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Control of Cyberphysical Systems using

Passivity and Dissipativity Based Methods
Panos J. Antsaklis, Bill Goodwine, Vijay Gupta, Michael J. McCourt, Yue Wang,

Po Wu, Meng Xia, Han Yu, and Feng Zhu

Abstract

In cyberphysical systems, where compositionality of design is an important requirement, passivity

and dissipativity based design methods have shown a lot of promise. Although these concepts are

classical, their application to cyberphysical systems poses new and interesting challenges. The aim of

this paper is to summarize some of the on-going work in this area by the authors.

I. INTRODUCTION

Cyberphysical systems: Cyberphysical systems (CPS) have now emerged as a major re-

search avenue. A precise definition of such systems is difficult to provide both because of the

ambitious scope of the applications that are envisaged and because of the fact that the boundaries

of this research area are still fluid. Roughly speaking, such systems consist of two components:

(i) physical, biological and engineered systems that are usually large scale and complex, and (ii) a

cyber core consisting of communication networks and computational availability that monitors,

coordinates and controls the physical system. The crucial component is the tight integration

between the two components, so that both the analysis and the design of cyberphysical systems

has to be done in a joint framework.

Drivers of cyberphysical systems are obvious. As computers become ever-smaller, faster and

more efficient, and communication networks become better and ever-cheaper, computing and
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communication capabilities are being embedded in all types of objects and structures in the

physical environment. This intimate coupling between the cyber and physical components is be-

ing manifested from the nano-world to large-scale wide-area systems of systems; and at multiple

time-scales. Research advances in cyber-physical systems promise to transform our world with

systems that respond more quickly (e.g., autonomous collision avoidance), are more precise

(e.g., robotic surgery and nano-tolerance manufacturing), work in dangerous or inaccessible

environments (e.g., autonomous systems for search and rescue, firefighting, and exploration),

provide large-scale, distributed coordination (e.g., automated traffic control), are highly efficient

(e.g., zero-net energy buildings), augment human capabilities, and enhance societal wellbeing

(e.g., assistive technologies and ubiquitous healthcare monitoring and delivery).

However, the tight integration of the physical and the cyber components also renders the

development of a systematic analysis and design theory for CPS quite challenging. While various

divisions in systems science - control and estimation theory, networking and communication

theory, processor and software design - have had tremendous successes over past many decades,

these areas have largely developed in isolation from each other. Even the assumptions and models

they use may be incompatible. In CPS, a major challenge is to develop a design theory that does

not consider the physical and cyber components separately, but as two facets of the same system.

Importance of passivity and dissipativity: A tool that has shown great promise in the design

of CPS is that of passivity (and, more generally, dissipativity). Passivity is a classical tool that

allows the usage of energy based approaches to general dynamic systems. Originating in circuit

analysis, passivity has been applied in multiple domains. The reason that it shows great promise

in CPS design is that it allows for compositional design of large-scale systems. Two passive

systems in parallel or feedback configuration form a new system that is passive1. Since passivity

implies other useful properties such as stability, this fact implies that by ensuring that each

subsystem is passive, a complex system can be constructed to satisfy certain properties by

design and undesirable emergent properties not to arise.

Due to this fact, much attention is now being paid to further develop the theory of passivity and

dissipativity, particularly for systems with significant cyber components, both communication and

computation. The main aim of this paper is to summarize some of these research directions as

1Note that concepts such as Lyapunov stability do not share this property.
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pursued by the authors and to present some directions for future work. It should be emphasized

that passivity is not the sole answer to all the design challenges inherent in CPS. However, it is

an important tool that has shown promise and should be developed to the fullest extent.

Organization of the paper: The paper is organized as follows. We begin with a brief

summary of the basic concepts of passivity and dissipativity and their properties in Section II.

In Section III we consider the use of passivity in the presence of communication network effects

such as delays, quantization, and data loss. We then consider systems with both continuous and

discrete dynamics in Section IV. Section V presents some work on the applicability of passivity

to some other issues that arise in CPS. Specifically, we consider preservation of passivity levels

when the system model is known only approximately and study passivity if the system structure

is symmetric. Section VI presents some work on experimental demonstration of passivity based

design. Finally, we conclude in Section VII.

II. PASSIVITY AND DISSIPATIVITY: BASIC CONCEPTS

Definitions: Passivity theory has its origins in circuit analysis where systems made up

of passive circuit elements were known to be stable and form stable feedback loops [1]. The

concept of passivity generalizes the notion of energy by using an ‘energy storage function’ and

an ‘energy supply function’ that measures the energy input to (and output from) the system.

Dissipativity allows the energy supplied to the system to be replaced by a general function of

the system input and output [41] (see also the work on QSR dissipativity [17]); thus generalizing

the concept of passivity. We begin by defining this more general notion. Consider a nonlinear

system of the form
ẋ = f(x, u)

y = h(x, u)
(1)

where x ∈ X ⊂ Rn is the state, u ∈ U ⊂ Rm is the control input, and y ∈ Y ⊂ Rp is the

output2. It is assumed without loss of generality that f(0, 0) = 0 and h(0, 0) = 0. Additionally,

it is assumed that f is Lipschitz with respect to x. A dissipative system is one that stores and

dissipates energy without generating its own energy. The notion of energy supplied to the system

2Unless stated otherwise, we consider continuous time systems in this paper. The concepts and results can be developed in

analogous fashion for discrete time systems as well.
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is captured by an energy supply rate ω(·, ·) where ω : U ×Y → R. The energy stored internally

can be represented for an individual system through a storage function V : X → R+.

Definition 1. The system (1) is dissipative if there exists a non-negative energy storage function

V (x) such that the energy stored in the system is always bounded above by the energy supplied

ω(u, y) to the system over any finite time interval, T ∈ [0,∞),
� T

0

ω(u, y)dt ≥ V (x(T ))− V (x(0)). (2)

This form of dissipativity is general, but in practice it may be difficult to identify an appropriate

energy supply rate. It may be useful to restrict attention to quadratic energy supply rates.

