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Abstract— This paper presents the relatively rich and inter- 14 10
esting bifurcation structure that is present in the nature of . .
optimal solutions to a multi-robot formation control problem. \ 8
The problem considered is a two point nonlinear boundary- 10 AN
value problem that can only be solved numerically. Since
common numerical solution techniques such as the shooting -
method are local in nature and hence are difficult to use to find 6 \ \ 4
multiple solutions, an alternative formulation of the problem is 4 ENCN N\
presented that can be solved through homotopy methods for ) L \ 2
polynomial systems. These methods are guaranteed to find all
solutions within the resolution of the system description’s dis- 0 0
cretization. Specifically, this paper studies a group of unicycle-
like autonomous mobile robots operating in a 2-dimensional
obstacle-free environment. Each robot has a predefined initial . ) ]
state and final state and the problem is to find the optimal Fig. 1. Optimal paths for the five robot system
path between two states for every robot. The path is optimized with k =24.5.
with respect to the control effort and the deviation from a
desired formation. The bifurcation parameter is the relative
weight given to penalizing the deviation from the desired . . . . .
formation versus control effort. It is shown that as this number @ Set of second order ordinary differential equations Yeeri
varies, bifurcations of solutions are obtained. Considering the subsequently in Section II).
common use of optimization methods in robotic navigation  The existence of multiple nontrivial solutions of BVPs for
and coordination problems, understanding the existence and ,qjinear second order ODEs has been investigated by some
structure of bifurcating and multiple solutions is of great .
importance in robotics. authors. Not surprisingly, howevgr, the results are nou'ﬁtgaf

developed as the case for the bifurcation of fixed points for

ordinary differential equations. For example, for

! —
Distributed systems with multiple agents have been the fo- X'+at)f(x) =0
cus of many research efforts in recent years. The applitstio x(0)=0
of distributed systems are ubiquitous, including robotie u x(1) =0,
derwater vehicles [1], satellite clustering [2], electriower the properties of the solutions depend on the limiting behav

system [3], search e_md rescue operations [4] etc. The 4Bt of the function f(u). Erbe and Wang [14] studied the
proaches to the multi-robotic formation control problere ar

similarly many and varied. Roughly, they can be categoriz ?f(lstence of positive solutions of the equation with linear

into three groups: leader-follower methods [5-7], behavio oundary conditions. Also, for
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/
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I. INTRODUCTION AND BACKGROUND

based methods [8—10] and virtual structure methods [11-13] fo= lim @
In this paper, the problem addressed is to control a s—>+0 S

formation of robots moving along an optimal path between f— lim LS)

an initial configuration and a final configuration. The path st 5]

