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ABSTRACT | System integration is the elephant in the china

store of large-scale cyber–physical system (CPS) design. It

would be hard to find any other technology that is more under-

valued scientifically and at the same time has bigger impact on

the presence and future of engineered systems. The unique

challenges in CPS integration emerge from the heterogeneity of

components and interactions. This heterogeneity drives the

need for modeling and analyzing cross-domain interactions

among physical and computational/networking domains and

demands deep understanding of the effects of heterogeneous

abstraction layers in the design flow. To address the challenges

of CPS integration, significant progress needs to be made to-

ward a new science and technology foundation that is model

based, precise, and predictable. This paper presents a theory of

composition for heterogeneous systems focusing on stability.

Specifically, the paper presents a passivity-based design ap-

proach that decouples stability from timing uncertainties

caused by networking and computation. In addition, the paper

describes cross-domain abstractions that provide effective

solution for model-based fully automated software synthesis

and high-fidelity performance analysis. The design objectives

demonstrated using the techniques presented in the paper are

group coordination for networked unmanned air vehicles

(UAVs) and high-confidence embedded control software design

for a quadrotor UAV. Open problems in the area are also dis-

cussed, including the extension of the theory of compositional

design to guarantee properties beyond stability, such as safety

and performance.

KEYWORDS | Control engineering computing; embedded soft-

ware; system analysis and design

I . INTRODUCTION

System integration is currently the largest obstacle to

effective cyber–physical system (CPS) design, which is due

primarily due to a lack of a solid scientific theoretical

foundation for the subject. The absence of a solid under-

standing of the science of system integration is not due to

neglect, but rather due to its difficulty. Most large system

builders have given up on any science or engineering
discipline for system integrationVthey simply treat it as a

management problem. System integration is almost totally

absent from computer science and engineering curricula.
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The huge significance of this problem has long been re-
cognized by industry and considered to be a grand chal-

lenge. In this paper, we present some preliminary results

directed toward a new and comprehensive approach to the

subject.

System integration today relies on ad hoc methods:

After all the components have been designed and manu-

factured, existing integration methods simply aim at

Bmaking it work somehow.[ As the complexity of engi-
neered systems continues to increase, our lack of a syste-

matic theory for systems integration creates more and

more problems. Finding a solution is difficult because sys-

tem integration is the phase where essential design

concernsVusually separated into physical systems, soft-

ware, and platform engineeringVcome together and the

hidden, poorly understood interactions and conflicts

across design domains suddenly surface. Hence, system
integration is particularly challenging in CPS where funda-

mentally different physical and computational design con-

cerns intersect.

As an example, the automotive industry has been

struggling with system integration for many years [1].

Traditional control system development relies on suppliers

to provide system components, each implementing a con-

trol function using software and hardware. The original
equipment manufacturers (OEMs) purchase such system

components and integrate them into a vehicle product.

Since different suppliers implement their products with

different strategies, engineering processes, and tools,

OEMs always face the integration challenge, regardless

of whether the components are designed and developed for

the same vehicle products. The increasing complexity of

electrical and control components, and the use of more
advanced technologies such as smart sensors and actuators,

wireless networks, and multicore processors make the ve-

hicle control integration challenge far worse. OEMs need

solid scientific and engineering foundations that enable

predictable integration of independently developed system

components. Specifically, theories, methods, and tools are

required for: 1) design, analysis, and verification of compo-

nents at various levels of abstraction, including system,
software architecture, and controller level, each of which

is in its own discipline but subject to the constraints from

other levels; 2) composing and analyzing the interactions

between vehicle control and physical systems (e.g., engine,

transmission, steering, wheel, brake, suspension, etc.) to

ensure system-level properties (e.g., stability, safety, per-

formance, cost); and 3) system-level behavior simulation

with incomplete or limited information. Know-how in
system integration is increasingly the differentiator in

competitiveness in automotive as well as other major

industrial sectors such as aerospace, health, and defense.

The need for a science of system integration was first

expressed over a decade ago in the aerospace community

driven by the pressures of rapidly growing complexity of

space systems [2], [3]. We believe that in order to address

these problems, significant progress needs to be made
toward a new science and technology foundation for CPS

integration, one that is model based, precise, and predic-

table. The unique challenges of a CPS integration science

emerge from the heterogeneity of components and

interactions inside CPS systems. This heterogeneity drives

the need for modeling and analyzing cross-domain interac-

tions among physical and computational/networking

domains and demands deep understanding the effects of
heterogeneous abstraction layers in the design flow. Trans-

forming system integration from a high-risk management

practice into a science-based engineering discipline is a

significant challenge.

As CPS-based solutions become ubiquitous, the need

for theories, methods, and tools to ensure predictability of

system behavior has significantly increased and expanded

to most engineering systems. The main contribution of this
paper is to present a CPS integration approach to achieving

compositionality for a critical system level propertyV
stabilityVin networked control systems. The results show

that 1) passivity-based design of the physical dynamics

fully decouples stability from timing uncertainties caused

by networking and computation and 2) cross-domain

abstractions provide effective solutions for model-based

fully automated software synthesis and hi-fidelity perfor-
mance analysis.

In Section II, the paper describes the impact of hetero-

geneity and neglected interactions in the loss of compo-

sitionality which creates tremendous difficulties in system

integration. Section III presents passivity, a powerful sys-

tem property that allows compositional control design and

decouples stability from implementation uncertainties. In

Section IV, the inherent robustness that passivity offers
against uncertainties is exploited for the design of a net-

worked multiagent system that is stable even in the

presence of time-varying network delays and data loss.

Section V presents a correct-by-construction method for

implementation of networked controllers that includes

design of the software components, selection of their

interaction model, and design of their execution on a se-

lected implementation platform. Finally, Section VI sum-
marizes the main conclusions from our preliminary work

and discusses open research directions.

II . IMPACT OF HETEROGENEITY ON
COMPOSITIONALITY

Composition is a technical foundation for all engineering

disciplines; it helps to manage complexity, decreases
time-to-market, and contains costs. The feasibility of

component-based system design depends on two key

conditions: compositionalityVmeaning that system-level

properties can be computed from local properties of

componentsVand composabilityVmeaning that compo-

nent properties are not changing as a result of interactions

with other components [4]. Lack of compositionality leads
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to brittleness, that is, systems that do not behave well

outside a small operational envelope.