Definition 2. A system (1) is QSR dissipative if it is dissipative with respect to the supply rate

ω(u, y) = y
T
Qy + 2yTSu+ u

T
Ru, (3)

where Q, S and R are matrices of appropriate dimensions.

The special case of passivity can now be defined as follows. Passivity is valid for multi-input

multi-output (MIMO) systems with the condition that u and y are of dimension m.

Definition 3. A system (1) is passive if it is dissipative with respect to the following supply rate,

for δ ≥ 0 and � ≥ 0,

ω(u, y) = u
T
y − δy

T
y − �u

T
u. (4)

Additionally, if � > 0 the system is considered to be input strictly passive (ISP) and if δ > 0,

it is considered to be output strictly passive (OSP). Finally, if both δ > 0 and � > 0 the system

is considered to be very strictly passive (VSP). The nonnegative parameters δ and � are called

the passivity levels of the system3 [18], [47].

Main properties: Passivity and dissipativity offer significant advantages when considering

stability and compositionality of dynamical systems.

Theorem 1. A QSR dissipative system (1) is L2 stable if Q < 0.

3Specifically, � > 0 is the ISP level, δ > 0 is the OSP level and when both δ > 0 and � > 0, (δ, �) are called the VSP levels.
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Internal stability can be shown with an appropriate detectability condition, which is a weaker

condition than zero-state observability for nonlinear systems [5].

Definition 4. A system (1) for which u(t) = 0 ∀t is zero-state detectable (ZSD) if y(t) =

h(x(t), 0) = 0, ∀t ≥ t0, implies limt→∞ x(t) = 0.

Theorem 2. A nonlinear system (1) that is zero-state detectable and QSR dissipative with supply

rate (3) is asymptotically stable if Q < 0.

For the more general notion of dissipativity (2), asymptotic stability can be shown for sys-

tems that are zero-state detectable if ω(u, y) < 0. Passivity provides additional stability and

compositionality results beyond those provided by dissipativity theory.

Theorem 3. A passive system with u(t) = 0 ∀t and a positive definite continuous storage

function V (x) is Lyapunov stable with Lyapunov function V (x).

The class of passive systems that are output strictly passive are also L2 stable. Asymptotic

stability can be shown for output strictly passive systems that are zero-state detectable.

The use of dissipativity and passivity for compositional analysis of large-scale systems relies

on the fact that these properties are preserved in many configurations. Thus, for instance,

dissipativity is preserved when two systems are connected in feedback (Fig. 1). Similarly,

passivity is preserved when systems are combined in feedback or in parallel (Fig. 2).

Fig. 1. The general feedback interconnection of two systems.

Combining the stability properties mentioned earlier with these compositional properties yields

a powerful method to analyze the stability of a large-scale system. Assuming each component

of a system is passive and the components are systematically combined in parallel or feedback,
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Fig. 2. The parallel interconnection of two systems.

the overall system is automatically passive and stable. Similarly, using dissipativity, results of

the following form can be obtained.

Theorem 4. Consider the feedback interconnection (Fig. 1) of two QSR dissipative systems G1

and G2 each with supply rate ωi(ui, yi) = y
T
i Qiyi + 2yTi Siui + u

T
i Riui, for i ∈ [1, 2]. This

interconnection is stable (asymptotically stable) if the following matrix

Q̂ =



 Q1 + αR2 −S1 + αS
T
2

−S
T
1 + αS2 R1 + αQ2



 (5)

is positive semidefinite (positive definite) for some α > 0.

Passivity Indices: The concept of passivity indices allows the introduction of levels of

passivity. This notion is based on earlier work on conic systems [49]. Intuitively, passivity indices

provide a measure of the level of passivity in a system such that a negative value indicates a

shortage of passivity while a positive value indicates an excess. Two indices, the output feedback

passivity (OFP) index ρ and input feedback passivity (IFP) index ν, are needed to fully capture

the level of passivity. Under certain assumptions, the class of systems that have passivity indices

is equivalent to the class of conic systems [28]. The first index ρ can be defined as follows.

Definition 5. A system has OFP index ρ if it is dissipative with respect to the supply rate

ω(u, y) = u
T
y − ρy

T
y. (6)

A positive or zero value of ρ indicates stability in a system while a negative value indicates

instability. Likewise, the IFP index ν can be defined in the following.

May 16, 2013 DRAFT



7

Definition 6. A system has IFP index ν if it is dissipative with respect to the supply rate

ω(u, y) = u
T
y − νu

T
u. (7)

The index ν captures the level of the minimum phase property present in a system. A

thorough background on passivity indices can be found in [5]. Passivity indices can be defined

simultaneously for a given system using a dissipative inequality as follows.

Definition 7. A system has passivity indices ρ and ν if it is dissipative with respect to the supply

rate

ω(u, y) = (1 + ρν)uT
y − ρy

T
y − νu

T
u. (8)

As an example of the use of passivity indices in analysis, we state the following result that

assesses the stability of the feedback interconnection of two systems.

Theorem 5. Consider the feedback interconnection (Fig. 1) of two nonlinear systems, G1 and

G2. Assume that system G1 has indices ρ1 and ν1 while system G2 has indices ρ2 and ν2. The

interconnection is L2 stable if the following matrix is positive definite:

A =



 (ρ1 + ν2)I
1
2(ρ1ν1 − ρ2ν2)I

1
2(ρ1ν1 − ρ2ν2)I (ρ2 + ν1)I



 > 0 (9)

This result is valid for MIMO systems assuming that the dimension of the input is the same

as the output for both systems in the loop, i.e. from Fig. 1 u1, u2, y1, y2 ∈ Rm. The identity

matrices in the theorem are also of dimension m. This result can be used to reduce the analysis

required to assess stability for the feedback interconnection of two systems. Regardless of the

dimension of the system, the dynamics of a system are abstracted to the two parameters of the

indices. This is particularly beneficial when the exact dynamics of the systems are unknown,

since the passivity indices can be chosen to bound the uncertain behavior. Although presented as

an analysis tool, the indices are particularly useful as a control synthesis tool. Given a plant, we

can use its passivity indices to obtain bounds on the acceptable indices of a stabilizing controller.

