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Abstract— This paper presents the definition of a new type
of dynamic singularity for robotic manipulators. It is applicable l3,mg,J3
to all underactuated robotic systems that can be described by
Lagrange’s equations where the Lagrangian is the kinetic minus
potential energy. The approach is to decompose the velocity at
every point in the configuration space into velocity directions
that can be directly controlled and those that are uncontrolled
and orthogonal to the directly controlled directions. These
uncontrolled directions are controlled only through the dynamic
coupling with the controlled directions and the measure of a
dynamic singularity is then a measure of this degree of coupling.
When this coupling is zero, the mechanism is said to be at
a dynamic singularity. The practical implication is that, at
such points, the dynamics are decoupled and control over the
uncontrolled directions is very weak in that the mechanism will
have to move away from the singularity before the inputs can
affect the uncontrolled velocity directions. An example that is
realistically complicated is presented and simulations show the

effect on (_:ontrol_inputs when the system is operating near a Fig. 1. Underactuated three-link manipulator
dynamic singularity. with joints 2 and 3 actuated and joint 1
. INTRODUCTION unactuated.

This paper presents a proposed metric for dynamic sin-
gularities for robotic mechanical systems. Specifically fo
an underactuated robotic system with equations of motion Lagrangian that the difference between the kinetic and
that can be described by Lagrange’s equations, this metkig;iantial energies of the system.
provides a measure of the degree of coupling between theyn, this paper we establish a framework for using the metric
actuated and unactuated degrees of freedom for the systgfmechanism design so that, if the disturbances that the
Since the unactuated degrees of freedom can only be cQistem will normally be subjected to can be characterized,
trolled through dynamic coupling with the directly contesl  yhe system can be designed to either normally operate away
degrees of freedom, configurations where such coupling {fm the dynamically singular configurations or optimize th
zero are problematic if it is necessary to reject disturBanc |5cation of the actuators for increased effectiveness. The
in the uncontrolled degrees of freedom. ~ main contributions of this paper are 1) a demonstration
This work extends the applicability of some previousy the serious effects of the singularity; and 2) evaluation
results by the authors [10-12], which focused on the Op&gy the metric on a system with realistically-complicated
problem in nonlinear co_ntrol of determmmg conditions fordynamics (the underactuated triple-pendulum illustrdted
controllability of mechanical systems starting from n®¥e  rigre 1), Without the general formulation and the aid of
veIocny._The prior work generally focused on nonholonomic, symbolic mathematics program, computing the metric and
mechanical systems such as the well-known snakeboggd ation of the singularities would be practically impdssi
[1,5, 6, 13] or the rollerblader [8]; whereas, the focus ii8 th ¢, (egjistically-complicated robotic mechanisms.
paper is directed more toward nonlinear manipulator-type ris \ork refers to configurations in which there is com-

mechanisms. However, it is emphasized that the approachje gecoupling between the controlled and uncontrolled
general and applicable to a very broad class of mechanicgliycity directions agiynamic singularities. This term has
systems as is much of the work on control of nonlineapeen ysed previously in slightly different ways that, winite
mechanical systems such as in [6, 7, 9]. As is nearlyjeniical to the present use, are similar to it in nature. For
universally true in the field, the results in this paper arg,ample [15] considers dynamic singularities to be states
limited to nonlinear mechanical robotic systems which havgf a robot that are impossible to attain for causes related
Bill Goodwine is with the Department of Aerospace & Mechahica to t_he robot’s dynamics_. EX‘;‘mpr include _configurations in
Engineering, University of Notre Dame, Notre Dame, Indian&56USA  which the moment of inertia about an axis goes to zero,
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to move its end-effector in some inertial direction. however, we emphasize that the results are general and hold
Much like a kinematic singularity, our definition of a for any degree of underactuation.
dynamic singularity is a function of the robot’s configuositi The foundation of the approach is that a given velogity
and parameters and not a function of its joint velocitiescan be decomposed in the direction of the input vector fields
Unlike a kinematic singularity, however, it also depends oand the orthogonal complement vector fields. In the case of
the system’s inertial properties such as mass and momeatsystem like the three link manipulator, this will be of the
of inertia. Just as a kinematic singularity can be both bafibrm
(necessitating large joint velocities) and good (large Ima@e V=w1Y: +WoYs+ Y. (2)
ical advantage), a dynamic singularity has both desiratde a .
undesirable properties. The primary undesirable property Slnpe thew; andw; te'rms' are the coefficients o qnde,
the aforementioned lack of control authority. A desirabld"€ll rate of change is directly controlied by the inputs. In
property is that if the nature of the disturbances expegenc contrast,s is the coefficient of the vector field orthogonal
by the mechanism near a dynamic singularity are generaﬁg
aligned only with the controlled directions, the uncor&dl t
directions are isolated from those disturbances.