Foundations of component-based design are well un-

derstood and successfully applied in many engineering and

computer science disciplines, such as digital logic in
computer engineering, linear control systems in control

engineering, or process algebra in distributed computingV
just to name a few. The common feature of all successful

compositional design frameworks is homogeneity in terms

of the properties to be composed and their semantic do-

main. It should be noted, however, that though homoge-

neity is a common feature in successful compositional

design frameworks, that property in and of itself does not
guarantee compositionality in all cases [5]. Unfortunately,

CPSs are inherently heterogeneous in structure, compo-

nent behavior, and types of interactions among compo-

nents. CPSs have three fundamentally different design

layers: the physical layer and the two Bcyber[ layers: soft-

ware and network/platform layers as shown in Fig. 1. For

example, the desired dynamics of a car engine and its con-

troller is modeled first with physical layer abstractions. The
controller, which is usually implemented as an embedded

system, is modeled using software layer abstractions.

Finally, the software system is deployed on a computation

platform modeled with network/platform layer ab-

stractions. While usually this design process is considered

as refinementVadding more details to higher level

abstractionsVthe differences are more profound; the dif-

ferent abstraction layers use fundamentally different
semantics and composition concepts.

The physical layer embodies physical components and

their interactions which are expressed in continuous

(physical) time. Behavior of physical components is

determined by physical laws that impose relations on the

system variables. Interconnection among physical compo-

nents occurs through shared variables without a prescribed

notion of causality [6]. The mathematics of composition is

based on linear algebra, topology, and analysis. The soft-
ware layer comprises the software components with beha-

vior expressed in logical time. Interconnections are

modeled using various models of computations (MoCs)

[7] where software components are connected using an

input/output (I/O) model with an implied notion of cau-

sality. The mathematics of compositionality is discrete,

based on logic, combinatorics, and universal algebra. The

network/platform layer comprises the hardware side of
CPS architectures and includes the network architecture

and computation platform that interact with the physical

components through sensors and actuators. While execut-

ing the software components on processors and transfer-

ring data on communication links, their abstract behavior

is Btranslated[ into physical behavior. The behavior of the

platforms is modeled by discrete event systems. The math-

ematics of composition is timed automata, hybrid autom-
ata, algebra, and queuing theory.

It is the underlying fundamental differences in the

time, concurrency, and composition models that separate

the composition principles and verification and validation

techniques in the three layers. In general, existing

composition frameworks make assumptions that are

frequently not satisfied across the layers. This is the result

of the phenomenon of Bleaky abstractions[ [8] when the
underlying implementation of a higher level abstraction

influences its semantics unintentionally. Problems emerg-

ing from cross-layer semantic interactions are ubiquitous.

Here are a few.

1) Establishing compositionality for properties in

physical systems (for example, stability) can be

nontrivial even in simple cases. Much of the focus

in control theory has been on restricted system
architectures, such as feedback loops, model-

predictive control architectures, and others, to

make the problems solvable. However, control

theory on the physical layer tends to neglect ef-

fects of implementation of networked controllers

on compositionality. For example, effects of un-

certain processor availability, probabilistic delays,

fixed point arithmetic, coefficient quantization,
and signal quantization introduce nonlinearities

that may result in limit-cycle oscillation and lack

of convergence.

2) Dependability, safety, or security properties are

frequently satisfied with software that have signi-

ficant impact on the predictability of timing pro-

perties of software applications. For example,

multilevel security requirements can be effec-
tively satisfied by using separation kernels. How-

ever, separation kernels interfere with timing

properties and the resulting increased jitter may

lead to unacceptable performance degradation of

the system dynamics.

3) Uncertainty in wireless communication must be

mitigated by the use of complex protocols that

Fig. 1. Design layers in CPS.
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provide improved fault tolerance. These proto-
cols introduce significant time-varying delays in

transmissions that can easily destabilize control

loops.

The impact of these neglected interactions is the loss of

compositionality which creates tremendous difficulty in

system integration. The paper presents a theory of compo-

sition for heterogeneous systems that can enable scaling up

the systems’ size and achieve predictable behavior in terms
of stability and performance. As opposed to pursuing the

development of yet another compositional framework that

works only under assumptions (that may not be met in

CPS) the paper addresses compositionality in layered

systems by introducing decoupling techniques among the

design layers. The rationale for decoupling is twofold: 1) it

limits system complexity by eliminating intractable cross-

cutting interactions among system layers; and 2) it ena-
bles making design changes in one layer without

influencing essential properties in the others. The cost

of decoupling is some level of performance loss relative to

a more optimal but brittle design. Effectiveness of the

approach in narrower problems (e.g., [9]–[11]) inspired

the development of a systematic approach for CPSs de-

scribed in this paper. Our primary target is to decouple

stabilityVa crucial property on the physical layerVfrom
the effects of implementations on software and network/

platform layers.

III . PASSIVITY

Stability is, of course, the primary concern when designing

complex systems. In physical processes, stability can be

analyzed using energy conservation laws, and the theory of

passive dynamical systems provides a strong foundation for

a compositional framework for stability. Traditional pas-

sive systems theory is a powerful tool for system analysis
and control design [12]. Its origins are in electrical circuit

theory where networks of passive circuit components were

known to be stable in various configurations. These

components were often linear, but the general theory of

passivity can be applied to general nonlinear systems.

Passivity theory has been applied to analysis and design of

many systems using a traditional notion of energy. In more

general cases, passivity can be applied even when there is
not a traditional notion of energy, but rather a generalized

energy. This generalized energy can be defined using an

energy storage function. When a storage function exists

and the energy stored in a system can be bounded above by

the energy supplied to the system, the system is passive.

We present a formal definition of passivity [13].

Consider the system H

_x ¼ fðx; uÞ

y ¼ hðx; uÞ

where x 2 X � Rn is the process state, u 2 U � Rm is the
control input, and y 2 Y � Rp is the output of the system.

