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Abstract— This paper considers optimal control of a system
of nonholonomic robots. Control effort and deviation from
a desired formation are minimized for the system of robots
traveling between specified initial and final configurations,
with a bifurcation parameter which is the relative weighting
assigned to the control effort versus the formation constraint.
The main contribution of this paper is an extension of our
previous work which considered the nature of multiple solutions
to a holonomic optimal control problem for a distributed
system. An important aspect of the previous work was that
symmetries in the holonomic system guaranteed symmetries in

the bifurcations of the solutions to the optimization problem. In
the current work, a system of relatively simple nonholonomic
robots break the symmetry in the system, which results in
symmetry-breaking in the bifurcations.

I. INTRODUCTION

Coordinated control of distributed and multi-agent systems

is currently topical and the focus of much research effort

directed toward various applications. For example, [1] con-

siders control of robotic underwater vehicles, [2] deals with

satellite clustering, [3] considers electric power systems, [4]

with search and rescue, and so on. For the specific application

of formation control for mobile multi-robot systems, the lit-

erature can be roughly categorized into three groups: leader-

follower methods [5], [6], [7], behavior-based methods [8],

[9], [10] and virtual structure methods [11], [12], [13]. Also,

more general and powerful results exist, such as in [14], [15].

This paper considers control a formation of robots moving

along an optimized trajectory between specified initial and a

final configurations, and is an extension of our previous work

[16], [17] because it is applied to a system of nonholonomic

robots. The cost function contains two types of terms, one

type which minimizes the control effort for each robot

individually and another type which penalizes deviations

from the desired formation. As the relative preference given

to the two optimization terms is varied, bifurcations in

the nature of the solutions occur, an example of which is

illustrated in Figure 1. In Figure 1, intermediate points of

three different trajectories, all of which are solutions to the

optimal formation problem investigated in this paper, are

illustrated, with the ×, + and ·, respectively at the same

point in time. Given the fact that optimization in robotic

motion planning is common, a complete understanding of the

existence and nature of multiple solutions to such problems

is of great engineering importance.
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Fig. 1. Bifurcations in optimal trajectories for a formation of mobile
nonholonomic robots.

The existence of multiple nontrivial solutions of boundary

value problems for nonlinear second order ordinary differ-

ential equations has been investigated by some authors. Not

surprisingly, however, the results are not as fully developed

as the case for the bifurcation of fixed points for ordinary

differential equations. For example, for x′′ + a(t)f(x) = 0,

x(0) = 0, x(1) = 0, the properties of the solutions depend

on the limiting behavior of the function f(x). Erbe and

Wang [18] studied the existence of positive solutions of the

equation with linear boundary conditions. Also, for

f0 = lim
s→+0

f(s)

s
, f∞ = lim

s→+∞

f(s)

s
,

they showed the existence of at least one positive solution in

two cases, superlinearity (f0 = 0, f∞ = ∞) or sublinearity

(f0 = ∞, f∞ = 0). In [19], Erbe, Hu and Wang showed that

there were at least two positive solutions in the case of super-

linearity at one end (zero or infinity) and sublinearity at the

other end. Naito and Tanaka [20] and Ma and Thompson [21]

established a precise condition concerning the behavior of the

ratio f(s)/s for the existence and nonexistence of solutions.

Their main result was that the problem had at least k
solutions if the ratio f(s)/s crossed the k eigenvalues of

the associated eigenvalue problem. For a class of systems

of second order ODEs, Marcos do Ó, Lorca and Ubilla [22]

used the fixed-point theorem of cone expansion/compression

type, the upper-lower solutions method and degree arguments

to study the existence, nonexistence, and multiplicity of

positive solutions of the boundary value problem. While the

problems they address are similar in nature to ours, none of

these results are, unfortunately, directly applicable to it.

This paper presents bifurcation results for a specific for-

mation control problem. These solutions were found by

using a relaxation method to solve the nonlinear two-point

boundary value problem. The existence of multiple solutions
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Fig. 2. Kinematic MICAbot model.

and their bifurcation structure is important for robotics and

controls engineers who deal with motion planning methods

that are based on optimization techniques. Knowledge of the

existence and nature of bifurcations of solutions of this type

are important for practicing engineers because if a solution

is found that is optimal, but not necessarily desirable, it

may be the case that a different solution for the same cost

function exists and is superior, for example, for obstacle-

avoidance reasons. Searching for multiple solutions of an

optimization problem may be less costly than reformulating

the optimization problem. Also, if the complete bifurcation

structure of the system can be constructed, it provides a

possible obstacle-avoidance scheme in that it a choice can

be made among various locally optimal trajectories.