A controller can then be designed to satisfy other given objectives while satisfying the design

constraints provided by the indices.

Passivity Based Control Design: Passivity has proved useful in control law design [20].

At the most basic level, passivity allows asymptotic stabilization of a plant using any negative
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output feedback. Thus, consider a constant gain output feedback, u(t) = −Ky(t) (K > 0),

which yields the passivity inequality u
T
y = −Ky

T
y ≥ V̇ . With an appropriate detectability

assumption, the state of the system will then converge to zero. Notice that this is true even if

the system is not fully modeled, as long as the passivity of the dynamics can be guaranteed (for

instance, through extensive experiments). Similarly, given a passive plant, any passive controller

will stabilize the closed loop system. As an example, PI controllers with positive gains are always

passive. This allows flexibility in designing controllers based on criteria other than stability. This

is especially useful in switched control when controllers may be chosen for multiple objectives.

A supervisory control scheme can monitor the given plant and switch controllers to meet these

desired objectives.

Another approach to passivity based design is control around an operating point that is not an

equilibrium. While stability is typically studied with respect to the origin, it is often desirable

to operate the system around an arbitrary point in space, x∗. The storage function of a passive

system can be used to design a control input to shape the energy to produce a minimum at the

point x∗. Typically the input is chosen with additional damping so that the state of the system

will converge asymptotically to this desired operating point. More detail on energy shaping and

other passivity based design methods can be found in [33], [34].

III. PASSIVITY AND DISSIPATIVITY FOR NETWORKED SYSTEMS

In CPS, an additional complication is the presence of communication networks to transmit data

among various components. Communication networks introduce many effects such as delays,

data loss, data distortion among others. It is known that such effects can lead to loss of control

performance, and even stability. Extending passivity theory for analysis and synthesis, even in the

presence of such communication effects, has been a major research direction in recent years [19].

We discuss a few representative works below.

Delays: The most obvious effect introduced by a communication network is to delay

any signals transmitted across it. Many traditional results using passivity for analyzing and

synthesizing feedback systems are not guaranteed for systems interconnected over a network with

delays. The most popular approach for compensating for delay when interconnecting passive

systems uses the wave variable transformation [11]. This was first used for telemanipulation
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Fig. 3. Use of the wave variable transformation in a network control scheme. The blocks T1 and T2 are the time delays in the

network. The two blocks labeled WVT are the transformations to wave variables on each side of the network.

systems in [2] and was more recently considered for general networked systems in [21].

Consider the networked control structure given in Fig. 3. System G1 is the mapping e1 → y1

and system G2 is the mapping e2 → y2. Typically one of the two systems is a passive plant and

the other is the controller that is designed to be passive as well. In the simplest formulation that

we consider, the delays in the network are assumed to be constant although the delays T1 and

T2 may be different. The received signals are given by

u2(t) = u1(t− T1) (10)

v1(t) = v2(t− T2). (11)

The wave variable transformation (WVT) is the input-output coordinate transformation given by


 u1

v1



 =
1√
2b



 bI I

bI −I







 y1

y2d



 (12)



 u2

v2



 =
1√
2b



 bI I

bI −I







 y1d

y2



 , (13)

where b is a design parameter. The network can be analyzed in terms of energy storage. The

energy going into the network is the square of the two waves u1 and v2 while the energy coming
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out of the network is the square of u2 and v1, so that the net energy increase VN is given by

VN =
1

2

� t

t0

(uT
1 u1 + v

T
2 v2 − u

T
2 u2 − v

T
1 v1)dτ. (14)

When the system delays are constant, this expression can be simplified to show that the net

energy flowing into the network is positive,

VN =
1

2

� t

t−T1

u
T
1 u1dτ +

1

2

� t

t−T2

v
T
2 v2dτ ≥ 0. (15)

Even in more general cases, the quantity VN is always nonnegative so that the network does not

generate energy. By the definition of energy stored in the network (14), it can be seen that the

energy on the G1 side of the network bounds the energy on the G2 side.

1

2

� T

t0

(uT
1 u1 − v

T
1 v1)dτ ≥ 1

2

� T

t0

(vT2 v2 − u
T
2 u2)dτ (16)

=⇒
� T

t0

y
T
1 y2ddτ ≥

� T

t0

y
T
2 y1ddτ (17)

This fact can be used to show stability of the overall system.

Theorem 6. Consider two nonlinear output strictly passive systems that are interconnected over

a delayed network using the wave variable transformation (Fig. 3). If the delays in the network

are constant, the interconnected system is L2 stable.

Additionally, if the two systems are zero-state detectable, the overall system is asymptotically

stable for r(t) = r2(t) = 0. This approach not only solves the problem of delay for networked

passive systems, but can also be used to handle lost data since lost data can be seen as additional

energy dissipation. While lost data may hurt performance for passive systems, it does not affect

stability.

The presentation so far assumed that the delays are constant. However, typical communication

channels have time varying delays. This introduces a problem since energy may be added or

removed from time varying delays. One solution to this problem is to modify the wave variable

transformation to exactly compensate for energy that is added or removed. This forces the

network to be passive and in fact lossless in the case that no data is lost. This assumes that rate

of change of the time delays is upper bounded and that the magnitude of the delay is measurable

in real time [8]. This approach has also been considered for networking passive switched systems

[30].
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Fig. 4. Sector Bounded Quantizers considered in this paper.

Quantization: Another basic effect introduced by almost every communication channel is

the need to quantize any signals that are transmitted across it. Control using quantized feedback

has been an important research problem for a long time, see e.g. [6], [10], [12]. However,

passivity preservation in the presence of quantization is less well-studied. The work in [51]

considered quantizers that are based on the sector bound method (see also [10], [12]) that satisfy

au
T
u ≤ u

T
Q(u) ≤ bu

T
u, (18)

where Q(u) is the output of the quantizer with input u and 0 ≤ a ≤ b < ∞, see Fig. 4. This

kind of quantizers includes several popular quantizers, such as the logarithmic quantizer and the

mid-tread quantizer. For these quantizers, results of the following form can be proved.