The system H is said to be passive if there exists a storage
function VðxÞ � 0 such that 8t1 � t0 � 0, xðt0Þ 2 X and

u 2 U

V xðt1Þð Þ � V xðt0Þð Þ �
Zt1
t0

uTð�Þyð�Þ d�:

Note that if VðxÞ is differentiable, we can alternatively

write

_VðxÞ � uTðtÞyðtÞ 8t � 0:

Intuitively speaking, VðxÞ refers to the energy content of a
system while uTðtÞyðtÞ refers to the power being fed to the

system. Passivity implies that energy is being dissipated

from the system. Notice that such an intuition holds ex-

actly for electrical circuits; for more general systems, this

is merely a guide.
There are several variations of this definition but es-

sentially all definitions state that the output energy must

be bounded so that the system does not produce more

energy than was initially stored [14]. Strictly output pas-

sive systems and strictly input passive systems with finite

gain have a special property in that they are ‘2-stable. In
addition if all internal states are zero-state detectable then
the system is Lyapunov stable [15].

The interest on passivity in CPS follows from the fact

that it allows compositional design. Passive systems have a

unique property that when connected in either a parallel

or negative feedback manner as shown in Fig. 2(a) and (b),

respectively, the overall system remains passive. Passivity

is preserved since the energy stored in the interconnection

is simply the sum of the energies stored in each of the

systems, and therefore, a storage function that satisfies the
passivity definition for the interconnected system can be

easily constructed as the sum of the storage functions of the

individual systems. Using these results, large-scale systems

can be shown to be stable by verifying passivity for each

system component and by following simple interconnec-

tion rules. Moreover, a large variety of systems and network

components can be made passive. Thus, passivity is an im-

portant tool for compositional design of large-scale CPS,
particularly when the structure also admits of symmetries.

The theory of passive dynamical systems provides a

strong foundation for a compositional framework for stabi-

lity [14], [16]. Passive systems have infinite gain margin

and at least 900 of phase margin, and thus are able to

tolerate large loop gains [16]. Passive control theory is very

general and broad and applies to a large class of controllers
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for linear, nonlinear, continuous, and discrete-time con-

trol systems. The inherent safety of passive systems has

been widely exploited by researchers in human interacting

machines like smart exercise machines and teleoperated

devices (e.g., [17] and [18]). Further, passivity provides

significant advantages dealing with network delays, data
dropouts, and quantization. The problem of bilateral tele-

operation of a single controller/plant pair for both

continuous- and discrete-time communication channels is

studied in [19]. The approach presented in [20] demon-

strates how to interconnect a continuous-time controller to

a continuous-time plant while maintaining stability for

arbitrary fixed time delays. An approach which allows one

to connect discrete-time controllers to continuous port-
Hamiltonian plants while preserving passivity even with

dropped data and time-varying delays is presented in [21]. A

passivity approach for model-based compositional design of

an experimental networked multirobot system that ensures

the overall system remains stable in spite of implemen-

tation uncertainties such as network delays and data

dropouts is presented in [22]. Passivity has been used also

for group coordination of multiagent systems. A passivity-
based design framework for controlling nonlinear systems

which have been rendered passive through an internal

feedback configuration is presented in [23]. The design

procedure is applied to group coordination problems and

group agreement (consensus). The framework has been

applied to synchronize a group of rigid bodies in [24] and to

combine formation control with path following in [25].

As defined above, passivity is only a binary character-
ization of system behavior based on whether that system

dissipates sufficient energy. However, there are systems

that dissipate significantly more energy than is required to

maintain passivity. Likewise, there are nonpassive systems

that would become passive with a simple loop transfor-
mation. This information can be presented in the form of

passivity indices [26]. The design advantage of the concept

of passivity indices is that even when the system to be

controlled is not passive (or even not stable), the passivity

indexes can be used to design a feedback system that still

renders the interconnection stable [27]. Thus, for instance,

if a linear system G1 is output feedback passive (OFP) with

passivity index �1 and input feedforward passive (IFP) with
passivity index �1, and another linear system G2 is nonpas-

sive with OFPð�2Þ and IFPð�2Þ, then their feedback inter-

connection would still be stable if �1 þ �2 � 0 and

�2 þ �1 � 0. Similar results can be derived for nonlinear

or switched systems. Moreover, using passivity indices, it

can also be checked if the cascade connection of two sys-

tems is passive. We have introduced passivity indices that

allow consideration of systems that may not be passive,
passivity of systems in cascade, design of feedback hybrid

passive systems, and methods for designing complex con-

trol systems based on symmetries and dissipativity [27]–

[29]. These methods can significantly extend the class of

CPSs whose design can exploit passivity.

We have investigated the use of passivity for the design

of networked control systems, and in particular for de-

coupling the control design from implementation uncer-
tainties. We exploit the inherent robustness that passivity

offers against uncertainties to design a networked multi-

agent system that is stable even in the presence of time-

varying network delays and data loss in Section IV, and we

generate control software while ensuring stability is pre-

served in the presence of jitter in Section V.

IV. DECOUPLING CONTROL DESIGN
FROM NETWORK UNCERTAINTIES

Surveillance and convoy tracking applications often re-

quire groups of networked agents for redundancy and

better coverage. An important goal upon deployment is the

establishment of a formation around a target. Although

distributed algorithms using only local communication

that achieve this goal exist, they typically ignore destabi-
lizing effects resulting from implementation uncertainties,

such as network delays and data loss. We address these

issues by introducing a discrete-time distributed design

framework that uses a compositional, passivity-based ap-

proach to ensure lm2 -stability regardless of overlay network
topology, in the presence of network delays and data loss.

Furthermore, we show that asymptotic formation estab-

lishment and output synchronization can be achieved.
Finally, we present simulations of velocity-limited quad-

rotor unmanned air vehicles (UAVs) to illustrate the per-

formance in the presence of time-varying network delays

and varying amounts of data loss.