them and can only be affected by the inputs through
e coupling of the natural dynamics of the system. This
decomposition requires that the input vector fields be ligea
independent. If they are not, it may be assumed that a linearl
Il. DERIVATION OF DYNAMIC STABILITY METRIC independent subset is used. If Equation 2 is multiplied en th

This section derives the relevant terms for the dynami@ft by G and thenY,, an expression fos is obtained.

singularity metric. A complete exposition on the basis for Recall thaty; andY; are the input vector fields, so thg-
the description of mechanical systems used in this work cadwz-components of the velocity are directly controlled. A

be found in [2, 4]. straight-forward, but detailed, computation gives an espr

It is a standard result in mechanical systems theory th&ton for the derivative ob. In intrinsic form, it is given by
for a mechanical system with a Lagrangian=T —V, a d
curve y(t) satisfies the Lagrange-d’Alembert principle if it 4t St = ~Wa(t)wp(t) ({(Dv.Yp, Y1)
satisfies —Wa()s(t) ((Oy,YL, Y1)

Oy 1) = G* (F (1) — graaV (y (1), — S(t)Wp(t){(Cy, Yp.Y1)) 3

where ] denotes the covariant derivative a@d is standard = S()s()((Dv, Y1, Y1)
notation for mechanical systems and, in matrix form, is —((gradV,Y.)),

simply the inverse of the inertia matrix. In coordinatess th

where ((,)) is the inner product with respect to the inertia
may be expressed as

tensor and summation over repeated indices is implied. A
Do ; A% complete derivation can be found in [10-12].

i i nipk _ ranikpa ik
O +T8' 0" =TGR —G 26, @ The critical point with respect to Equation 3 is that the

where superscripts on the inertia tensor indicate the usy5PUts do not directly affect it. This is notationally clear
tensor notation that they are the components of its invers%',mply from the fact that therg are no inputs) the. equa_tlon.
F are the components of the applied torques,are the It. is only through the c_oupllng of the _dyngmlc_s with the
magnitudes of the applied torques, and summation ngtlrectly controlled directions (thes velocity directions), or

repeated indices is implied. The Christoffel symbols ard1® natural dynamics of the system, tlsathanges. Hence,
given by the usual formula one measure of the control authority of the system is the

magnitude of the coupling between the controlled velogitie
rk — }G"' <0Gil 4 2Gj _ 0Gii) . ands, which are the inner product terms on the first three
2 06, 06 06 lines of the equation. In coordinates, this expression is

Because thé terms are isolated, Equation 1 is only one step d
away from state space form and is a particularly convenient as(t) = —Wa(t)wp(t) (
representation of the equations of motion. Define the input

vector fields in the usual way by

dleJ( i | rkyvivi [
aeiYa+rinaYp Gk|YJ_

dYLk i K viv] |
—S(t)Wa(t) 7Ya+rinaYL Gk|YJ_

Yi = GI*R2, 00
k
The G-orthogonal complement to the input vector fields, — s(t)wp(t) LY?YLJFFE(J'YLYA GkIYJI_
denoted byY,, may be defined as a linearly independent 06
set of unit-normal vector field that satisfies aYk . i .oV,
_ _ - Lyl rkyly! Y — =Y.
YiGijGMR2 = ((Y.,GYa)) = YKFK = 0 SZ(U(@QI LHTGYLYL )Gl = Yl

and has unit length with respect @, i.e, Y‘lGinLj =1 )
For clarity of presentation, for the rest of this paper wén Equations 3 and 4, the terms multiplying tv@ndsterms
will assume that the systems is underactuated by one inpate what couple the dynamics between the directly conttolle



velocity directions and the velocity component orthogdoal For L = T —V, the equations of motion are given by
them. Hence, the relevant terms that provide a measure lodgrange’s equations
the dynamic coupling in the system are the three forms
d /oL oL 1 2
= (== ) -5 =R'+F
a 0Y,'§ L kvivi | dt \ 26 06
Bi” (Ya,Yp) = | 54 Ya+T§YaYd | GuYL