is optimized with respect to a combination of the controthey showed the existence of at least one positive solution
effort and the deviation from a desired formation. Sinceheagn two cases, superlinearityfd = 0, f,, = ) or sublinearity
robot has its own predefined initial state and final state, the, = «, f,, = 0). In [15], Erbe, Hu and Wang showed that
procedure that standard optimization methods suggest f@fere were at least two positive solutions in the case ofrsupe
finding the optimal path is to solve a boundary value fofinearity at one end (zero or infinity) and sublinearity a th
other end. Naito and Tanaka [16] and Ma and Thompson [17]
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used the fixed-point theorem of cone expansion/compressisunbject to the robotic kinematic constraints in Equation 1,
type, the upper-lower solutions method and degree argmenthere n > 2 is the number of robotsd = ((X — Xi11)% +
to study the existence, nonexistence, and multiplicity ofy; — v 1)?)%? is the Euclidean distance between tile
positive solutions of the boundary value problem. While thand (i + 1)th robots,d is the desired distance between two
problems they address are similar in nature to ours, none afljacent robots, anklis a non-negative weighting constant.
these results are, unfortunately, directly applicablettoi  The cost function minimizes a combination of the control
This paper presents bifurcation results for a specific foeffort (first summation) and the deviation from a desired for
mation control problem. These solutions were found bynation (second summation). The weighting constant, which
using the shooting method to solve the nonlinear two-poinill serve as our bifurcation parameter, balances maiirtgin
boundary value problem. The existence of multiple solitionthe desired distance between the robots against finding the
and their bifurcation structure is important for robotisis minimum-cost path based on control effort.
who deal in motion planning methods that are based on Applying Pontryagin’s maximum principle to solve the
optimization techniques. Knowledge of the existence andptimal control problem, we obtain the optimal inputs
nature of bifurcations of solutions of this type are impotta 1
for practicing engineers because if a solution is found ithat U, = = pi
optimal, but not necessarily desirable, it may be the case th %
a different solution for the same cost function exists and is Ui, = épiz,
superior. Searching for multiple solutions of an optimiaat
problem is likely to be less costly than reformulating theand equations of motion
optimization problem. 1
Additionally, this paper presents an alternative finite- Xi = zpi; (2)
. . 2
difference formulation of the problem. When expressed asa 1
finite difference system, an additional transformatioowa Yi= épiz
the boundary value problem to be expressed as a system . , = . =
of algebraic polynomial equations. This is important be- p, = K% —%-1) (i1 —d) | 2K(x— %) (A —d)
cause methods exists for finditadl solutions of polynomial di-1 _ d _
equations, and hence can potentially serve as a means tq, _ 2K(yi —yi-1) (di-1—d) N 2k (yi — Yiy1) (di —d)
validate that the solutions found by the search using the "2 di—1 di '

shooting method represent all possible solutions. Hon}oto% cause they correspond to the robots at the ends of the
continuation methods are based on the simple concept fo?

. . ormation, the last two equations in Equation 2 have only
constructing a system with the same number of roots ; :
- e second term wheh= 1 and only the first term when
the original system where the roots of the new system are

known, and then tracing the roots of the known system as . . . o

. N . . The cases considered in this paper are limited to the
its solution is deformed into that of the original system. Asoounda conditions

general references, see, for example [19-21]. Initialltesd Y

the application of this method are presented as first vadidat % (0) = ¢+ (i — 1)d,

that the method is applicable and works. A full exposition xi(1) =0

will be the subject of a full future publication. Due to the ' (3)
computational cost of the approach, a parallel computing yi(0) =0,

environment and other specialized techniques such as a yi(1) =c+(i—1)d,

judicious selection of the homotopy will be necessary. _ .
: Py y wherec is a constant. These boundary conditions correspond

[I. PROBLEM STATEMENT to an initial formation in which the robots are arranged glon

We adopt a simplified version of the kinematic roboticthe x-axis with the first robot at ax = c and a distancel

unicycle as a prototypical model. The simple kinematics apetween each robot and a'final.formatiqn in which the robots
this kind of robot are described by are arrgnged along theaxis with the flr_st robot a_y: c
and a distance between each robot, as is shown in the left
X=ug 1) illustration in Figure 1. It is important to note that if the
y=Up. initial and final formations are not parallel, then straijhe
trajectories satisfying the boundary conditions will niot,

The problem is to find the controlg, (t), U, (t) for each robot ?eneral, maintain the desired distance between the robots.

i that steer a formation of robots of this type from its star

con_figuration to its _goal configurat_ion_, while maintaining l1l. BIFURCATION RESULTS
a rigid body formation at the beginning and end of the o o
trajectory and minimizing the global performance index For a distributed system containing robots, when the

weighting constank is given, an optimal trajectory can be

J:/tf 4 ((u- )2+(u- )2) +n71k(d-—6)2dt obtained numerically by solving the equations of motion
0 i; ' 2 i; ' given by Equation 2 using the shooting method (see [22]).