Performing coordinated tasks in multiagent systems

using only local information has been studied extensively

over the past decade [30], [31]. Typically, in group

Fig. 2. Interconnections that preserve passivity. (a) Parallel

interconnection. (b) Negative feedback interconnection.
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coordination the desired formation emerges from the de-
sign of the control law. In [32], the so-called information

filter is used for formation stability of LTI systems. For

coordination of nonlinear systems, contraction theory with

wave variable communication [33], explicit design of

Lyapunov vector fields [34], and passivity [23], have been

used successfully.

Much of the above work, especially the passivity-based

methods, has considered continuous-time systems; how-
ever, for digital implementation the design must consider

discrete time. In addition, implementation uncertainties

such as network delays and data loss must be taken into

account. In the following, we present results that demon-

strate decoupling between the control design and discrete-

time implementation by using a passivity-based framework

inspired by work in telemanipulation [19], port-Hamiltonian

systems [21], and networked control systems [35].

A. Networked Control System Design
We consider the problem of a multiagent system estab-

lishing a formation in R2 upon deployment. Assume a

global inertial coordinate system and suppose the starting

positions of the agents are arbitrary. The goal is to establish

an n-gon, where the n agents tend to the coordinates of the
vertices asymptotically. Formally, we assign a vertex �i of
the n-gon to agent i, with position piðkÞ, i ¼ 1; 2; . . . ; n.
Then, we require limk!1 kpiðkÞ � �ik2 ¼ 0. We design

the networked multiagent system so that the agents con-

verge to a location defined by a reference signal in a syn-

chronized manner in order to achieve some global task.

Instead of simply relaying the reference independently to

each UAV, we couple their positions in a feedback manner

to ensure synchronization of the global task.
In general, the overlay network is bidirectional with

asymmetric delays. As a simple example, consider the

three node network shown in Fig. 3(a). Each node repre-

sents a quadrotor UAV, with each edge modeling the de-

sired communication between UAVs. Realistically, each

link in the overlay network is subject to delay imposed by

routing, packet handling, and transmission delays. We

model such uncertainties using time-varying delays [e.g.,
dijðkÞ] as shown in Fig. 3(a). Our objective is to provide a

passive-by-construction, discrete-time multiagent net-

work. In the following, we first describe the networked

control protocol focusing on the details required for im-

plementation, we then analyze passivity and stability of the

networked control system, and finally we present simula-

tion results for distributed deployment of a network of

eight quadrotor UAVs.

1) Networked Control Protocol: The agent model is shown

in Fig. 3(b). Each agent i receives an input reference ri,
which influences the output yi of the agent through the

system mapping Hi, which describes a compensated plant.

In this section, we will assume that the system Hi is strictly

output passive. In case when the plant is not passive, it may

be possible to render the system strictly output passive by

using local compensation (as illustrated for the quadrotor

UAV later in this section). As shown in Fig. 3(b), an agent
includes two additional components: the scattering trans-
formation and the power junction PJi. The scattering trans-

formation is used to transform the variables xi and yi into
the wave domain. The node’s wave variables uii and vii, in
turn, are coupled to other nodes through a power junction

PJi, which allows two or more systems to be connected in a

passivity-preserving manner [35].

In distributed control applications, typically the infor-
mation transmitted across the network has inherent

physical meaning. It is well known that transforming

these physical variables into the wave domain can preserve

passivity and stability for a single bidirectional connection

[19] and for star networks [35]. We have extended these

approaches to distributed networks with arbitrary overlay

topology [36]. For each i 2 V, the scattering transformation
produces power waves uiiðkÞ and viiðkÞ defined by

uiiðkÞ ¼
1ffiffiffiffiffiffi
2bi

p biyiðkÞ þ xiðkÞð Þ

viiðkÞ ¼
1ffiffiffiffiffiffi
2bi

p biyiðkÞ � xiðkÞð Þ

Fig. 3. Network and node structure. (a) A three node network.

(b) Node structure.
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where bi denotes the characteristic impedance. This defi-
nition is similar to the one in [18], with the force and

velocity variables replaced with xi and yi. Traditionally, the
scattering formalism has been applied to power variables

(effort and flow) while closing the loop on velocity. Here,

the scattering formalism is used abstractly (without the

physical interpretation) to close the loop on position. The

scattering transformation is treated as a mathematical

definition, where the characteristic impedance bi is de-
fined appropriately for physical consistency (in this case bi
is unitless).

The power junction is a component which allows two

or more systems to be connected in the wave domain in a

passivity-preserving manner. Formally, let ui; vo denote the
inputs and vi; uo denote the outputs of the power junction.
Then, the power junction must satisfy

X
i2Sin

uTi ðkÞuiðkÞ�vTi ðkÞviðkÞ �
X
o2Sout

uToðkÞuoðkÞ�vToðkÞvoðkÞ:

We can implement the power junction using a set of linear

equations that satisfies the above constraints [36]. For each

i 2 V, j 2 Ni, and k 2 Zþ, the outgoing waves are com-
puted as

uijðkÞ ¼
1ffiffiffiffi
ni

p uiiðkÞ viiðkÞ ¼
1ffiffiffiffi
ni

p
X
j2Ni

vjiðkÞ

where ni is the number of neighbors of agent i.
In addition, we specify a set of rules for handling net-

work packets. Due to the presence of delays and data loss,

some (or all) of the vjiðkÞ may not be received at time k, in
which case we set vjiðkÞ ¼� 0. Whenever the receiver’s buf-

fers are empty, we process null packets. Handling delayed

and dropped packets as null packets satisfies the synchro-
nous assumption and preserves passivity [19]. We also

constrain the network by preventing retransmission of

data for each agent. Based on these assumptions, each

channel satisfies the following inequality regardless of

time-varying delays and data loss

ðvijÞN
�� ��2

2
� ðuijÞN
�� ��2

2
; holds 8 N 2 N:

This inequality states that each channel, viewed as the I/O
mapping is passive, and therefore does not introduce

energy into the system.

2) Analysis: Based on the passivity of the interconnec-

tions, we can show that a multiagent network designed

using the protocol described above is lm2 -stable for any

bidirectional overlay network with asymmetric delays

whenever the I/O mapping of each agent is strictly output
passive. Consider a network of n interacting agents imple-

menting the control protocol described above. Then, the

following global energy constraint:

Xn
i¼1

ðuiiÞN
�� ��2

2
� ðviiÞN
�� ��2

2

� �
� 0

is satisfied for all N 2 N, regardless of time-varying delays

and data loss. Further, the entire networked system is

strictly output passive for arbitrary network topologies. It

then follows that the networked control system is lm2 -stable
(proofs of the theoretical results can be found in [36]).

