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Abstract: This paper considers the nonlinear disturbance decoupling problem for a robotic manipulator
that is mounted on a mobile platform. A mobile manipulation system offers a dual advantage of mobility
offered by a mobile platform and dexterity offered by the manipulator. In this work, the tracking and
nonlinear disturbance decoupling problems are studied with particular focus on disturbances due to
uneven terrain. We show that this system possesses the necessary geometric structure for complete
disturbance decoupling between the outputs and disturbances. The disturbances are modeled as changes
in the effect of gravitational forces on the mobile manipulator due to its motion over a uneven
terrain. Simulation results illustrate complete disturbance decoupling even in the presence of significant
disturbances using the designed nonlinear controller.

1. INTRODUCTION

This paper presents results for complete nonlinear disturbance
decoupling for a manipulator mounted on a mobile platform
subjected to varying gravitational forces due to uneven ter-
rain. A mobile manipulators built from a robotic arm mounted
on a wheeled mobile platform provides better capabilities for
numerous tasks. A mobile manipulator combines the dexter-
ous manipulation capability offered by the manipulator and
the motility provided by the mobile platform. Investigation of
their stability, control design, simulation and experimentation
for different situations has been studied by many researchers
including Chen and Zalzala [1997], Wang and Kumar [1993],
Chung and Velinsky [1998], Nikoobin and Rahimi [2009] and
others.

Yamamoto and Yun [1996] studied the effect of the dynamic
interaction between the manipulator and the mobile platform
and showed that the system was feedback linearizable under the
appropriate nonlinear change of coordinates. The manipulator
tracks a desired trajectory in a fixed reference frame. Their
objective was to compensate the dynamic interaction through
a nonlinear feedback to improve the performance of the overall
system. A modular approach of this analysis was presented in
Yamamoto and Yun [1997] which includes a detailed proof
of the functional dependence of some of the dynamic terms of
the equations. In this work, that methodology will be extended
in studying a mobile manipulator in which we will include
external force disturbances into the system. The final goal of
the disturbance decoupling problem is to find a state feedback
law such that the output is unaffected by the disturbance.
Related work on disturbance decoupling have been studied on
robotic manipulators and mobile platforms in Nijmeijer [1983],
Danesh et al. [2005], Joshi and Desrochers [1986], Zhu et

al. [1993], Gao [2006], Papadopoulos and Paraskevopoulos
[1985], Estrada and Malabre [2002] and others.

In the following sections, we present the dynamic equations
of the mobile manipulator which are coupled. A state space
representation of the equations is presented which extends the
derivation in Yamamoto and Yun [1996]. A nonlinear feedback
controller is designed, which includes disturbance decoupling.
The calculation of disturbance forces due to the motion of
the mobile platform over an uneven terrain is presented and
simulation results are presented which illustrate the position
of the mobile manipulator during motion to follow individual
task trajectories for the platform and arm, and other variables.
It is shown that the outputs are completely decoupled from the
disturbances. The main contribution of this paper is applying
the disturbance decoupling method to a problem with practical
utility and with a level of complexity similar to real-world
problems.

2. MODELING EQUATIONS

The equation of motion of the robotic manipulator subject
to vehicle motion Yamamoto and Yun [1996, 1997] can be
extended to include external force disturbances, and it is given
by

Mr(qr)q̈r +Cr1(qr, q̇r)+Cr2(qr, q̇r, q̇v)

= τr−Rr(qr,qv)q̈v + Jr1
T (qr)Fe

r1 + Jr2
T (qr)Fe

r2, (1)

where qr = [θ1,θ2]T denotes the Lagrangian coordinates of a
2R manipulator, qv denotes the Lagrangian coordinates of the
mobile platform, Mr is the inertia Matrix, Cr1 represents the
Coriolis and centrifugal terms, Cr2 denotes the Coriolis and
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centrifugal terms caused by the angular motion of the platform,
τr is the input torque/force for the manipulator, Rr is the inertia
matrix which represents the effect of the vehicle dynamics on
the manipulator, Fe

r1 and Fe
r2 are external force disturbance

vectors on the center of gravity on each arm link and Jr1
T (qr)

and Jr2
T (qr) is the task space Jacobian matrix of each arm link.

Each term matrix/vector is presented in the Appendix.

