 v/ (=X (yi—yj) 2 —dhj (X — X))
J V- xJ>2+<y. y)?

Vi (X, Wi g (Xi—1), Wi 4 (Xis1) =
Vj(X;, jfl(xj,l),wj;l(xjﬂ) Vi,j=1,...,N.

I
EMm

v/ (% —Xj) 2+y| yj —djj e\
( Voo 2oy e i)

Then an equivalent feedback system of site-1 is also Yi
stable in the sense of Lyapunov. O X
. : ; vV )2+(vi-yj) dl)(xl XJ) .
Proof: By direct computation, -3 ( (i) ! ! — kg
. \/(X' XJ)2+(V| yj) !
N
V=3 5 2V (1505) -+ 9506, W 2). 1)) ST T
1(9 i i ( 03— 2+ -y )2—ck ) (i} kg
N i1 gy VX)) 2+ yi—y))2 '
(xj)+9j(x Wi (Xi41), Wi (Xi_1)) ).
= 3,2 (1000001059100 40-2) :ka" @+57).
i=

By the assumption on the symmetryVhand the fact that . o . .
the system is symmetric, By Proposition 1, this will also hold for ani. Simulation

results for a five-agent system are illustrated in Figures 3
V=N g oV, ( (x))+gj (X )u (xj,wjgl(xwl).,wjtl(xjfl))). _anq 4 withkyg = 0.25. Fig_ure 3 shows the trgjectorieg for t_he
129 individual agents, and Figure 4 shows the final configuration
. Simulation results for a 17-agent system are illustrated in
SinceV(t) <0, Figures 5 and 6 withg = 0.5. Figure 5 shows the trajectories
N for tlhe in_diviqlual ag.ents, apq Figure 6 shoyvs the final
_ I (f,-(xj) +0j (Xj)U(Xj,Wf+1(xj+l)>wj+,1(xjfl))) <O0. configuration, illustrating stability of the system indeplent
i=N,12 74 5) of the number of agents.
One must be careful in what can be concluded fkor 0
By the same construction, for the+ 1 equivalent system, in an example like this. LaSalle’s theorem only applies in an
invariant compact set, and singkis invariant with respect
V= to translations and rotations of a formation, it can not be
oy _ directly applied in any global sense. A reader is referred to
_fri2 0% <fi(xi) +0i (Xi)u(xj’Wi+1(xj+1)’wi+—1(xj‘l))) [13] for the details of the proof for local asymptotic stétyil
' to a formation. Furthermore, an additional complication
which is less than or equal to zero by Equation 5. B  addressed in [13] and somewhat in [2] is the issue of whether
A theorem and proof for a more generally connectethe formation isunambiguous. In the present example, the
system follows by identical arguments, except the sum ovéermation with five vehicles is unambiguous, but the larger
the connected components is over the whole set of connecigae with 17 robots is not, although the simulation converged
components, rather than just the two neighbors that ate the intended formation. O
present in the one spatial dimension case. A theorem and
proof for a time varying Lyapunov function also follows from Example 4 This example considers formation control of a
the same arguments. fleet of unicycle-like vehicles. Rather than being a distiduol

(N+1)
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Fig. 3. Trajectories for distributed control for a five-velei system. Fig. 5. Trajectories for distributed control for a 17-véaisystem.

25— by (xd(t),yd(t)), then the inputs

1-2 ! _ Ul,izxﬁ—(xi—ﬂd)—(xi—xﬁ)

1t © T Uz,i=ij—(Yi—yid)—(Yi—S’?)

> 051 o © | achieve asymptotic tracking. To see this, define
0} 4
05| © ] ai=x—x, &=y
1L i from which the error dynamics using those inputs are
_15 L 1 1 1 1 1 1 1 1 ] g(’i a(’i .
2 -15-1-050 05 1 15 2 el _ | —&i—8q
dt &, &i
X & —8yi — &,
Fig. 4. Final formation for distributed control for a fivehiele system. . . . .
DefiningV; = 1/2 (eﬁI +&+€+ eﬁ,) gives
algorithm, a global formation function is minimized. This _ Q" 3" .
example is motivated by the results in [12]. Vi = z' . _3‘6'}; &il = _éii — eﬁ,
Each of the robots has dynamics given b P L
y g y &y, —6yi — €y
X =upicos, VYi=upising, 6 =uyj, SinceV is positive definite, radially unbounded and contin-

h Candun- he i hich he ki ._uously differentiable, from LaSalle’s invariance prinleipve
whereuyj anduy; are the inputs, which are the kinematic .0 ~jude global asymptotic stability.

linear and angular velocities of the unicycle, respecyivéis So, for this system the global Lyapunov functish=
well known that this model is dynamic feedback Imeanzabl@ziN:lVi can be defined, and by PropositiorV1< 0 for all N

[4]. Defining since it was true foN = 1. Simulation results are illustrated
éi — V1 COSO + Vo, SiNO in Figures 7 and 8 fqr SiX a'nd 13 gnicycles respectively.
' ’ In each case the desired trajectory is glvenxﬁy:t and
Uyj = & _ yd =sin(t) +i— . Eachx mark on the figures represent a
Upj = —V1,iSiNG + v cOsH specific times, which illustrate that not only do the robots
' & track the desired trajectories in space, they also are dsmng

at the desired time.
As with the previous example, one must take care to
. : 1 : : draw the proper conclusions fromh < 0. The main results
X = icosd, b= E(_vl’isme'Jrvz’isme')’ in [12] W(Ere,psimilar to this paper, a means to combine
Vi = &sin@, & = vy COSB 4 Vo Sing, individual Lyapunov functions in a useful manner. In partic
’ ’ ular, that paper presented definition of a formation functio
which clearly has a singularity a§i = 0, which corre- and bounds on the formation speed that ensure stability of
sponds to zero velocity. If the desired trajectory is giveithe system to the desired formation. In such a case, the

which gives the system
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Fig. 7. Trajectories for six unicycle robots.

(7]

proper interpretation from the Lyapunov function requires(8]
consideration of the additional requirements for Lyapunov
stability of nonautonomous systems which requires, amongy;
other things, for the Lyapunov function to be bounded above

and below by clas& functions, a stricter bound o, etc. [10]

V. CONCLUSIONS [11]

This paper considered the stability of coordinated and
distributed systems, with an application focus on coorgida [12]
control of systems of mobile robots. Unlike our prior work,
it formulated the problem as a nonlinear extension of thg,
work in [1], [14], which was directed toward spatially
periodic systems “built-up” from periodically intercorsted
components. Observing that many of the formation contr&‘q
algorithms in the literature are not limited by the number of
components, but often are limited by assuming specific dy*>!
namics, the main contribution was to formulate an theoaétic
framework in which stability of many distributed systems ca
be considered. The result was demonstrated on two systems,
one of which was fully distributed and the other of which
was no decentralized.

-10 0 10 20 30 40 50
X

Fig. 8. Trajectories for 13 unicycle robots.
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