A. Solutions for a five robot system

0 0

The figure on the left in Figure 1 illustrates three different -0.0s N -0.02
solutions that satisfy the equations of motion in Equation 2 -01 004
and boundary conditions in Equation 3 foe=245,¢c=6 -0.15 22:
andd = 2 for a formation of five robots. Since the differences 2 ° o1
among these trajectories are difficult to distinguish orhsuc  °% 012 [
a small graph, the figure on the right illustrates them for the o2 -0.14 AN
third (middle) robot with the difference magnified by a facto 0033 N giz
of 10. ' h

Since k is a parameter in differential equations, it will coe P 0o e P o
clearly affect the solutions. In fact, &ss varied, the nature .
and number of solutions changes. In our prior work [23]

0.1 0.18

we showed that there is a unique solution to the system in o6

Equation 2 wherk is small and in the limit ak approaches 014
infinity, the number of solutions also approaches infinity. 005 / 012 e

In order to present the relationship between the number
of solutions andk, we construct a bifurcation diagram as
follows: since a straight line connecting end points is the

0.08
0.06

optimal solution wherk = 0, we will designate that as a % 0.04

nominal trajectory One measure of the difference between 002

solutions would be their deviation from the straight line ‘o 5 10 15 2 2 o 5 10 15 20 2
nominal solution at some specified time. As long as the - -

different solution are not intersecting at that time, thisud

provide a measure of difference between different solstion

In all the bifurcation diagram illustrated subsequently; 0.35 —

0.25 is used. For different formations and different types of o3
robots, a different value dfmay be a better choice; however, o025
for all the systems studied in this papee: 0.25 appeared ° o2
to adequately represent the relationship among the spkutio 015
Also, while alternative measures of differences between th 0! /
solutions may, in general, be superior, this simple choice %%
appears to suffice for all the cases considered in this paper. °, 5 10 15 20 25
The plots in Figure 2 illustrate this measure of the differ- .
ence between solutions for each robot in the five robot system
ask varies from 0 to 25. In these bifurcation diagrams, the
first robot is the one with the shortest trajectory, the fifth
robot is the one with the longest trajectory and they are
ordered sequentially. A single branch corresponds to ayami
of solutions as the bifurcation parameter is varied. If ¢her
is more than one branch for a specifiedalue, then more B. Solutions for a seven robot system
than one solution was found. Observe that the bifurcation
diagrams for robots 1 and 5 are symmetric to each other
aboutd = 0 axis and the bifurcation diagrams for robots 2 Figures 3 and 4 illustrate similar results for a seven robot
and 4 are similarly symmetric (even though each followsystem. Figure 3 illustrates the trajectories whes 24.5,

a trajectory with a different length). Finally, the bifutmm ¢ =4 and d = 2. Again, because the difference between
diagram for robot 3 is symmetric to itself abodit= 0. any two trajectories is hard to distinguish in the small left
A close analysis of the actual trajectories that the robofigure, the right figure in Figure 3 illustrates the trajegtor

follow, illustrated in the figure on the right in Figure 1, with the deviation from the nominal trajectory for the fifth
reveals that the trajectories themselves aot symmetric robot magnified by a factor of ten. Figure 4 illustrates the
(the two trajectories with pronounced curves intersect, biifurcation diagrams for the solutions verdusonstructed in
not at a point on the straight line solution). A measure that ia manner identical to those of the system of five robots. Ob-
based upon the deviation from the nominal solution appeasgrve that, similar to their counterparts in the five robsieca
to be necessary to determine the real symmetric nature of ttree bifurcation diagrams for robots 1 and 7 are symmetric
solutions. Reference [23] contains the analysis of theesyst to each other aboud = 0 as was the bifurcation diagrams
equations that, when applied to these bifurcation diagram®r robots 2 and 6 and robots 3 and 5, and the bifurcation
proves that these symmetries must, in fact, exist. diagram for robot 4 is symmetric to itself abadit= 0.