Any system that is strictly output passive is necessarily

lm2 -stable. Therefore, each agent described by Hi is inhe-
rently stable. The benefit of the networked control proto-

col is that it ensures that interactions caused by the

networked do not destabilize the networked multiagent

system. Passivity holds even in the presence of time-

varying delays and data loss.

The coupled multiagent system can establish a desired

formation upon deployment by analyzing the behavior at

steady state [36]. The system will converge to the ideal
steady-state case for constant reference inputs with mode-

rate time-varying delays and data loss because of the dis-

turbance rejecting properties of strictly output passive

systems. Suppose that each agent’s system mapping admits

an invertible steady-state gain matrix Gi (i.e., yi ¼ Giei).
The steady-state output of agent i is given by

yi ¼ Mi ri þ
ffiffiffiffiffiffi
2bi

p ffiffiffiffi
ni

p
X
j2Ni

1ffiffiffiffiffiffiffiffiffi
2bjnj

p ðrj þ KjyjÞ
 !

where

Mi ¼ ðbiGi þ ImÞ�1Gi and Kj ¼ ðbjGj � ImÞG�1
j :

Using this transformation, the references for each agent

can be computed for the UAVs to surround a target and

establish an n-gon.

B. Simulation Results
Our experimental setup involves a network of eight

velocity-limited quadrotor UAVs that communicate in a

regular overlay network topology. The UAVs move in the

plane, and the goal is to form an octagon with each UAV

100 m from a target centered at the origin. The initial

points of the UAVs are randomly selected within the re-

gion between a 1000-m square and the circle with 100-m

radius, both centered at the origin. For simplicity, since
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here we focus on coordination between UAVs, we model

the quadrotor as a point mass in two dimensions described

by

_yIðtÞ ¼ vIðtÞ M _vIðtÞ ¼ fIðtÞ:

A detailed control design that shows that this is a good

approximation when the velocity and the motor thrusts are
below the saturation level is presented in [37]. The de-

tailed quadrotor model is used to illustrate the embedded

control software design in Section V. For each UAV, we

add a local position control system shown in Fig. 4(a). The

closed-loop system of the UAV with the local controller is a

stable second-order system that is not strictly output

passive; however, by adding a high-pass filter in parallel as

depicted in Fig. 4(b), the system may be rendered strictly
output passive This model is discretized using a bilinear-

like transform with sampling period T ¼ 0.01 s, called the

inner-product equivalent sample and hold (IPESH) trans-

form, which preserves the passive properties of the system

[35]. We also include saturation in the actuators fsat to

limit the velocity.

For this example, the overlay network is modeled as an

8-node graph where each node has degree � ¼ 4. It is
assumed that the agents communicate with each other in a

synchronous manner. The networked multiagent system is

implemented in Simulink [38]. TrueTime is used to simu-

late the network for communicating between UAVs [39].

The network protocol used is IEEE 802.11b, with a speed

of 11 Mb/s. Table 1 shows the values of the parameters

used in the example.

Scenario 1: No data loss. We consider time-varying
delays with a nonuniform constant delay bias in all the

communication channels of the network. The delay biases

are between 1 and 2 s. We simulate time-varying delays by

introducing a disturbance node in the network which

floods the network with disturbance packets based on a

Bernoulli process with parameter d ¼ 0:5. The disturbance
node samples a uniformly distributed random variable

X½k� 2 ½0; 1� every 0.05 s. If X½k� > d, a disturbance packet
is forced on the network. Fig. 5(a) shows the average and

maximum errors for the nominal case and the combined

delays with no data loss. The results show that the UAVs

remain stable and converge to the desired configuration

even in the case of time-varying delays.
Fig. 4. Simplified quadrotor UAV model. (a) Nonpassive UAV model.

(b) Strictly output passive UAV model.

Table 1 Parameters for the Network of Quadrotor UAVs

Fig. 5. Results with network delays and data loss. (a) No packet loss.

(b) Five percent packet loss.
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Scenario 2: 5% data loss. In this scenario, 5% packet
loss is introduced with the time-varying delays described

above. A probabilistic model based on a Bernoulli process

is used to implement the loss of packets independently in

each channel. The results, shown in Fig. 5(b), illustrate

that with packet loss the system does not achieve zero

steady-state error. However, the UAVs still manage to

come very close to the desired configuration, demonstrat-

ing the resilience of the network. The UAVs end up within
an average error of 4 m of the desired configuration.

Our results show that passivity improves decoupling

between the controller design and implementation design

layers. In particular, we decouple stability of the net-

worked multiagent system from networked implementa-

tion uncertainties that result in time-varying delays and

data loss. A major concern with passivity-based approaches

is that although they can tolerate network uncertainties,
they may lead to a conservative design that limits the re-

sponsiveness to fast reference signals because of the con-

straints imposed on the controllers. In our design, we

assumed high-frequency signals are filtered and we had to

tune the filter and control gains for improving perfor-

mance. Although the simulations assume ideal models for

the delays and the packet loss, our theoretical analysis

ensures stability of the networked control system without
using such restrictive assumptions. We have also evaluated

the approach using an experimental testbed consisting of

two robotic manipulators controlled over an 802.11 wire-

less network in a laboratory environment and we have

shown that stability is preserved while performance is de-

grading because of the unreliable wireless connection [22].

V. DECOUPLING SOFTWARE DESIGN
FROM PLATFORM UNCERTAINTIES

Passivity-based design decouples stability, which is a key

system-level property, from implementation induced tim-

ing uncertainties. In addition to robustness to timing un-

certainties, correct-by-construction implementation of

networked controllers requires the design of the software

components, selection of their possible interactions, and
the realization of their execution on a selected implemen-

tation platform that leads to further complex challenges.