06 where
a I i rkyivi [ -1 0
B3 (Ya) = 50 Ya+TiYaY] | GuYL ) Fl=q | 1], and F?=1,|-1|.
1
BS (Yp) = (ae‘?Yi + I'!‘J-Y'LY‘§> GuY!. The idea is to consider velocity components aligned with
and orthogonal to the inputs (orthogonal with respect to the

It is these terms, when evaluated for all conﬁgurationsgalonkIneuc energy metric). Thus, a velocity is expressed imeer

a trajectory, that provide a measure of the robustness 8ff the magnitude of three component, wp ands, where

the control authority to disturbances in the uncontrolled 0,

velocity directions. These equations are presented for the v= |6,

case where the system is underactuated by one degree of 05

freedom. Each additional degree of underactuation will add 9 0 1 (1)
one additional set of these equations. _For exgmple, for a —wiG ] 1| +wee | —1] +s|1].
system underactuated by two, there will be six forms to 0 1 1

consider. The term multiplying? does not depend on either
of the controlled velocities. Hence, it affects the rate oNote thatw; and wp are directly aligned with the input
change ofs, but does not provide any measure of how thdéorques and the component is orthogonal (specificall§-
control inputs can affet. Note that these terms adirectly  orthogonal) to both. The presence of the inverse of theiaert
computable and can be determined for any system for whictiensor before the first two vectors arises from converting

the Lagrangian dynamics can be formulated. Lagrange’s equations to state space form, as detailed-subse
quently.
[1l. EXAMPLE: THREELINK MANIPULATOR Since the first two terms are directly aligned with the

inputs, they can be directly controlled. An expression for
As a specific example, consider the three-link manipulatqfow s changes with time provides a measure of the cou-
(triple pendulum) in Figure 1 subjected to gravity with thepjing between the controlled velocities; andw,, and the
base joint free and the other two actuated. The actuator &thogonal velocitys. Unsurprisingly, this coupling depends
joint 2 is attached to link 2, so a positive actuator torqugn the configuration of the robot. In some configurations,
11 applies a positive torque to link 2 and a negative torqughe dynamics are completely decoupled, indicating thakthe
to link 1. Similarly, a positive actuator torque at joint 3 s no instantaneous control authority over the orthogonal
imparts a positive torque on link 3 and a negative torqugirection. In other configurations, there is tight coupling
on link 2. The system configuration is parametrized by the The practical implication is that the expression for this
anglesb, 6, and8s. The notation for the physical parameterscoupling provides a measure of instantaneoius, (high-
is indicated in the figure. bandwidth) control authority over the orthogonal direatio
The inertia tensor is given by which may be interpreted as a measure of a type of dynamic
mechanical advantage.

1 2 1
g(Mu+4(me+9me))IT +J1 - glalo(me +6ms)cosByz g following simulations show the dynamic response of

G= %Illzg(mz +6mg) cosbr %1('1“2 +4mg)15 + the three-link manipulator in three configurations sulgdct
al1lsmgcosfyz 3l2lsmg cOSBz3 to large inputs. In all cases, the acceleration of grayity1,
%I 1l3mgcosbi3 and the parameters are
ZIZEZ?COSGB =1 my = 4 W=7
R =2 m=5 -8
where 6 = 6 — 6;. Using this metric, the kinetic energy is I3=3 mg =6 J=0.