Theorem 7. Consider system models as shown in Fig. 5. Assume that system Σ2 with input u

and output y2 is OSP for ρ > 0 and the quantizer Qi satisfies aiuT
u ≤ u

T
Qi(u) ≤ biu

T
u, where

0 ≤ ai ≤ bi < ∞ and i = 1, 2. If a transformation matrix

M �



m11Im m12Im

m21Im m22Im





is chosen such that
m21 = 0, m

2
11 = 2b22

m11m12 =
−b

2
2

ρ
, m

2
12 =

b
2
2b

2
1

ρ2
m

2
22,

(19)
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Fig. 5. Input output coordinate transformation used in [51] to preserve OSP level of Σ1 under quantization.

1y

2y

u

u 2Q

1

2

11Q

Fig. 6. Quantized-input, Quantized-output system: Σ1 is L2 stable and the quantizer Qi satisfies (18) with 0 ≤ ai ≤ bi < ∞

for i = 1, 2. The control input u and the outputs y1, y2 are of the same dimensions.

then the system Σ̃ with input ũ and output ỹ is OSP for ρ > 0.

In general, even if system Σ1 and quantizers Qi (i = 1, 2) are passive, system Σ2 (the system

including input and output quantizers as shown in Fig. 5) may not be passive [48]. However, an

appropriate transformation matrix M can be chosen to ensure that the system Σ2 is passive.

Another direction that was developed in [46] was to investigate whether a quantized system

retains any passivity guarantees if the original unquantized system is passive. Results of the

following form were shown.

Theorem 8. Consider system models in Fig. 6, where Σ2 is quantized version of the system Σ1.

Assume that Σ1 is L2-stable, i.e. there exists a κ > 0 such that �y1, y1�T ≤ κ
2�u, u�T , ∀T ≥ 0

and ∀u. The quantizer Qi satisfies aiu
T
u ≤ u

T
Qi(u) ≤ biu

T
u, where 0 ≤ ai ≤ bi < ∞. If Σ1

is ISP for ν > 0, then the following results hold:

1) Σ2 is ISP for ν − κ(1 + b1b2) if κ(1 + b1b2) < ν;

2) Σ2 is passive if κ(1 + b1b2) ≤ ν.

By setting a1 = b1 = 1 in the above result, we obtain the case when only the output of Σ1 is
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quantized. Likewise, by setting a2 = b2 = 1, we have the case when only the input is quantized.

Packet losses: Another important effect introduced by communication networks is data loss

through causes such as wireless channels, medium access protocols and so on. The data loss

can be stochastic or deterministic. Data loss can cause stability and performance loss in control

systems. Much work has been done to characterize and mitigate such performance loss.

For passive systems, as discussed above, data loss represents energy dissipation. Hence, while

lost data may hurt performance for such systems, it does not impact stability. An interesting

formulation was considered by [39] for systems that are not passive, but feedback passive. A

feedback passive system requires an external control input to render it passive. Thus, if the

control input is transmitted across a network that erases packets, the system may run closed

loop at some time steps, but open loop at others. Since the energy dissipation inequality is

guaranteed to hold only at the time steps when the control input is received, the overall system

may no longer be passive.

The work in [39] considered a discrete time system that evolves as

x(k + 1) = f (x(k), u(k))

y(k) = h (x(k), u(k)) .
(20)

The control input u(k) is transmitted across a communication network. At some time steps, the

control input is erased, and u(k) = 0 is applied. For such systems, passivity was defined as

follows.

Definition 8. A system (20) is passive with initial condition x(0) if there exists a positive definite

energy storage function V (x) such that the energy stored in the system is always bounded above

by the energy supplied to the system over any finite time interval, T ∈ [0,∞),
T−1�

k=0

u
T (k)y(k) ≥ V (x(T ))− V (x(0)). (21)

Note that this is the discrete version of the original Definition 3. The basic idea of the work

is that even if the energy stored in the system is not bounded above by the energy supplied to

the system at every time step due to lost packets, the inequality (21) may still hold if the packet

loss rate is small enough. This intuition was formalized in the following result. First, we define

the concept of feedback passivity.
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Definition 9. A system (20) is feedback passive with initial condition x(0) if there exists a

positive definite energy storage function V (x) and a function η(x, u) : X×U → X that is locally

regular such that for any valid control sequence {v(k)}, the system evolving with the control

input u(k) = η(x(k), v(k)) satisfies the inequality over any finite time interval, T ∈ [0,∞),
T−1�

k=0

v
T (k)y(k) ≥ V (x(T ))− V (x(0)). (22)

Theorem 9. Consider the system (20). Assume that there exist constants ξ > 1 and 0 < σ ≤ 1

such that

V (f(x(k), 0)) ≤ ξV (x(k))

V (f(x(k), v(k))) ≥ σV (x(k)),

where {v(k)} is the sequence of inputs that ensures that the output y(k) is identically zero. If

for any time T , the ratio r(T ) of the time steps at which packets are lost to the time steps at

which packets are successfully transmitted is bounded by

r(T ) ≥ (T − 1) log ξ

log ξ − log σ
,

and the initial conditions |x(0)| ≥ δ and |v(0)| ≥ δ for some δ ≥ 0, then the system is locally

feedback passive.

This formulation has further been considered for general switched nonlinear systems with both

passive and nonpassive modes [40].

IV. SYSTEMS WITH BOTH CONTINUOUS AND DISCRETE REPRESENTATIONS

Cyberphysical systems have both continuous dynamics due to the physical part and discrete

switches due to the cyber component. While a general theory of passivity of such systems is

still not available, exciting work is being done in this area.