The equation of motion of the mobile platform with a mounted
manipulator Yamamoto and Yun [1996, 1997] including exter-
nal force disturbances is given by

Mv1(qv)q̈v +Cv1(qv, q̇v)+Cv2(qr, q̇r,qv, q̇v) = Evτv−AT λ
−Mv2(qr,qv)q̈v−Rv(qr,qv)q̈r +EvJv

T (qv)Fe
v, (2)

where qv denotes the Lagrangian coordinates of the mobile
platform and will be described in the next section, Mv1 and Cv1
are the mass inertia and the velocity dependent terms of the
platform, respectively, Mv2 and Cv2 represent the inertial term
and Coriolis and centrifugal terms due to the presence of the
manipulator, τv is the input torque/force to the vehicle, Ev is
a constant matrix, λ denotes the vector Lagrange multipliers
corresponding to the kinematic constraints, Rv represents the
inertia matrix which reflects the dynamic effect of the arm
motion on the vehicle, Fe

v is an external force disturbance
vector on the mobile platform through its center and Jv

T (qv)
is the moving space Jacobian matrix for the mobile platform.
Combining the velocity and inertia terms in Eqn. (1) and Eqn.
(2), respectively, equations of motion of the wheeled mobile
manipulator are simplified to

Mr(qr)q̈r +Cr(qr, q̇r, q̇v) = τr−Rr(qr,qv)q̈v

+ Jr1
T (qr)Fe

r1 + Jr2
T (qr)Fe

r2

Mv(qr,qv)q̈v +Cv(qr,qv, q̇r, q̇v) = Evτv

−Rv(qr,qv)q̈r−AT λ +EvJv
T (qv)Fe

v,

(3)

where Cr = Cr1 +Cr2, Cv = Cv1 +Cv2 and Mv = Mv1 +Mv2.

2.1 Constraint Equations of the Mobile Platform

The following notation will be used in the derivation of the
constraint and dynamic equations, as is illustrated in Fig. 1.

(1) For the mobile platform, (x0,y0) are the coordinates of the
point P0 which is the intersection of the axis of symmetry
with the driving wheel axis in the inertial frame, b is
the distance between the driving wheels and the axis of
symmetry, r is the radius of each driving wheel, θr and
θl are the angular positions of the right and left driving
wheel, respectively, φ = r(θr−θl)/2b = c(θr−θl) is the
heading angle of the mobile robot measured from wX-
axis, d is the distance from P0 to the center of mass of
the platform, mc is the mass of the platform without the
driving wheels and Ic is the moment of inertia of the
platform without the driving wheels about a vertical axis
through P0.

(2) For the manipulator, Pb = (vxb,
v yb) are the coordinates of

the base of the manipulator in the frame Σv, θ1 and θ2
are the joint angles of the manipulator, l1 and l2 are the
arm lengths, respectively, mw is the mass of each driving
wheel and Im is the moment of inertia of each wheel and
the motor about the wheel diameter.

The mobile platform has two co-axial wheels driven by motors.
There are three constraints to which the platform is subjected,
one is that the platform must move in the direction of the axis of
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Fig. 1. Geometry of the mobile platform and the mounted 2R
manipulator.

symmetry, and the other two are rolling constraints, i.e. driving
wheels do not slip. The constraint equations are given in matrix
form as A(qv)q̇v = 0, where qv = [x0, y0, θr, θl ]T and A(qv) is
given by

A(qv) =
[−sinφ cosφ 0 0
−cosφ −sinφ cb cb

]
. (4)

2.2 State Space Formulation of Motion Equations

The dynamics of the wheeled mobile manipulator are gov-
erned by Eqns. (3) and A(qv)q̇v = 0. Since the platform velocity
is always in the null space of A(qv) Yamamoto and Yun [1996],
from A(qv)q̇v = 0, it is possible to define a vector of generalized
coordinates η(t) such that q̇v = S(qv)η(t), where S(qv) is a
4× 2 full rank matrix, whose columns are in the null space of
A(qv). Thus

S(qv) =




cbcosφ cbcosφ
cbsinφ cbsinφ

1 0
0 1


 .

Differentiating q̇v, substituting for q̈v into the first equation in
Eqns. (3) and multiply by ST . Following a similar procedure
for q̈v, which is substituted into the second equation in Eqns.
(3) results in the system of equations[

ST MvS ST Rv
RrS Mr

]

︸ ︷︷ ︸
P

[
η̇
q̈r

]
=

[
−ST MvṠη−STCv
−Cr−RrṠη

]

︸ ︷︷ ︸
ξ

+
[

ST Ev 0
0 I

]

︸ ︷︷ ︸
Q

[
τv
τr

]

+
[

ST EvJv
T 0

0 0

]

︸ ︷︷ ︸
D1

[
Fe

v

0

]
+

[
0 0
0 Jr1

T

]

︸ ︷︷ ︸
D2

[
0

Fe
r1

]

+
[

0 0
0 Jr2

T

]

︸ ︷︷ ︸
D3

[
0

Fe
r2

]
.