T=10"GH, wheref=[ 6, 6 6 ]T. Since the system
is subjected to gravity, we must consider the potentialggner
which is given by

These values were specifically selected to avoid any simpli-
fications that may occur in more symmetric designs, and the
intentionally omitted units are taken to be consistent. The

1 _ three configurations considered are illustrated in Figure 2
V= 59(|1(m1+ 2my + 6mg) sinBy For configuration 1,

+l2(mz+2mg) sinB, + 13mgsinGs).  (6) (61,62, 63) = (0.25,3.74,2.84),
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Fig. 2. The three configurations of the three-
link manipulator.

Fig. 3. Good control authority illustrated in the
response away from a dynamic singularity in
configuration 2.

which places the manipulator near a dynamic singularity,

although this fact is not at all obvious from a simplejs g function of the configuration and system parameters
inspection of the configuration. For configuration 2, only, the coupling itself is proportional to the velocitis® a
(61,6,,65) = (0,5,1), non-zero velocity is necessary for there to be any coyplmg.
. . o Furthermore, nonzero velocities are more representatiee o
which places the manipulator away from a dynamic singwobotic manipulator or system performing some task.
larity. Finally, for configuration 3, The responses of the uncontrolled velocity direction for
(61,65, 05) — (_LT o _LT) the non-singular configuration 2 are illustrated in Figure 3
LY =TT o) and for the dynamically singular configuration 1 in Figure 4

singularity of the mechanism. Note that neither of the firs@rge torques and a short time interval were chosen to
two configurations is near a kinematic singularity. be representative of the dynamics and characteristic of a

To give a feel for the relative complexity of the equationsmanipulator performing a dynamically demanding task. Note
Y1, Yo andY, are given in vector form as that away from a dynamic singularity (the right-hand plot
Y, = in Figure 2), there is significant control authority in thaet

[ 4(178Coho—27 cO$6:+6,—205)—18CoS Bry+352) application of the inputs significantly alters the magnéud
2 oo o cost By 28] Stens 1259 the uncontrolled velocity. In contrast, for the configuat
near the dynamic singularities illustrated in Figures 4 &nd

6191 cos By, +3780c0s B13+2610cos B,3—82151
2(—362co93—123c0$261,—605)+413coP,r3+82c0361—26,+63))

6191 cos B;,+3780cos B13+2610cos B,3—82151

there is only a very limited response.

Yy = The proper interpretation of the responses isdiffierence
[ 4(178co$,—27 cog 61 +6,—265)—181 coPy3+41cog61—26,+653)) i "
- e between the “no torques” curves and the two numbered
2(6—%1cosglsfézggogzeéf923%+6113c§23923g2125 cases. Where there is a significant difference with and
191cos +3780cos +2610cos —82151 . - . ap . .

2(1681 08 Brp+ 1107 COL20s5— B3) —7(531 Codaa 1 2593) without applied torques, significant coupling exists betwe
9<6191°°S”1z+378°;°5913+2610°°S923*82153 the controlled and uncontrolled directions. Where there is

V/164C0D1,+ 108 CoP13+ 72 C0Py31 506 little difference, the responses are illustrative of a dyita

Y, = 2 singularity. The fact that there is any difference at alltie t

/164 cod;,+108 0%5913+72 €0%9,3+506

singular cases is due to the fact that the system has non-
] . ) zero initial velocity and leaves the singularity. Therefoin
Observe that, is the same form as in Equation 7 excepirjgyre 3, the large difference between the middle and outer

/164 co1,+108 coPy3+72 coDo3+506

for a configuration-dependent scaling.

The response of the system is computed for nine casg@ntrol authority. The small differences between the three
three for each of the three configurations:

1) no input torques;

2) case 111 = 1000 andr, = —1000; and,
3) case 2.1 = —1000 andr, = 1000.
The velocities for the initial conditions in the simulat®n ified. For the same numerical parameter values as in the
were chosen to give the same non-zero magnitude of tlsemulations, direct computations give expressions fos¢he

uncontrolled velocity direction. While the degree of congli

curves is a manifestation of strong coupling and hence good

curves in the plots in Figures 4 and 5 is a manifestation of

the dynamic singularity and hence poor control authority.
The expression for the coupling forms in Equation 5

are too long to present with the parameter values unspec-

coupling terms. In particular, the first forBy, which is the
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Fig. 4. Response near configuration 1, a dy-
namic singularity, illustrating a weak control
response.
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Fig. 5. Response near configuration 3, which is
at both a dynamic and a kinematic singularity
(the responses for cases 1 and 2 are the same
for this configuration), illustrating a weak re-
sponse.