Sampled data control: The simplest form of systems with both continuous and discrete time

dynamics are systems that employ sampled data control. For simplicity, we assume that there

is no quantization used. Sampled data control systems arise in CPS both because continuous

physical systems are typically controlled by digital devices, as also due to the fact that most

communication protocols are disrete time [4], [7]. Consider a continuous-time system Σ1 with
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2

1 )(ty

kud

)(tu

kyd

Fig. 7. Sampled-data System with an ideal sampler and a ZOH device, for which u(t) = ud(k) for kh ≤ t < (k + 1)h,

yd(k) = y(kh) for all k ≥ 0, where h represents the sampling period.

input u(t) and output y(t) and a sampled-data system Σ2 with input ud(k) and output yd(k)

as in Fig. 7. A simple discretization method is to use a sampler and a zero-order hold (ZOH)

device. For this method, the control inputs for Σ1 and Σ2 are related as u(t) = ud(k) for

kh ≤ t < (k + 1)h, where h represents the sampling period and the outputs of the two systems

are related as yd(k) = y(kh) for all k ≥ 0. It is well known that passivity may not be preserved

under this discretization scheme (see e.g. [22], [32], [51]). Passivity degradation under standard

discretization has been studied in [32] with the following assumption.

Assumption 1. Suppose for Σ1, there exists α > 0 such that for any T ≥ 0 and all u ∈ Rm,
� T

0

�ẏ(t)�2dt ≤ α
2

� T

0

�u(t)�2dt. (23)

With this assumption, [32] proved the following result.

Theorem 10. Consider a continuous-time system Σ1 and its sampled-data system Σ2 obtained

as described above. Suppose that Assumption 1 is satisfied. The following results hold:

1) If Σ1 is ISP for ν > 0, then its discretization Σ2 is ISP for ν − αh for a small enough

sampling period h.

2) If Σ1 is VSP for (ρ, ν), then its discretization Σ2 is VSP for (ρ̃, ν̃) for a small enough

sampling period h, where

ρ̃ = ρ− hαρ,

ν̃ = ν − hα− hαρ− h
2
α
2
ρ.

Similar results were also obtained in [46] for other passivity notions.

Theorem 11. Consider a continuous-time system Σ1 and its sampled-data system Σ2 obtained
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from standard discretization, as shown in Fig. 7. Suppose that Assumption 1 is satisfied.

1) If Σ2 is ISP for ν > 0 and αh < ν, then Σ1 is ISP for ν − αh;

2) If Σ2 is ISP for ν > 0 and αh ≤ ν, then Σ1 is passive;

3) If Σ2 is VSP for (ρ, ν) and α
2
h
2−(ρ− 2

ρ)αh+ν
2−2 ≥ 0, then Σ1 is VSP for (ρ−αh, ν−αh);

4) If Σ2 is VSP for (ρ, ν) and ρν
2 + ν − αh ≥ 0, then Σ1 is passive.

These results provide bounds on how coarse the discretization interval can be while maintaining

passivity. Thus, for instance, if Σ1 is ISP for ν > 0, from αh ≤ ν, we obtain that ν
α provides

an upper bound for the sampling period h for preserving passivity. When α is large (the system

may be oscillatory [32]), we need a small sampling period h to ensure passivity.

These results also indicate that input strictly passivity of system Σ1 may be needed to ensure

the passivity of system Σ2 obtained using a sampler and ZOH. One possible approach to avoid

this stricter assumption is to define yd as

yd(k) =
1

h

� (k+1)h

kh

y(t)dt,

which is called average discretization in [32] (see also [9]). With this signal used as the output

of the discretized system, both passivity and passivity levels are preserved after discretization.

Another approach used in [22] is to use a passive sampler and hold under which passivity and

output strictly passivity can be preserved.

Switched systems: Switched systems are modeled as a family of subsystems with a rule

to specify switching among them that determines which subsystem is active at any time. When

the rule is not specified, the switching is allowed to be arbitrary. Switched systems represent an

important class of hybrid systems where the continuous state must be continuous for all time

(see, for example, [23], [24] and the references therein).

There is significant existing work on dissipativity in continuous time [50] and discrete time

[25], [40] for switched systems. The concept of passivity indices has also been extended to such

systems [29]. Analogous to the use of multiple Lyapunov functions for stability of switched

systems, most works consider dissipativity for switched systems by using multiple storage

functions. With a different storage function for every mode, the subsystems may be dissipative

with respect to a different supply rate. In addition, the notion of cross supply rate is used to

capture energy transfer from each active subsystem to each inactive subsystem. A representative
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result is now provided for dissipativity of switched systems of the form,

ẋ = fi(x, u)

y = hi(x, u),
(24)

for i ∈ {1, ...,M}. For each subsystem i, fi are assumed to be Lipschitz with respect to x,

fi(0, 0) = 0, and hi(0, 0) = 0. The switching signal σ(t) can be used to indicate the active

subsystem out of the set Σ = {1, ...,M}, i.e. σ : R+ → Σ. Any particular switching instant can

be denoted by tik , which is the k
th time that the i

th subsystem becomes active for i ∈ Σ. This

system becomes inactive at time t(ik+1) and becomes active again at time ti(k+1)
. It is assumed

that on any finite time interval, t0 to an arbitrary time T , the system switches a finite number of

times K, where K can depend on the value of T . Dissipativity for switched systems is defined

in the following [31]4.

Definition 10. A switched system (24) is QSR dissipative if there exist storage functions Vi(x)

bounded by class-K∞ functions

αi(||x||) ≤ Vi(x) ≤ αi(||x||), (25)

energy supply rates ωi(u, y), and cross supply rates ω
i
j(u, y, x, t) such that the following condi-

tions hold.

1) Each subsystem i is dissipative with respect to ωi(u, y) while active, i.e. for tik ≤ t1 ≤

t2 ≤ t(ik+1) and ∀i, k,
� t2

t1

ωi(u, y)dt ≥ Vi(x(t2))− Vi(x(t1)) (26)

where

ωi(u, y) =



y

u




T 

Qi Si

S
T
i Ri







y

u



 . (27)

2) Each subsystem j is dissipative with respect to ω
i
j(u, y, x, t) when it is inactive, i.e. for

each active subsystem i, ∀j �= i, and for tik ≤ t1 ≤ t2 ≤ tik+1,
� t2

t1

ω
i
j(u, y, x, t)dt ≥ Vj(x(t2))− Vj(x(t1)). (28)

4Recall that a function α(x) is a class-K∞ function if α(0) = 0, α(x) is non-decreasing for x > 0, and limx→+∞ α(x) → ∞.
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3) For all i and j there exist absolutely integrable functions φ
i
j(t) and inputs u

∗
i (t) =

αi(x(t), t) such that ∀t ≥ t0 fi(0, u∗
i ) = 0, ωi(u∗

i , y) ≤ 0, and

ω
i
j(u

∗
, y, x, t) ≤ φ

i
j(t), ∀j �= i. (29)

This notion of dissipativity can be used to show stability of the switched system (24).