Fig. 2. Bifurcation diagrams for a five robot
system.
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IV. THE FINITE DIFFERENCEFORMULATION AND 06 - 06 <
HomMoTOPY CONTINUATION " o4
0.4
The equations of motion given in Equation 2 are obviously o ] O'E ]
equivalent to the coupled second order system i 1 s — |
— — ] - .
o k(=X 1) (dia—d)  k(x—x1) (di—0) —
X= + 0.2 -0.6 =
di—l di ~___ 08
j— K(yi —¥i-1) (difl—d) n K(Yi —Vis1) (di —d) 04T 10 15 20 2 w0 0 5 10 15 20 25 30
di—1 di . .
whered; is the Euclidean distance between robicsidi + 1 o
and d is the desired formation distance between them. In — 08
the finite difference formulation, the time interval is died 02 — 1 -
into equal intervals of length, and the values of the state 0 éé '
variables at time = jh are denoted by/,x!,y/ andy!. s T | o4
Using the usual finite difference approximation for the S~ o2 %;i
second derivative -0.4 . |
T — ]
j+1 j j—1 -0.6 N —
)(J — ﬂ ~ 0.2
i h?2 ’ -0.8
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: Fig. 4. Bifurcation diagrams for a 7-robotic

Even if the denominators are cleared, this is not in polyno- system
mial form becaused; = \/(xi —xi+1)2+(yi —yi+1)2. How-
ever, if we treat eackl! as a variable and add the equation

N 2
(¢)" = 06 —x0)>+ (v = i+2)°, the system is polyno-




mial. In particular, V. CONCLUSIONS ANDFUTURE WORK

This paper considers the optimal control problem for a
formation of multiple robots. The trajectory of each robot
is optimized with respect to a combination of the control
effort and the deviation from a desired formation, which in
this paper is simply a formation that maintains a specified
distance between adjacent robots. The paper first presents
numerical results illustrating the structure of bifurcas and
multiple solutions of the second order nonlinear boundary
_ value problem associated with the optimal control problem.
hd) (k (y,J —yi[l) (dj’i — 1—6)) Initial results which validate the approach using the finite

. o o difference formulation which may be transformed into a
+h2dijfl (k (Y.J _yij+1) (diJ —d)> , polynomial system were also presented. They are consistent
with the results using the shooting method for several small
(d»j>2 _ (x-j _Xij )2+ (yj _yl )2. values of the bifurcation parameter. Due to the complexity o
' Pl vl applying this approach to reconstruct the entire bifucrati
Sincexij,yij and dJ are the variables, the first two equauonsd'agram’ Fhat work will be the subject of a future present_a?i
An additional focus of future efforts relates to generaligi

are third order and the last equation is second order. h ts. Th it ted in thi that
In general, the number of roots of polynomial systemg € resutts. € results presented in this paper that are

scales very poorly. For example, for five robots and thDECIfIC to the system studied are likely to be much more
time stepsj = 1 5andj =0 1’2 there are 15 sets of general than the particular case presented in this paptr-De

these equations, and, in general, for 30 third order equstio m_mg_the most general classe§ of robots and formatlorjls _tha
and 15 second order equations there a0 (which is m_amtam the symmet_ry prppertles of the results and similar
on the order of 1%) roots. However, due to the repeatedb'furcat'on structure is of interest.

structure of the equations, the number of actual solutiens i
greatly reduced. We utilize a solver called Bertini [24],ighh
uses homotopy continuation methods to find the roots of the The authors gratefully acknowledge the very useful dis-
polynomial system and also is capable of preprocessing thgssions with Andrew Sommese.

system to reduce the possible number of solutions based on
system symmetriestc.

Using this approach and the Bertini software on the five[1] T. R. Smith, H. Hanssmann, and N. E. Leonard. Ori-
robot system with two time stepg= 0, 1,2 for several small entation control of multiple underwater vehicles with
values ofk validates the unique solutions in the bifurcation symmetry-breaking potentialsin 40th IEEE Confer-
diagrams (the initial isolated branch in Figures 2 and 4).  ence on Decision and Contigbages 4598-4603, 2001.

dldl, (420 +x ") =
W] (k (¥ x,J ) (dli-1-9))
s () (8-9)).

g, (2 o) =
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