II. SYSTEM AND SOLUTION METHOD

The nonholonomic model considered in this paper is the

MICAbot platform, a centimeter-scale two-wheeled robot

[23]. Kinematically, it resembles a wheelchair, having three

degrees of freedom and two control inputs. Hence, it is

underactuated by one degree of freedom. Figure 2 shows the

MICAbot geometry. The state variables are x, y, and θ, which

correspond to the three degrees of freedom. The controlled

inputs are u and v, the angular velocities of the wheels. For

all the simulations in this paper, the wheel radius, r, and

half the axle track, b, are assumed to be 2 cm and 5 cm,

respectively.

Assuming a rolling without slipping condition for each

wheel, the kinematics of the MICAbot are described by three

nonholonomic constraints:

ẋ =
r

2
cos θ(u + v)

ẏ =
r

2
sin θ(u+ v) (1)

θ̇ =
r

2b
(u− v).

Using a standard calculus of variations approach with the

cost functional which minimizes the control effort

L∗ =
1

2
(u2 + v2) + λx

(

ẋ−
r

2
cos θ(u + v)

)

+ λy

(

ẏ −
r

2
sin θ(u+ v)

)

+ λθ

(

θ̇ −
r

2b
(u− v)

)

, (2)

we obtain following ordinary differential equations for opti-

mal solutions

ẋ =
r

2
cos θ(u+ v), λ̇x =0

ẏ =
r

2
sin θ(u+ v), λ̇y =0

θ̇ =
r

2b
(u− v), λ̇θ =

r

2
(u+ v)(λx sin θ − λy cos θ)

where

u =
r

2

(

λx cos θ + λy sin θ +
1

b
λθ

)

v =
r

2

(

λx cos θ + λy sin θ −
1

b
λθ

)

.

We use a relaxation method to determine numerical solu-

tions with specified boundary conditions for these equations.

For the system of first-order ODEs, ~x′(t)− f(t, ~x) = 0 and

the finite difference approximation define

~Ek ≡ ~xk−~xk−1−hkf
(

1

2
(tk+tk−1),

1

2
(~xk+~xk−1)

)

= 0,

k = 2, 3, ...,M (3)

where hk = tk − tk−1 and M is the number of mesh

points. If n1 is the number of boundary conditions at the

first boundary and n2 is the number of boundary conditions

at the second boundary, then ~E1 will have n1 nonzero entries

and ~EM+1 will have n2 nonzero entries. Since the relaxation

method is iterative, incremental changes of each dependent

variable, ∆xj,k, between iterations must be determined. A

Taylor series expansion of Equation 3 results in

~Ek(~xk +∆~xk, ~xk−1 +∆~xk−1) ≈ Ej,k(~xk, ~xk−1)

+

N
∑

n=1

∂Ej,k

∂xn,k−1

∆xn,k−1 +

N
∑

n=1

∂Ej,k

∂xn,k

∆xn,k, (4)

where j = 1, 2, ..., N , which gives M × N − (n1 + n2)
equations representing the interior points. For the first and

second boundary conditions, respectively,

~E1(~x1 +∆~x1) ≈ Ej,1(~x1) +

N
∑

n=1

∂Ej,1

∂xn,1

∆xn,1, (5)

~EM+1(~xM+∆~xM ) ≈ Ej,M+1(~xM )+

N
∑

n=1

∂Ej,M+1

∂xn,M

∆xn,M ,

(6)

where j = 1, 2, ..., n1 for Equation 5 and j = 1, 2, ..., n2

for Equation 6. For the solution to converge, the left hand

sides of Equations 4-6 obviously should approach zero.