We use here the term Bcorrect-by-construction[ to express
the goal to eliminate integration-time errors emerging

from undesirable cross-layer interactions. In this section,

we introduce a framework and a suite of tools for address-

ing these challenges, we summarize the main steps of the

design flow for implementing embedded control software,
and we illustrate the more important steps using a quadro-

tor UAV example.

A. Embedded Systems Modeling Language

1) Overview: The Embedded Systems Modeling Lan-

guage (ESMoL) is a software architecture language for

safety-critical software designs [40], [41]. It shares many
concepts with the Architecture Analysis and Design Lan-

guage (AADL) [42], [43], but differs in that it is a much

simpler language, has an intuitive visual notation, and

aims to restrict component interactions available to de-

signers of embedded software and systems to functions

available on platforms that guarantee inherent safety and

fault tolerance properties. Code generators of the ESMoL

tool-chain create functional C code from Simulink sub-
system blocks (similar to Real-Time Workshop [38]), as

well as platform-specific task execution and data commu-

nication code for time-triggered (TT) networks. The

ESMoL tool-chain differs from the Real-Time Workshop

and TargetLink [44] tools in that 1) it makes the archi-

tecture modeling explicit; 2) it gives a great degree of

control to the designer in allocating the computations and

communications to physical resources; 3) it uses a com-
mon TT task execution and communication model im-

plemented via a virtual machine (VM); and 4) it creates a

schedule for the tasks and messages at design time. The

VM relies on static scheduling of the controller network,

with the goal of keeping the software for scheduling and

execution of the controllers simple enough to analyze

formally.

In ESMoL, functional specifications for components
appear in the form of Simulink/Stateflow models or as

existing C code snippets. The execution of Simulink data

flow blocks is restricted to the periodic, discrete-time

model which is consistent with the underlying TT

platform. The platform definition language supports

concepts, relationships, and attributes needed for describ-

ing TT networks. The models cover the network topology,

as well as various parameters to describe performance
parameters like data rates and bus transfer setup times.

Parameters for hardware devices also capture timing reso-

lution, overhead for data transfers, and task context

switching times.

The component architecture, deployment, and timing/

execution models represent different design aspects of the

system. Together, the information expressed in the three

aspects constitutes a complete model suitable for schedul-
ing analysis, platform-specific simulation, and code gene-

ration. The component architecture aspect describes the

logical dataflow among component instances. The seman-

tics of this model is based on task-local synchronous func-

tion invocations (with shared memory messaging for

colocated components) and message transfers between

remote tasks using a TT communication scheme. The de-

ployment aspect captures the realization of component
instances as periodic tasks running on particular proces-

sors. In ESMoL, a task executes on a processing node at a

fixed, periodic rate and all components within the task

execute synchronously. Data exchanged between tasks

take the form of messages in the model. For data transfers,

the runtime system supports logical execution time seman-

tics found in TT languages such as Giotto [45].
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The timing aspect allows the designer to specify com-
ponent execution timing constraints. Individual compo-

nents can be annotated with timing objects that indicate

whether they should be executed strictly (i.e., via statically

scheduled, TT tasks), or as periodic real-time or as sporadic

tasks. Messages are similarly annotated. The annotation

objects contain parameters such as the period and worst

case execution time that must be provided by the designer.

A constraint-based automated scheduling analysis tool cal-
culates the task and message release times. The execution

model also indicates which components and messages will

be scheduled independently, and which will be grouped

into a single task or message object. The temporal order of

the message writers and readers is enforced by the static

schedule. The locality of a message transfer is specified in

the logical architecture and deployment aspects. In the

case of processor-local data transfers, transfer time is neg-
lected as reads and writes occur in locally shared memory.

After a static schedule has been calculated, the timing

objects of the model are back-annotated with the task and

message release times. Behavior of the deployed software

components depends on the execution times of the

functions on the platform, the calculated schedule, and

coordination between distributed tasks. The calculated

static execution schedule can be used to simulate the
control design with the delays introduced by the imple-

mentation to assess the impact of the platform effects on

performance.

2) Key Features: The ESMoL language and tools provide

a single multiaspect embedded software design environ-

ment so that modeling, analysis, simulation, and code

generation artifacts are all clearly related to a single design
model. Models appropriate to the different design domains

are incorporated in a consistent way using the model-

integrated computing (MIC) approach [46]. Models use

language-supported relations to associate Simulink control

design structures with software and hardware design con-

cepts to define a software implementation for controllers.

ESMoL models include objects and parameters to describe

the deployment of software components to hardware plat-
forms. Analysis artifacts and simulation models that are

generated contain representations of the behavioral effects

of the platform on the original design. We include

platform-specific simulations to assess the effects of distri-

buted computation on the control design [47].

The integrated analysis, simulation, and deployment

capabilities can shorten design cycles. The tool suite in-

cludes integrated scheduling analysis tools which converge
quickly in most cases so that static schedules can be cal-

culated in rapid design and simulation cycles [48]. We

include automatic generation of platform-specific task

configuration and data communications code in order to

rapidly move from modeling and analysis to testing on

actual hardware. Finally, we generate analysis models and

code from the intermediate language using simple tem-

plate generation techniques [48]. The incorporation of

calculated schedule analysis results back into the ESMoL

model helps to maintain consistency as models pass be-

tween design phases.

B. Embedded Control Software Design Flow
Fig. 6 depicts the basic ESMoL design flow. The soft-

ware designer imports an existing Simulink control design
into the generic modeling environment (GME) [49], con-

figured to edit ESMoL models, and encapsulates the sub-

system blocks imported from Simulink into software

components that will implement the controllers. The de-

signer also creates models for the hardware architecture of

the TT platform. Finally, the designer instantiates compo-

nents to create multiaspect models that specify logical de-

pendencies, hardware deployment, and timing models. A
completed model is transformed into a model in the

ESMoL_Abstract language, resolving all implied relation-

ships and structural model inferences. Model interpreters

are used to integrate schedulability and timing analysis

tools. Finally, the tool chain allows the generation of

platform-specific simulations of the system implementa-

tion as well as deployable code. Potential targets include

Fig. 6. ESMoL design flow.
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the TrueTime toolkit for platform-specific simulations in
Simulink [39], [47] and the portable TT FRODO virtual

machine [50]. In the following, we describe in more detail

the main steps of the design flow.