Using the state vector x = [qT
v qT

r ηT q̇r
T ]T , the system can be

rewritten as
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ẋ =




Sη
q̇r

P−1ξ




︸ ︷︷ ︸
F(x)

+




0
0

P−1Q




︸ ︷︷ ︸
G(x)

τ +




0
0

P−1D1




︸ ︷︷ ︸
p1(x)

ω1

+




0
0

P−1D2




︸ ︷︷ ︸
p2(x)

ω2 +




0
0

P−1D3




︸ ︷︷ ︸
p3(x)

ω3,

where τ = [τv τr]T , ω1 = [Fe
v 0]T , and ω2 = [0 Fe

r1]T and ω3 =
[0 Fe

r2]T . Hence, the state space form is
ẋ = F(x)+G(x)τ + p1(x)ω1 + p2(x)ω2 + p3(x)ω3. (5)

3. FEEDBACK CONTROL AND DISTURBANCE
DECOUPLING

In this section, subsection 3.1 derives the output equations and
follows Yamamoto and Yun [1996]. Subsection 3.2 includes
disturbance decoupling results not presented in their work.

3.1 Output Equations

The desired task trajectory for the endpoint of the manipulator
Pe in the frame Σw is given by

wPe(t) =
[wxe(t)

wye(t)

]
.

The mobile manipulator shown in Fig. 1 has four inputs, two
from the 2R manipulator and two from the mobile platform.
We may have up to four output variables to be controlled.
First, we select the output variables of the manipulator to be
Pe, which represents the actual location of the end point of the
manipulator. The coordinates of Pe with respect to the platform
coordinate frame Σv are given by

vPe =
[vxe

vye

]
=

[
l1 cosθ1 + l2 cos(θ1 +θ2)+v xb
l1 sinθ1 + l2 sin(θ1 +θ2)+v yb

]
,

where the points vPe and wPe are related by

wPe = wP0 +Rφ
vPe =

[
x0
y0

]
+

[
cosφ −sinφ
sinφ cosφ

][vxe
vye

]
.

The output variables for controlling the mobile platform are
chosen next. The objective of the platform movement is to bring
the manipulator into a preferred configuration. For this purpose,
we pick the configuration with the maximum manipulability
measure as the preferred configuration of the manipulator. The
manipulability measure can be regarded as a distance measure
of the manipulator configuration from singular ones at which
the manipulability becomes zero. At or near a singular config-
uration, the endpoint of the manipulator may not easily move
in certain directions. The effort of maximizing manipulability
measure leads to keeping the manipulator configuration away
from singularity. The manipulability measure for nonredundant
manipulators w = l1l2 |sinθ2| Yoshikawa [1990], and is max-
imized for θ2 = π/2 and arbitrary θ1. The endpoint of the
manipulator at the preferred configuration is denoted by Pr,
called the reference point. The coordinates of Pr in Σv are given
by

vPr =
[vxr

vyr

]
=

[√
l12 + l22 + vxb

vyb

]
=

[
lx
ly

]
.

We look to control the mobile platform in such a way that
Pr is brought to Pe, so the manipulator is brought into the
preferred configuration. Thus, we select the coordinates of Pr
in the inertial frame Σw, i.e.,

wPr =
[wxr

wyr

]
=

[
x0
y0

]
+

[
cosφ −sinφ
sinφ cosφ

][
lx
ly

]

to be the other two components of the output equation. The
output equations for controlling the mobile manipulator are
given by

y =




wxr(x0,y0,θr,θl)
wyr(x0,y0,θr,θl)

vxe(θ1,θ2)
vye(θ1,θ2)




︸ ︷︷ ︸
h(x)

. (6)

The objective of selecting these outputs is that the system
is nonholonomic and it is not input state linearizable, it is
input-output linearizable if a proper set of output equations are
chosen. In addition, these set of outputs made the system proper
for disturbance decoupling as shown next.