These equations are linear even if the differential equation is

nonlinear, and hence, ∆xj,k , can be solved for using standard

methods from linear algebra such as Gaussian elimination.
Now, considering a fleet or MICAbots operating in a

coordinated manner instead of a single robot, consider a



MICAbot
Initial, t = 0 s Final, t = 1 s

(x, y), m θ, deg (x, y), m θ, deg

1 (1.0, 0) 90 (0, 1.0) 180

2 (1.1, 0) 90 (0, 1.1) 180

3 (1.2, 0) 90 (0, 1.2) 180

4 (1.3, 0) 90 (0, 1.3) 180

5 (1.4, 0) 90 (0, 1.4) 180

TABLE I

BOUNDARY CONDITIONS FOR 5-MICABOT FORMATION.

system with n MICAbots where the desired distance between
neighboring robots is specified. In that case, if we consider
the cost functional

J =

∫ tf

0

[

1

2

n
∑

i=1

u
2
i + v

2
i +

n
∑

i=1

[

λxi

(

ẋi −
r

2
cos θi(ui + vi)

)

+ λyi

(

ẏi −
r

2
sin θi(ui + vi)

)

+ λθi

(

θ̇i −
r

2b
(ui − vi)

)]

+ k

n−1
∑

i=1

(di,i+1 − d̃)2
]

dt (7)

where di,i+1 =
√

(xi − xi+1)2 + (yi − yi+1)2 and d̃ is the

desired distance between adjacent robots. The differential

equations are relatively straight-forward to derive from cal-

culus of variations; however, they are omitted in complete

detail due to space limitations. The solutions to this set of

differential equations are, of course, trajectories which are

extrema of J . In this set of equations, the parameter k de-

termines the relative importance of minimizing each robot’s

control effort compared to the importance of maintaining

the desired formation. The rest of this paper investigates the

manner in which solutions bifurcate as the values of k are

varied and compare the nature of those solutions to our prior

work with a system of holonomic robots.

III. BIFURCATION OF OPTIMAL TRAJECTORIES

Now, consider a system of five MICAbots and a coordinate

system where the robots are initially in a line evenly spaced

between x = 1.0 m and x = 1.4 m along the x-axis,

each with an orientation of θi = π/2, and assume the final

formation is where the robots are evenly distributed between

y = 1.0 m and y = 1.4 m along the y-axis with an orientation

of θi = π, as summarized in Table I.

With the formation weighting parameter, k, set to zero, the

solutions are as illustrated in Figure 3 and because k = 0,

the desired distance between the robots is not maintained

other than at the boundaries. In the interior of the trajectories,

because of the geometry of the problem, the actual distance

between neighboring MICAbots is less than the desired

distance of d̃ = 0.1.

Remark 1: This paper considers how the solutions for the

system bifurcate as the parameter k varies. It is emphasized

that such bifurcations have important distinctions from stan-

dard bifurcations from dynamical systems theory. Specifi-

cally, the latter considers bifurcations of fixed points of a

dynamical system. For the systems considered in this paper,

we are considering solutions to boundary value problems,

in contrast to initial value problems. Of course, solutions to

0
0

0.2

0.2

0.4

0.4

0.7

0.7

0.8

0.8

1

1

1.2

1.2 1.4

x, m

y
,

m

Fig. 3. Optimal solution for five-MICAbot system when k = 0.

the boundary value problem are fixed points of variations of

the cost function; however, the entire solution is the fixed

point and our desire is to quantify the bifurcations in a

physically-meaningful way. Hence, it is necessary from the

beginning to define the manner in which we are quantifying

the bifurcations.

A. Simulations and Bifurcations of Solutions

The quantity we use to quantify differences between

solutions is taken to be the difference between two solutions

at a specified value of time. The L2 norm would appear

to perhaps be a better choice; however, we wish to use

a measure that will represent a signed difference between

solutions, which in the case at hand will indicate whether

one solution is “above” or “below” the other. Specifically,

in the bifurcation diagrams presented subsequently in this

paper, the quantity used is the distance between a solution

for a specified k-value and the k = 0 solution.

If the value of the bifurcation parameter is increased to

k = 8 × 105, multiple solutions exist, five of which are

illustrated in Figures 4-8. The dotted line in each of those

figures represents the k = 0 solution and the solid lines are

the solution for k = 8× 105. The crosses indicate the each

of the solutions at t = 0.25, 0.50 and 0.75 and the dots

indicated the k = 0 solutions at those same points in time.

As is especially clear in Figure 1, but also in Figures 4-8, part

of nature of the multiplicity of solutions is that neighboring

robots can get “ahead” or “behind” its neighbors. This allows

each robot to track the k = 0 trajectory more closely, which

minimizes the control effort, but also more closely maintain

the formation distance constraint.