Theorem 12. Consider a QSR dissipative switched system with all subsystems asymptotically

zero-state detectable. This system is asymptotically stable if Qi < 0 for all modes i.

Stability of the feedback interconnection of two dissipative switched systems can also be

studied. It is important to note that the feedback interconnection of two switched systems forms

a new switched system G. If systems G1 and G2 have M1 and M2 subsystems, respectively, the

new system G may have M = M1 · M2 subsystems. The set of switching instants of the new

system G is the union of the sets of switching instants of the two individual systems. System

G1 is assumed to be dissipative with supply rates ω
(1)
i parametrized by {Qi, Si, Ri} and G2 has

supply rates ω
(2)

î
with {Qî, Sî, Rî}. The following theorem analyzes the active supply rates of

the individual systems to establish a dissipative rate of the feedback interconnection.

Theorem 13. Consider the feedback interconnection of two QSR dissipative switched systems

G1 and G2. If the supply rates for the two systems satisfy

Q̂îi =



Qi +Rî S
T
î
− Si

Sî − S
T
i Qî +Ri



 ≤ 0, (30)

∀i ∈ {1, 2, ...,M1}, ∀î = {1, 2, ...,M2}, (31)

the unforced (r(t) = 0) feedback interconnection G is stable.

The special case of passivity can also be considered.

Definition 11. A switched system (24) is passive if it is dissipative with respect to the energy

supply rates ωi(u, y) = u
T
y − �iy

T
y where �i ≥ 0, ∀i.

A switched system is considered output strictly passive (OSP) if it is passive with �i > 0 for

all i. Passive switched systems are Lyapunov stable. Asymptotic stability can be shown when
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negative output feedback is applied or when the system is an output strictly passive switched

system.

Theorem 14. Consider a switched system that is output strictly passive. If all of the subsystems

are asymptotically zero-state detectable, then the switched system is asymptotically stable.

By itself, this result is an indirect method of showing asymptotic stability. There are more

direct methods of showing asymptotic stability in the literature. However, using Theorem 14

with Theorem 15 provides open-loop conditions for asymptotic stability of the feedback inter-

connection of two switched systems.

Theorem 15. The negative feedback interconnection of two output strictly passive switched

systems is again an output strictly passive switched system.

These two results can be applied together to verify stability of the feedback interconnection of

two switched systems. They can also be used to verify stability of large-scale interconnections of

passive switched systems. Assuming each component is OSP and the components are sequentially

connected in feedback, the large-scale system is passive and stable.

Hybrid systems: The approach of defining dissipativity for switched systems using multiple

storage functions can also be applied to hybrid automata. One main difference between switched

systems and hybrid systems is that hybrid systems do not necessarily have the same continuous

state space in each discrete mode. The state vectors in each mode may be of different dimensions,

they may have some states in common, or be entirely different. One class of systems that have

been studied in the context of passivity is based on a model of hybrid input-output automata

inspired by [26]. The class of systems captured by this model is strictly larger than the class of

switched systems considered so far in the paper. It is also more general than classical hybrid

automata since it contains both a system input and output. In this class, the continuous dynamics

in each discrete mode of the system may be nonlinear but are time invariant. This section

represents a summary of this approach, but more detail can be found in [27].

Dissipativity may be defined for this class of hybrid automata using multiple storage functions

and multiple supply rates along the lines of the arguments discussed above for switched systems.

The main difference is that the supply rate now has two parts: (i) a continuous energy supply

rate that is valid when the state trajectory evolves according to continuous dynamics, and (ii)
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a discrete energy supply rate that is valid at discrete mode changes. The continuous dissipative

rate may be different for each mode of the automata.

Since the states in each discrete mode may be different, it is not always clear what a notion of

stability such as Lyapunov stability means for such hybrid automata. When we can assume that

the state space is the same for every discrete mode and there exists an equilibrium that is valid

for all modes, it is possible to show Lyapunov stability for a class of dissipative supply rates. For

other hybrid automata, it is possible to show an ultimate boundedness result. Roughly speaking,

such a result implies that for some radius B around the origin, the continuous state of the system

will be strictly less than B for all hybrid trajectories of the system. This can be shown when the

energy supply rates are decreasing when the state is larger than B. The property of dissipativity

for hybrid automata is also preserved in feedback. This result along with the stability results,

provides simplified conditions for verifying stability of feedback interconnections.

The notion of passivity can be defined as a special case of dissipativity. Under certain

conditions on the state space and the equilibria, this notion of passivity implies Lyapunov

stability. The property is also preserved when automata are combined in feedback or in parallel.

This provides the expected results for the analysis of large-scale systems using passivity theory.

Discrete event systems: As a special case of hybrid systems, it is possible to define

dissipativity for discrete event systems (DES). We now mention two directions in this area.

One direction defines dissipativity for DES with respect to the state transition behavior [27].

Since the discrete mode captures the current state of the system, the internally stored energy

can be defined with respect to the mode. Transitions are caused by the occurrence of an event

which changes the energy level of the system. The energy supply rate can be a function of the

current mode and the event that occurs. A definition of this form has a strong connection to an

existing notion of Lyapunov stability for DES [35].

An alternative approach studies dissipativity for DES that contain inputs and outputs taking

value from a set of symbols. An approach like this is important since the input or output of such

a DES can be connected with another DES. This allows for feedback interconnections of DES

to be studied using dissipativity. A given DES can even be connected to a dynamical system

with an appropriate interface between the two such as a sample and hold with quantization.