3.2 Feedback Input-Output Linearization with Disturbance
Decoupling

We have presented the dynamics of the mobile manipulator in
the state space form Eqn. (5) and the output equation Eqn. (6).
The vector field is modeled through the p(x)s. To achieve input-
output linearization a nonlinear feedback has to be employed.
To simplify state Eqn. (5) we applied the following feedback,

τ = Q−1(Pu−ξ ), (7)
which simplifies the state equation as

ẋ =

[Sη
q̇r
0

]

︸ ︷︷ ︸
f (x)

+

[0
0
I

]

︸︷︷︸
g

u+




0
0

P−1D1




︸ ︷︷ ︸
p1(x)

ω1

+




0
0

P−1D2




︸ ︷︷ ︸
p2(x)

ω2 +




0
0

P−1D3




︸ ︷︷ ︸
p3(x)

ω3,

y = h(x).

(8)

If the disturbances ω , are available for measurements one
can use a control u = α(x) + β (x)v + γ1(x)ω1 + γ2(x)ω2 +
γ3(x)ω3 Isidori [2002]. Then decoupling the output from the
disturbance it is possible. The relative degree of the system is
r = 2, that is the number of differentiations of each component
of the outputs until the input explicitly appears in the derivative
ÿ. Following the analysis of Isidori [2002], the control law
solving the problem of decoupling y is given by
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α(x) =− L f
2h(x)

LgL f h(x)
=− Φ̇

Φ

[
η
q̇r

]
,

β (x) =
1

LgL f h(x)
=

1
Φ

,

γ1(x) =−Lp1 L f h(x)
LgL f h(x)

=−P−1D1,

γ2(x) =−Lp2 L f h(x)
LgL f h(x)

=−P−1D2,

γ3(x) =−Lp3 L f h(x)
LgL f h(x)

=−P−1D3.

So, the nonlinear feedback is given by

u = Φ−1
(

v− Φ̇
[

η
q̇r

]
−ΦP−1 (D1ω1 +D2ω2 +D3ω3)

)
. (9)

The matrix Φ is presented in the Appendix. Substituting this
nonlinear feedback Eqn. (9) into Eqn. (8), we obtain a linear
and decoupled input-output relationship

ÿ =




ÿ1
ÿ2
ÿ3
ÿ4


 =




v1
v2
v3
v4


 = v.

The input-output relationship is decoupled because each com-
ponent of the reference input, vi, controls one and only one
component of the output yi. To complete the controller design,
it is necessary to stabilize each of the above four subsystem
with another constant feedback. Therefore, the entire controller
for the mobile manipulator consists of nonlinear feedback Eqn.
(7) and Eqn. (9), followed by a linear feedback. We have used
a PD computed-torque control law. We look for a desired tra-
jectory yd , which gives ÿ = ÿd −Kvė−Kpe with the tracking
error defined as e = y− yd . For our simulations, Kv = 15 and
Kp = 56 were selected. Our algorithm requires the calculation
of matrix operations, i.e. matrix inverse. During the simulation
we tracked the condition number of the matrices in order to
maintain stability. We used values of Kv and Kp that are well
behaved and asymptotically decay to a constant value once the
tracking errors are diminished.

4. DISTURBANCE FORCES

We are interested in disturbance forces that are position depen-
dent. In this case, we have assumed that the disturbances are
related to changes in the gravitational forces on the system due
to the motion of the mobile manipulator over a uneven terrain.
The uneven terrain is modeled as a surface function U(x,y).
The surface must be known or the robot must be equipped
with a sensor that can determine the orientation of the gravity
vector. The form of the terrain for the simulations in this paper
is illustrated in Fig. 3 and the trajectory used for the simulations
projected onto the x-y plane is indicated by the solid line. For
clarity of presentation, the robot is modeled as moving along a
flat surface, but subjected to a force field that would result from
the uneven terrain.

A unit normal can be calculated at each point on the surface
(or sensed if the robot is there) using n = ∇U/‖∇U‖ = nx î +
ny ĵ + nzk̂. This normal vector is used to project the force due
to gravity onto the XY -plane. The gravitational forces are given
by Wcart = −mwgk̂ for the cart, Wlink1 = −m1gk̂ and Wlink2 =
−m2gk̂ for each link, respectively. The forces are obtained by
using

Fe
v =

(
n ·Wcart

‖n‖2

)
n, (10)

Fe
r1 =

(
n ·Wlink1

‖n‖2

)
n, (11)

Fe
r2 =

(
n ·Wlink2

‖n‖2

)
n. (12)

W

n

n y
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v
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v

x

y
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Normal 
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Side view
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Fig. 2. Modeling of the disturbance forces.
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Fig. 3. Disturbance forces on the mobile platform
and the uneven terrain. Surface function U =
0.25sin(0.5x)sin(0.5y).