Figures 4-8 illustrate multiple solutions for a fixed value of

the bifurcation parameter, k. Now, we construct bifurcation

diagrams by tracking the solutions as k is varied. The

relaxation method is particularly efficient for this because

solutions that have already been determined may be used as

the initial condition for the method. These diagrams illustrate
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Fig. 4. Solution 1, positions marked at t = 0.25, 0.50, and 0.75 s.
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Fig. 5. Solution 2, positions marked at t = 0.25, 0.50, and 0.75 s.
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Fig. 6. Solution 3, positions marked at t = 0.25, 0.50, and 0.75 s.
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Fig. 7. Solution 4, positions marked at t = 0.25, 0.50, and 0.75 s.
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Fig. 8. Solution 5, positions marked at t = 0.25, 0.50, and 0.75 s.

the difference between solutions and the k = 0 solution for

a range of k-values.

It makes sense that as k is increased the number of

solutions to the boundary value problem will increase. This

is because in the limit as k → ∞, only the maintaining

the formation matters compared to the control effort. Hence,

in the limit, one would expect that any trajectory which

maintains distance between the robots is a solution. Figures 9

through 13 are consistent with this.

B. Discussion

These bifurcation results illustrate a subtle, but important

distinction relative to our previous results. Specifically, in

[16], [17], which considered holonomic systems, we showed

that the bifurcation diagrams must be symmetric in that, for

the five-robot formation problem like the one considered

in this paper, the bifurcation diagrams for robots one and

five must be symmetric in that they are reflections of each

other, the diagrams for robots two and four must be similarly
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Fig. 9. Bifurcations at t = 0.25 s for MICAbot 1.
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Fig. 10. Bifurcations at t = 0.25 s for MICAbot 2.
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Fig. 11. Bifurcations at t = 0.25 s for MICAbot 3.
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Fig. 12. Bifurcations at t = 0.25 s for MICAbot 4.
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Fig. 13. Bifurcations at t = 0.25 s for MICAbot 5.

symmetric and the bifurcation diagram for robot three must

be symmetric with respect to itself.

For the current system, this result does not hold. This

is most easily seen for robots two and four at the right

end (high k-values) of the bifurcation diagram where the

branches cross for solutions 1 and 5 and also for solutions

2 and 4, but not at the same k-value (other differences are

similarly evident). This is not a numerical artifact, because

the persistence of this difference was investigated by a grid

resolution convergence study by increasingly refining the

finite difference meshes. In fact, the symmetry of the system

is broken by the MICAbot itself because the left and right

wheels travel different distances along most trajectories that

are not straight lines. The order of the differences between

the bifurcation diagrams appears to be on the order of a

couple percent, which is also approximately the order of the

spacing between the wheels on the MICAbot relative to the

overall length of the trajectory. An interesting area of current

work is to determine whether the differences between the

bifurcated solutions may be bounded, and if so, what sorts

of computational savings may be obtained therefrom.



IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper presented an investigation of bifurcations of

solutions of an optimal control problem for the coordinated

motion of a fleet of nonholonomic robots. The equations of

motion are determined from standard calculus of variations

methods and the resulting boundary value problem is solved

using a relaxation method. The cost functional includes terms

minimizing the control effort of each individual robot as well

as terms penalizing deviation from a desired formation.

Increasing numbers of solutions are expected as increasing

weight is given to the formation terms in the cost functional

because in the limit, if the only terms that matter are the

formation terms, then any one of an infinite number of

solutions is valid. The bifurcation diagrams are consistent

with this in that increasing the bifurcation parameter results

in an increased number of numerically-determined solutions.

An important result which contrasts with our previous work

is that the bifurcation diagrams are not symmetric. Small

differences appear, which are on the order of the ratio

of the length scale of the wheel base of the robots to

the overall trajectory lengths. This symmetry-breaking is

important because from our previous work, we were able

to construct symmetric solutions from other solutions which

resulted in significant computational savings.

B. Future Work

Current and future work is directed toward two areas.

1) Because the differences in the bifurcation diagrams

does seem to be related to the magnitude by which

the symmetry of the system is broken by the robots

considered in this problem, we are focusing on using

this length scale to bound the differences between

the bifurcation diagrams. If such a bound can be de-

termined, then significant computational savings may

result because the existence of one solution may be

used to imply the other and furthermore, in many en-

gineering problems, small variations in solutions may

be tolerated and hence the original solution may be

used as an approximate solution for the approximately

symmetric one.

2) Many formation control problems of this type do not

scale well with system size. Numerical methods such

as algebraic homotopy methods utilized in our prior

work will be investigated to determine the extent to

which all solutions have been determined numerically.
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