The controller implementation starts with the speci-

fication of the controller dynamics at the physical layer

(see Fig. 1). This specification usually takes the form of an

I/O-oriented physical model (for example, in Simulink/

Stateflow). The model can be defined by a 5-tuple MP ¼
hA;D; �; ! Gi. A is a set of activities implemented by soft-

ware primitives. An activity ai 2 A represents a finite set of
computation steps that performs a mapping between its

input and output data. D is a set of data exchanges among

activities. An elementary data exchange di 2 D occurs

among a subset of activities by communicating a finite set

of encoded symbols. The functions � : A ! T and

! : D ! T assign to the activities and data exchanges a
(usually) periodic timing requirement expressed as activity

and message activation rate. Finally, G is an irreflexive

transitive binary relation on A representing data depen-

dences among the activities.

An essential choice for the implementation design is

the model of computation (MoC) that defines the

semantics of interactions among software components. A

key issue in networked embedded controllers is meeting
the time constraints defined by � and !. Satisfaction of

these time constraints must be independent from the

underlying network/platform model, therefore an MoC

that decouples timing requirements on the software layer

from the actual platform-dependent execution times and

communications times is the preferred solution. Accord-

ingly, we have selected the TT architecture [51] where

activities and data exchanges occur according to a precal-
culated periodic schedule. If the performance of the com-

putation platforms and communication channels is

sufficient for satisfying the scheduling requirements then

the overall system operation remains correct.

With these considerations the implementation pro-

gresses in the following steps.

Step 1: Import the controller design MP from the phy-

sical layer in the software implementation environment.
The source controller model from Simulink is imported

to the ESMoL modeling environment [40]. The dataflow

semantics of the original Simulink model is preserved and

is fully represented within the ESMoL model. Software

components in ESMoL are defined by creating references

to Simulink subsystem blocks and to input and output

messages. Instances of these software components corre-

spond to individual runtime tasks. Each task has logical
execution time semantics [52], which means that all input

messages are available before a task consuming them is

released, and output messages of the task are sent at pre-

cisely defined points in time, after the task has finished.

Message types and their data elements are also defined.

Step 2: Design of a network/platform architecture

model H ¼ hP; Li specified as a set of computation nodes,

where L is a set of communication channels and a channel
lj 2 L connects a subset of computation nodes lj 2 P� P.

The ESMoLmodeling environment includes a network/

platform architecture modeling language [41] using the

level of abstraction sufficient for representing software

component and message deployment decisions.

Step 3: Design of a software component architecture

S ¼ hC;Mi where the set of software components C is a

partition over A, and a message mk 2 M; mk 2 C � C is a
subset of di 2 D data exchanges among activities that

belong to different components.

Once components and message types are defined, the

components and messages are translated into platform-

independent functional code. The internal dataflow repre-

sentation of each component is converted into C-code

blocks which are executed on top of a thin virtual machine

that implements the TT execution semantics.
Step 4: Design of mappings � : C ! P and � : M ! L

specifying deployments of software components and mes-

sages to communication channels.

The ESMoL modeling environment provides a deploy-

ment model view for component and message allocation.

Multiple instance of a particular type of component may be

deployed. Messages are mapped to communication chan-

nels via which they will be communicated.
Step 5: Synthesis of schedulers for software compo-

nents and messages controlling the access to processor and

communication resources such that timing requirements

�; ! in the physical model MP are satisfied.

The ESMoL design environment includes a scheduler

that synthesizes the task and a communication schedule

for the distributed platform. Generation of the schedule

requires to use cross-layer abstractions that include model-
ing concepts from all three design layers. The abstracted

specifications are limited to information about platform

connectivity, assignment of tasks to processors, routing of

messages through buses, and timing specifications. Plat-

form-specific performance is represented by worst case

execution time (WCET) and worst case communication

time (WCCT). The specifications are mapped into a finite-

domain integer constraint problem that models dependen-
cies between components (tasks) and messages, exclusive

use of processors and buses, and timing constraints (i.e.,

maximum acceptable latency between tasks). If the prob-

lem is solvable, then a solution will satisfy the specified

timing requirements and will contain start times for each

of the tasks and messages [40].

Step 6: Verification of performance requirements for

the overall physical dynamics including the effects of
implementation.

Our current approach for verifying performance re-

quirements is to synthesize a high-fidelity simulation

model that refines the physical dynamics model MP with

new components modeling essential effects of the con-

troller implementation. We use the TrueTime extension of

Simulink [39] for this purpose. The TrueTime models are
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generated from the software layer and network/platform

layer models using automated model transformations [47].

The TT execution model is used only for running the
closely coupled physical systems components (such as the

flight control system of a quadrotor UAV including proces-

sor nodes and communication buses). Loosely coupled

system components that communicate via wireless net-

works (such as a group of UAVs) interact without a global

communication schedule. As it was described in the pre-

vious section, the passivity-based design can be used to

ensure stability of the vehicle formation, but the overall
performance needs to be verified using simulation.

C. Quadrotor UAV Example
We demonstrate our method by generating the control

software for a quadrotor helicopter. Quadrotor helicopters

are lifted and propelled by four rotors. This architecture

provides agility and high degree of maneuverability. Unlike

traditional helicopters, they do not require a tail rotor to

control yaw and can use four smaller fixed-pitch rotors. By
having smaller rotors, these vehicles can achieve higher

velocities before blade flapping effects begin to destabilize

it and limit performance.

Fig. 7 depicts the control architecture. We design two

proportional-derivative (PD) controllers. The inner-most

loop controller is a Bfast[ PD attitude controller in which

attitude is described by Euler angles. Next, we close the

loop with a second PD inertial (trajectory) controller.
Because there is a significant lag between rotor thrust

commands and the resulting change in thrust due to the

acceleration of the air columns above their respective

rotors [53], we add an additional lead compensator to

minimize this effect. The rotors can only apply a fixed

range of thrust due to motor driver voltage limits which

requires limiting the range of attitude commands using a

saturation function. We also limit the maximum velocities
by adding a position rate change limiter to the desired

inertial position setpoint. The rate change limiter includes

an additional second-order prefilter applied to minimize

overshoot and a similar filter is applied to the yaw setpoint.