5. SIMULATIONS

This section presents simulation results illustrating the ef-
fectiveness of the controller. In the simulation, individual task
trajectories for the mobile platform and arm are investigated.
The mobile platform is initially placed at the origin facing
toward the positive wX-axis of the inertial frame. The ini-
tial head angle is zero, φ(0) = 0. Platform and manipula-
tor parameter values are given in Table 1, we have used the
values used in Yamamoto and Yun [1996]. The entire sys-
tem is assumed to be stationary at t = 0. The initial values
are (x0,y0,θr,θl ,θ1,θ2, θ̇r, θ̇l , θ̇1, θ̇2) = (−0.25,−0.25,0,0,70,
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Table 1. Parameters values used for the simulation

Parameters Values Units
r 0.075 m
b 0.171 m
l1 0.4 m
l2 0.4 m
m1 4 kg
m2 4 kg
mc 94 kg
mw 5 kg
Ic 6.609 kg ·m2

Im 0.135 kg ·m2

Iw 0.010 kg ·m2

d 0 m

−70,0,0,0,0). Individual task trajectories for mobile platform
and arm are

wPe(t) =




wxr(t)
wyr(t)
vxe(t)
vye(t)


 =




vxe(0)+
3
10

t

vye(0)+
3
20

t
mxe(0)

mye(0)+0.7sin
(π

4
t
)




,

where (vxe(0),v ye(0)) = (0,0) and (mxe(0),m ye(0)) = (−0.1,
−0.1). The location of the arm base on the mobile platform are
given by vxb = 0.01m and vyb =−0.01m.

The cart geometry and its center (+) are shown in Fig. 4, the
straight solid line represents the mobile platform trajectory and
the sinusoidal solid line represents the trajectory of the end-
point of the manipulator. Platform and arm positions are shown
at different times, the total period of time for the simulation was
90 seconds. The variations of the joint angles of the manipulator
during time are shown in Fig. 5. The variation of the heading
angle of the platform during the simulation is shown in Fig. 6.
The tracking errors are shown in Fig. 7. We have estimated
the tracking error as the difference of the obtained trajectory to
the desired trajectory as ei(t) = yi(t)− yd i(t), for i = 1, . . . ,4.
Initially there are oscillations in the tracking error, but later are
reduced to very low values as expected.

The outputs are completely decoupled from the disturbance
forces; hence, the outputs do not change with the distur-
bances. The effect of force disturbance can be observed in
the torques required during the motion of the system. The
disturbance forces has been implemented assuming a surface
U = 0.25sin(0.5x)cos(0.5y) and forces were calculated using
the methodology discussed in Section 4. The disturbance force
components on the mobile platform during time are shown in
Fig. 8. The computed torques for control are shown in Fig. 9.

The disturbance force components on the arm links are shown
in Fig. 10. The computed torques for control are shown in
Fig. 11. It can be observed that the disturbances are satisfac-
torily managed by the linear control applied to the linear input-
output relationship.

6. CONCLUSIONS

We have presented the solution to the disturbance decoupling
problem for a system with a manipulator mounted on a mobile
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Fig. 4. Motion of the mobile platform and arm during individual
task trajectories. Solid straight line, linear task trajectory;
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platform. The efficacy of the approach is illustrated by impos-
ing a force field on the system that would result from the mobile
platform traversing uneven terrain. Future work will involve
incorporating recent results of the authors related to the control
of mechanical systems and the notion of dynamic singularities
Goodwine and Nightingale [2010] in order to extend these re-
sults to more complicated systems. Also, a experimental study
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Fig. 11. Computed arm joint torques.

on a real mobile manipulator system will be made to implement
our algorithm and enforce our results.
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APPENDIX

Detailed expressions for all of the terms contained in the
equations of motion for the system.

qv = [vq1
vq2

vq3
vq4]

T = [x0 y0 θr θl ]
T

qr = [rq1
rq2]