term multiplyingwa(t)wp(t), is identically zero. The second

The numerator of the third fornBs, the term multiplying
S(t)wp(t), is

— 2(—44383sir6;2) — 6191sir2(612))+
3915sir{6; + 6, — 263) + 43465siri6;3) +
3780sir{2(613)) + 1663sir{261, — 65)+
44327 sirf6,3) +52205ir{2(63) ) —
5945sir{6, — 26, + 63)),

and the denominator is the same. When these coupling terms
are zero, the system is at a dynamic singularity because
the orthogonal velocity component is not affected at all by
the controlled velocity directions. Hence, from a disturta
rejection perspective, it is desirable for the couplingrer

to be large.

While complicated, it is relatively simple to find con-
figurations where these coupling terms are zero. The an-
gles of singular configuration 1 in the simulation example,
(61,6,,63) = (0.25,3.74,2.84), were readily computed nu-
merically. More intuitively, by inspection of the numerato
terms, it is clear that they are zero when all the angles have
the same value. The consequence, again, is that if these term
are zeroeven with arbitrarily large torques, the s velocity
cannot be altered until the mechanism moves away from
the configuration. In contrast, away from such points, the
control authority is much better. Such configurations with
large coupling will exist when the denominator term is small
and the numerators are large.

IV. CONCLUSIONS ANDFUTURE WORK

This paper presents a measure of dynamic singularities
for mechanical robotic systems and demonstrated with a
realistically-complicated example the effect and natufe o
dynamic singularities for such systems. They are clearly
problematic for underactuated systems because dynamic
coupling is necessary for complete control authority, and
in some configurations this dynamic coupling will be zero.
Simulation results demonstrated that, analogous to kitiema
singularities, near a dynamic singularity even with vergéa
input torques there is very little effect on the underactdat
velocity directions. The measure is very general in that

and third forms are not zero and are relatively co.mpllicateqit applies to any underactuated mechanical system that is
The numerator of the second forl, the term multiplying governed by Lagrange’s equations where the Lagrangian is

s(t)wy(t), is

— 2(69251siri612) + 123825i112(612) )+
9(—155sir(8y + 6, — 263) + 1702sir{613) +
420sin(2(613)) +453sir(2612 — 63) — 1903 sir{623) —

290sir(2(623)) + 302sir(6; — 26, + 63))),

and the denominator is

(82c0%612) + 54 cog6:3) + 36 cog623) + 253
(6191 co$2(612)) +3780c0$2(6413))+
2610c0$2(623)) —8215]).

kinetic minus potential energy.
There are three areas of future work we intend to pursue.

1) The analysis of dynamic singularities should be very
useful in feedback control design for disturbance re-
jection. Analogous to the notion of the controllability
index for linear systems (see [3]) the expressions for
the forms given in Equation 5 provides a measure
of control authority over the unactuated degrees of
freedom. In the case where some of the disturbances
are likely to be in the uncontrolled directions, it will
generally be desirable to operate the system away from
the dynamic singularities. On the other hand, if the
disturbances are generally aligned with the controlled



2)

3)

directions, then operating near a dynamic singularity[6]
would be advantageous because the uncontrolled di-
rections will actually basolated from the disturbances

due to the lack of dynamic coupling.

With a computable expression for the degree of cou-[7]
pling between the controlled and uncontrolled direc-
tions, mechanisms may be designed to minimize or
eliminate dynamic singularities or to ensure they are

in configurations where they are as inconsequential a$8]
possible. In the latter case, it may be desirable the
singularities can be placed in a region of the config-
uration space where the mechanism is not intended
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the unintended configurations even more problematic,
but that is a consideration the designer would have to
consider.

The above two considerations will be applied to the
specific problem of dynamic bipedal robotic locomo-[10]
tion. Specifically, when designing a gait for a robot,
ensuring maximal coupling throughout the gait will
provide additional robustness for the gait. This can be
accomplished in two stages, first during the design of
the robot and then secondly when designing baselirjé1]
locomotion gaits for it.
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