The detailed control design that includes justification for

the passive PD controllers and proof of stability can be

found in [37]. Further, the work in [37] shows that the

proposed control design ensures that the controlled

quadrotor UAV can be approximated by a point mass

model (as the model used in Section IV) as long as the
velocity and the motor thrusts are below the saturation

levels.

Our approach described above aims to address cross-

domain interactions. We require stability from the

software-implemented closed-loop system over the full

range of possible inputs. Performance should exhibit rea-

sonable tracking of a reference trajectory within the phy-

sical limits of the vehicle. Simulation-based analysis of the
physical system yields execution rates for the software

control components. Passive design provides a guarantee

of stable operation around a nominal sampling rate, as the

system will tolerate a small number of fixed sampling

delays or of missed data samples.

The controller design provides task periods and static

analysis or code profiling provides execution time speci-

fications for each component instance. Data transfer rates
and overhead parameters are captured in the platform

model. The scheduling process guarantees that the imple-

mentation meets the timing requirements required by the

control design (provided the task execution times are

honored). Scheduling problem specifications include data

dependencies, resource allocation, and end-to-end latency

requirements.

The quadrotor helicopter that we used is the AscTec
Hummingbird AutoPilot from Ascending Technologies

[54]. The quadrotor’s hardware architecture consists of

low level processor board that interfaces with the inertial

measurement unit (IMU) sensors and the motors and a

high level processor board that is used for the control

software. Both are based on the Philips LPC2146

processor, which implements the ARM7TDMI-S specifi-

cation, and include two universal asynchronous receiver/
transmitter (UARTs), serial pheripheral interface (SPI),

synchronous series port (SSP), and other peripherals.

Fig. 8 shows the software components. Sensor_Convert

is the component that converts longitude and latitude re-

ceived by the global positioning system (GPS) to local

coordinates. Outer_Loop is the component for inertial

position control and Inner_Loop for attitude control.

Reference_Handler is used as a reference trajectory.

Fig. 7. Control architecture for the quadrotor control problem.
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UBlox_Parser, IMU_Parser, and HL2LL enable the com-

munication with the low level board by coding and de-

coding sensor and command data. The model assigns each

software component to its own real-time task. In Fig. 8, the

dashed connection from a component to a node reference

represents an assignment of that component to run as a
task on the node. The port connections represent the

hardware channel through which that particular message

will travel. Local data dependencies are not specified here,

as they are represented in the logical software architec-

ture. I/O channel objects (ports) on the node block can

also be connected to message objects on a component.

These connections represent the flow of data from the

physical environment through sensors (input channels) or
the flow of data back to the environment through actuators

(output channels).

Each software component must have timing informa-

tion to fully specify its execution behavior. This includes

execution period and WCET as its parameters. Each exter-

nal data transfer is similarly annotated for TT communi-

cation. For the processor-local data messages, transfer time

is neglected, as reads and writes occur in local, shared
memory. The quadrotor helicopter platform provides a

fundamental sampling rate of 1 kHz. The ExecPeriod attri-
bute for all components is set as shown in Table 2. The

fundamental rate required for the controller is 100 Hz.
Sensor and actuator data rates drive the other components.

For example, since the time between two valid GPS

samples is 100 ms, the ExecPeriod for Blox_Parser is also
100 ms, because it processes the GPS data. The worst case

latency from sensors to actuators must be smaller than

10 ms. Local message transfers may be specified as TT, but

in practice they take place in shared memory and are not

scheduled. The worst case latency from all sensors to any
affected actuators must be smaller than 1 ms.

The memory system consists of 256-KB on-chip flash

memory (ROM) and 32-KB SRAM (RAM). The corre-

sponding binary code is about 110 KB, so it fits in the

system’s ROM space. All the data variables for the com-

munication are preallocated, and from the table we can see

the maximum stack usage of a component is 176 B. None

of the components preempt each other during normal
execution, so storage is not a concern.

VI. CONCLUSION AND
RESEARCH DIRECTIONS

In this paper, we argued for the systematic development of

a science for integrating CPSs that is based on investigating

compositionality in heterogeneous systems. It has been
widely recognized that heterogeneity of system compo-

nents and interactions is a source of emergent behavior in

large-scale systems. However, it is significantly less under-

stood that heterogeneity of abstraction layers used in the

design flows also leads to loss of predictability of system

behavior as a result of cross-layer, semantic interactions

that are neither modeled nor anticipated. Similarly to the

importance of establishing composition and composition-
ality for selected properties inside abstractions layers

(usually called horizontal composition), compositionality

needs to be established across abstraction layers as well

(vertical composition). This paper focuses on vertical

composition using the approach of decoupling crosscutting

interactions. Full decoupling across abstraction layers

means that established properties in individual layers will

be preserved independently from changes and uncertain-
ties in other design layers.

We have demonstrated this research approach in the

context of networked control system design. We have

shown that stability of complex dynamic systems can be

decoupled from timing uncertainties induced by network

and platform effects. We have also shown that the TT

model of computation has a similar role in decoupling

software layer behavior from platform-specific effects.
Starting from the work presented in the paper, research is

needed in many directions, some of which are listed

below.

1) Passivity-based approaches need to be extended

from continuous dynamics to discrete event sys-

tem models as well. The extension would result in

increased robustness in a wider scale of systems,

Fig. 8. The deployment model of the controller software

components.

Table 2 Analyzed WCET and Stack Usage for Each Component
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such as large-scale distributed real-time systems
applications, manufacturing systems, and traffic

management systems.

2) Stability is only one of the essential system pro-

perties. Preserving compositionality in other

properties, such as safety, and performance

requirements are also an important and essential

design goal.

3) Tool support fort model-based integration of CPS
requires significant future research effort. Het-

erogeneous system context requires tool reuse

and rapid construction of domain-specific tool

chains, therefore work in this direction is much
required.

4) Experimental research to validate the scientific

results of the theoretical work as well as the

engineering tools and processes. h
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