T = [θ1 θ2]
T

Mr =




1
3

m1l12 +
4
3

m2l22 +m2l22 cosθ2
1
3

m2l22 +m2l22 cosθ2

1
3

m2l22 +
1
2

m2l22 cosθ2
1
3

l22m2


 ,

Cr1 =



−1

2
m2l22θ̇ 2

2 sinθ2−m2l22θ̇ 2
1 θ̇ 2

2 sinθ2

1
2

m2l22θ̇ 2
1 sinθ2


 ,

Cr2
(i) = 2

m

∑
j=1

n

∑
k=1

n

∑
h=max(i,k)

tr
[

∂Th

∂ rqi
Jh

∂ 2Th
T

∂ vq j∂ rqk

]
vq̇ j · r q̇k

+
m

∑
j=1

n

∑
k=1

n

∑
h=i

tr
[

∂Th

∂ rqi
Jh

∂ 2Th
T

∂ vq j∂ vqk

]
vq̇ j · vq̇k,

Rr
(i j) =

n

∑
k=i

tr
[

∂Tk

∂ rqi
Jk

∂Tk
T

∂ vq j

]
, 1≤ i≤ n, 1≤ j ≤ m,

Ti = TvA1
0A2

1 . . .Ai
i−1, i = 1, . . . ,n ,

A1
0 =




cosθ1 −sinθ1 0 l1 cosθ1

sinθ1 cosθ1 0 l1 sinθ1

0 0 1 0

0 0 0 1




,

Jv =
[

cosφ −sinφ
sinφ cosφ

]
, Jr1 =

[−(l1/2)sinθ1 0
(l1/2)cosθ1 0

]
,

A2
1 =




cosθ2 −sinθ2 0 l2 cosθ2

sinθ2 cosθ2 0 l2 sinθ2

0 0 1 0

0 0 0 1




,

Tv =




cosφ sinφ 0 x0

−sinφ cosφ 0 y0

0 0 1 0

0 0 0 1




,

Jr2 =
[−l1 sinθ1− (l2/2)sin(θ1 +θ2) −(l2/2)sin(θ1 +θ2)

l1 cosθ1 +(l2/2)cos(θ1 +θ2) (l2/2)cos(θ1 +θ2)

]

Mv2
(i j) =

n

∑
k=1

tr
[

∂Tk

∂ vqi
Jk

∂Tk
T

∂ vq j

]
, 1≤ i, j ≤ m,

Rv
(i j) =

n

∑
k= j

tr
[

∂Tk

∂ vqi
Jk

∂Tk
T

∂ rq j

]
, 1≤ i≤ m, 1≤ j ≤ n,

J1 =




1
3

m1 l12 0 0 −1
2

m1 l1

0 0 0 0

0 0 0 0

−1
2

m1 l1 0 0 m1




,

J2 =




1
3

m2 l22 0 0 −1
2

m2 l2

0 0 0 0

0 0 0 0

−1
2

m2 l2 0 0 m2




,

Mv1 =




m 0 −mccd sinφ mccd sinφ
0 m mccd cosφ mccd cosφ

−mccd sinφ mccd cosφ Ic2 + Iw −Ic2

mccd sinφ −mccd cosφ −Ic2 Ic2 + Iw


 ,

Cv1 =




−mcdφ̇ 2 cosφ
−mcdφ̇ 2 sinφ

0
0


 , Ev =




0 0
0 0
1 0
0 1


 ,

Cv2
(i) = 2

n

∑
j=1

m

∑
k=1

n

∑
h= j

tr
[

∂ Th

∂ vqi
Jh

∂ 2Th
T

∂ rq j∂ vqk

]
r q̇ j · vq̇k

+
n

∑
j=1

n

∑
k=1

n

∑
h=max( j,k)

tr
[

∂Th

∂ vqi
Jh

∂ 2Th
T

∂ rq j∂ rqk

]
r q̇ j · r q̇k,

Φ =




Φ1,1 Φ1,2 0 0
Φ2,1 Φ2,2 0 0

0 0 Φ3,3 Φ3,4
0 0 Φ4,3 Φ4,4


 ,

Φ1,1 = (cb− lyc)cosφ − lx sinφ , Φ1,2 = (cb+ lyc)cosφ + lx sinφ ,

Φ2,1 = (cb− lyc)sinφ + lx cosφ , Φ2,2 = (cb+ lyc)sinφ − lx cosφ ,

Φ3,3 =−l1 sinθ1− l2 sin(θ1 +θ2), Φ3,4 =−l2 sin(θ1 +θ2),
Φ4,3 = l1 cosθ1 + l2 cos(θ1 +θ2), Φ4,4 = l2 cos(θ1 +θ2).
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