May 16, 2013 DRAFT



21

1 1y

2
yyy 12

u

u

Fig. 8. Illustration of two systems: system Σ1 with input u and output y1, system Σ2 with input u and output y2 = y1 +∆y,

where u, y1, y2 and ∆y are of the same dimensions.

V. OTHER CHALLENGES IN CPS

Interesting work is being carried out to meet many additional challenges posed by CPS, some

of which is now summarized.

Approximations: One complication in CPS is that the dynamics of the system may be

unknown or may even change with time. To be practical, a design that assumes certain passivity

properties for a system block requires some robustness in these properties as the dynamics of

the block change. Rigorous characterizations of robustness for the passivity property are needed.

Some representative results are now stated. Consider two system models Σ1 and Σ2 as shown

in Fig. 8.5 No assumption on the nature of dynamics for either of the system models Σi (i = 1, 2)

is made. We can view Σ2 as an approximation of the system Σ1 that we are interested in. A

commonly used measure for judging how well Σ2 approximates Σ1 is to compare the outputs

for the same excitation function u [3]. We denote the difference in the outputs by ∆y. Note

that, in general, ∆y will vary depending on the function u. This difference can be due to a

host of factors such as modeling error, unmodeled disturbances, or an analysis technique such

as linearization, model reduction, and so on.

A reasonable requirement is that the worst case ∆y over all control inputs u be small in terms

of a suitably defined norm. More formally, we say that Σ2 is a good approximation of Σ1 if

5In this paper, we focus on system models with ‘additive uncertainty’, where y2 = y1 + ∆y. Similar arguments can be

developed for system models with ‘multiplicative uncertainty’, where y2 = y1(1 +∆y), see e.g. [5].
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there exists a nonnegative constant γ > 0 such that6

�∆y,∆y�T ≤ γ
2�u, u�T , ∀u and ∀T ≥ 0. (32)

The value of γ reflects how good the approximation is.

Given this framework, conditions under which the passivity properties of a system Σ1 can be

obtained by analyzing its approximation Σ2 can now be established [46], [47]. The general result

states that if the approximate model Σ2 can be shown to be input/output/very strictly passive

and if the error between the system and its approximation is small, then the original system Σ1

can be guaranteed to have certain passivity indices. We present the results when the approximate

model is input strictly passive and very strictly passive.

Theorem 16. Consider Σ1 and Σ2 in Fig. 8. Suppose that (32) is satisfied for some γ > 0 and

Σ2 is ISP for ν > 0. Then, the following results hold:

1) If γ < ν, then Σ1 is ISP for ν̃ = ν − γ;

2) If γ ≤ ν, then Σ1 is passive.

Similarly, suppose that Σ2 is VSP for (ρ, ν). Then, the following results hold:

1) If γ < min{ρ, ν} and γ
2 − (ρ − 2

ρ)γ + ν
2 − 2 ≥ 0, then Σ1 is VSP for (ρ̃, ν̃), where

ρ̃ = ρ− γ and ν̃ = ν − γ.

2) If γ ≤ ρν
2 + ν, then Σ1 is passive.

As can be seen, a better approximation yields a smaller value of γ and means that the passivity

properties of a system can be guaranteed even as the dynamics changes, or as a (hopefully

simpler) approximation is shown to be passive. In particular, in [46], these methods were applied

to approximate models obtained using linearization and model reduction. For instance, for model

reduction, a bound on how many modes can be removed while still allowing reasoning about

the passivity properties of the original system using the reduced order model was provided.

Symmetric Systems: Symmetry is often exhibited in nature and is related to the concept

of a high degree of repetitions or regularities. In [42], agents are categorized into symmetry

groups and used to determine stability conditions for large-scale systems. Particularly, stability

6Note that (32) implicitly requires the ‘error system’ with input u and output ∆y to be L2 stable. Particularly, for stable

transfer functions G1 and G2, if �G1 −G2�H∞ ≤ γ, then we can guarantee that (32) is satisfied. In this case, γ is an upper

bound on the H∞ norm of the difference between the transfer functions G1 and G2.
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for dissipative systems is considered and when subsystems of a symmetric system are dissipative,

conditions for stability are derived for the maximum number of subsystems that may be added

while preserving stability. These results may be used in the synthesis of large-scale systems with

symmetric interconnections.

Dynamics of interconnected nonlinear distributed systems Σ0, Σ1, . . . ,Σm are given by

Σi : ẋi = fi(xi) + gi(xi)ui, yi = hi(xi), ui = uei −
m�

j=0

Hijyj

where i = 0, · · · ,m, ui is the input to subsystem i, yi is its output, uei is an external input,

and the Hij are constant matrices. If we define y = [yT1 , . . . , y
T
n ]

T , �H = [Hij], and define u,

ue similarly, then the interconnected system can be represented by u = ue − �Hy. Using this

construction a star-shaped symmetry, for example, can be represented by

�H =





H b . . . b

c h . . . 0
...

... . . . ...

c 0 . . . h





where b and c represent the strength of the interconnections between the agents and the following

theorem applies to systems with star-shaped symmetries.

Theorem 17. Consider a (Q,S,R)−dissipative system Σ0 extended by m star-shaped symmetric

(q, s, r)− dissipative subsystems Σi. The whole system is asymptotically stable if

m < min(
σ(Q̂)

σ(cT rc+ β(q̂ − bTRb)−1βT )
,

q̂

bTRb
)

where σ and σ are the maximum and minimum singular values of H respectively, Q̂ = −H
T
RH+

SH +H
T
S
T −Q > 0, q̂ = −h

T
rh+ sh+ h

T
s
T − q > 0 and β = Sb+ c

T
s
T −H

T
Rb− c

T
rh.

The above theorem shows that there exists an upper bound on the number of subsystems

that can be added so to preserve stability of dissipative systems and similar results exist for

interconnections with cyclic symmetry and chain symmetry. Also extensions on passive systems

as a special cases of dissipative systems are studied in [43]. It is important to note that such

results are robust under parameter variations. While all subsystems were assumed to be (q, s, r)-

dissipative, no restrictions were placed on the actual dynamics.
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A further approach is related to Lyapunov stability of symmetric systems. The approach is

to define an equivalence class of systems, with each system containing a different number of

components and requires us to consider a system with components that define a group, G.

Interconnections among components may be represented by generators, X ⊂ G. For g ∈ G,

let
�
w

s1
g , w

s2
g , . . . , w

s|X|
g

�
be of outputs, and let

�
v
s1
g , v

s2
g , . . . , v

s|X|
g

�
be the inputs. In this more

general setting, the dynamics of a component, g ∈ G are

ẋg(t) = fg (xg(t)) +

mg�

j=1

gg,j (xg(t)) ug,j

�
xg(t), v

s1
g (t), , . . . , v

s|X|
g (t)

�

w
s
g(t) = w

s
g (xg(t)) ,

for all s ∈ X . A system has periodic interconnections if v
s
g (t) = w

s
s−1g (xs−1g(t)) , for all

g ∈ G and s ∈ X . Furthermore, if fg1(x) = fg2(x), gg1,j(x) = gg2,j(x), ws
g1(x) = w

s
g2(x) and

mg1 = mg2 = m for all s ∈ X , g1, g2 ∈ G, x ∈ Rn and j ∈ {1, . . . ,m}, then G has symmetric

components. Finally, if the control laws also satisfy

ug1,j

�
x1, w

s1
s−1
1 g1

(x2), . . . , w
s|X|

s−1
|X|g1

(x|X|+1)

�
= ug2,j

�
x1, w

s1
s−1
1 g2

(x2), . . . , w
s|X|

s−1
|X|g2

(x|X|+1)

�
(33)

for all g1, g2 ∈ G, j ∈ {1, . . . ,m}, s ∈ X and (x1, x2, . . . , x|X|+1) ∈ Rn × Rn × · · · × Rn then

the system is a symmetric system on G. Finally, if two systems are both symmetric with the

same generators, they are equivalent symmetric systems, and the following Theorem holds [16].

Theorem 18. Given a symmetric system on a finite group G with generators X , assume there

is a function VG : DG → R that is smooth on some open domain DG ⊂ Rn × · · · × Rn (|G|

times) such that 1) VG may be expressed as the sum of terms corresponding to each component

where Vg : Rn × · · ·× Rn
� �� �

1+|X|times

→ R with

VG(xG) =
�

g∈G

Vg (xg, xXg) =
�

g∈G

Vg

�
xg, w

s1
s−1
1 g

(xs−1
1 g), . . . , w

s|X|

s−1
|X|g

(xs−1
|X|g

)

�
,

for all x ∈ DG, 2) the individual functions corresponding to each component in G are equal

as functions, i.e., Vg1 = Vg2 = V for all g1, g2 ∈ G, and 3) for any one of the g ∈ G,
∂VG

∂xg

(xG)
�
fg(xg) +

�m
j=1 gg,j(xg)ug,j (xg, xXg)

�
< 0 for all xG ∈ DG. Then V̇G(x) < 0 for all

x ∈ DG and for any equivalent symmetric system on Ĝ, there is a VĜ such that V̇Ĝ < 0 on some

open domain, DĜ.
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The main utility of this theorem is that stability of an entire class of systems may be determined

by checking only one member of the equivalance class. Current effors are directed toward

extending these results to approximately symmetric systems [13]–[15].

VI. EXPERIMENTAL DETERMINATION OF PASSIVITY INDICES

The definition of passivity covered earlier in this paper relies on the existence of an internal

representation and an energy storage function. Passivity can be shown when the storage function

is non-negative and the inequality (4) is satisfied. An alternative presentation of the results does

not rely on an internal representation of the system, only that an input-output condition is satisfied

for all inputs of interest [37], [38]. Since this approach does not require an explicit model of the

system, it can be used to verify experimentally that a given system is passive without modeling

the dynamics and finding a storage function. The following defines this notion of passivity.

Definition 12. A system is passive with respect to an input set U if there exists a finite constant

β that satisfies the following inequality for all inputs u ∈ U and ∀T ≥ 0,
� T

0

y
T (t)u(t)dt ≥ −β. (34)

The constant β captures initially stored energy and may change with different initial conditions.

For this definition, the system must satisfy the inequality for all inputs u as well as all finite

times T . One issue is that, for passive and non-passive systems, there always exists a finite β

to satisfy the inequality for T up to a given time. However, as T goes to infinity, the bound

involving a finite β will not hold for non-passive systems. A more practical approach is to test

for passivity under zero initial conditions. In this case, the constant β can be taken to be zero,
� T

0

y
T (t)u(t)dt ≥ 0. (35)

In this case, if the inner product of u and y is negative for any T , the test fails. For systems that

are passive with respect to a particular class of inputs, the inner product will vary with the input

but will typically grow without bound. If this pattern holds for a sufficiently long time interval,

it can be conjectured that the inequality will hold for any T . The length of time that data should

be collected to verify the condition is often based on heuristics for a particular application area.

This may be based on the desired level of certainty to make a conclusion but also on the system

and the particular input being tested.
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A similar approach can be taken to estimate passivity indices for a system. In this case the

inequality to be satisfied takes the following form,

(1 + ρν)

� T

0

y
T (t)u(t)dt ≥ ρ

� T

0

y
T (t)y(t)dt+ ν

� T

0

u
T (t)u(t)dt. (36)

When testing this inequality, the indices can be estimated from each data set and for each time

T . One could set ν = 0 and estimate the value of ρ that satisfies (36) as an equality for the

particular set of data. When considering all data, there are many values of the indices. There

is typically a range of values that satisfy the inequality so some decision must be made on the

final set of indices. The calculated indices correspond to the particular set of inputs used.

This approach has recently been applied to an adaptive cruise control algorithm. The param-

eters of the throttle control system may be adjusted to provide more desirable passivity indices.

More on this can be found in [45].

VII. CONCLUSIONS

Cyberphysical systems are growing in importance. Passivity and dissipativity have shown

great promise in providing systematic design methods for such systems. This paper summarized

some ongoing work by the authors in various directions associated with these concepts. Further

research needs to be done to fully develop the promise of these methods.
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