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Abstract— We provide a constructive global discontinuous
control law with state dependent switches for a class of under-
actuated nonlinear mechanical robotic systems that will drive
the system to an arbitrarily small neighborhood of rest from
all initial configurations and velocities in arbitrarily small time.
Because all physical mobile robotic systems are mechanical
in nature, control methodologies which exploit the fact that
the system is governed by principles of mechanics which are
particularly important for robotic engineers. The philosophy
of the approach is that instead of using control algorithms
which start with a completely generic dynamical system, we

constrain the structure of the system to be one which is a
Lagrangian control system. To the extent the structure of the
mechanical system can be exploited, stronger control results
are possible to obtain, such as the stopping algorithm in this
paper. Specifically, for control of general nonlinear systems,
there are many unsolved problems for the case when the system
is not at an equilibrium, and the results in this paper are
an initial contribution to this area. The robot is assumed to
be underactuated by one in the configuration space; hence,
in the state space it is underactuated by twice the dimension
of the configuration space plus two. Our method can easily
be extended to construct a global discontinuous control law
with state dependent switches that will drive the system to an
arbitrarily small neighborhood of any velocity from any initial
configuration and velocity in arbitrarily small time.

I. INTRODUCTION

Nonlinear mechanical control systems form a large and

challenging class of control systems and are of particular im-

portance in robotics. The simple example used in this paper is

a planar robotic hovercraft model illustrated in Figure 1. We

emphasize that while this model has been studied extensively

(for example it is differentiably flat [18]), our focus is not

to simply control the hovercraft, but rather to illustrate the

application of our general results to a specific system. That

model has three configuration variables, position and orienta-

tion in the plane, and hence in the state space, i.e., converted

to a system of first-order equations, is six-dimensional. It has

two forces as inputs. Differential and Riemannian geometry

provide an elegant framework for modeling, analysis and

control for such systems. This framework has given rise to

powerful insights into nonlinear controllability in the zero

velocity setting motivating stabilization, tracking and motion

planning algorithms [2]. A vexing and persistent problem
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Fig. 1. The planar rigid body hovercraft robot in Section V.

in nonlinear control, including control of mechanical robotic

systems, is extending such results to the non-zero velocity

case.

We have extended this research on the analysis and control

of underactuated mechanical robotic systems to the non-

zero velocity setting. Our short term goal has been to

develop necessary and sufficient conditions for reaching zero

velocity [9] and [10]. We have identified an intrinsic vector-

valued symmetric bilinear form that can be associated with

an underactuated mechanical control system and developed

computable tests dependent upon the definiteness of the

symmetric form to determine if the system can or cannot be

driven to rest. We have also developed an iterative stopping

algorithm that takes advantage of the underlying quadratic

structure [11].

As will be shown in this paper, our results are useful

design tools which provide constructive strategies for ac-

tuator assignment and help to make the control scheme

robust to actuator failure [15]. For fully actuated mechanical

systems, it is possible to provide a comprehensive solution

to the problem of trajectory tracking [2]. In contrast, motion

planning algorithm for underactuated mechanical systems is

still not well understood [13]. Due to the challenging nature

of these problems, many of the existing results have been

limited for example to ad hoc gait generation algorithms

[7] [3], ad hoc configuration to configuration algorithms

with zero-velocity transitions between feasible motions [2]

and numerically generated optimal trajectories [12]. The

constructive algorithm presented in this paper is formulated

in a general setting and applicable to any member of the

general class of robotic systems underactuated by one control

that satisfy the sufficient conditions given in Theorem 4.5 in

Section IV.

For effective control of robotic systems, control methods

must take into account the underlying nonlinear geometry of

the geometric model, which is made difficult by the nonzero

drift. In general, these systems are not full-state feedback



linearizable and thus not amendable to standard techniques

in control theory [6]. The last decades have shown a great

interest in the analysis and control of nonlinear mechanical

control systems designed to be underactuated by one control.

Such systems include underactuated ships [4], gymnastic

robots [17], the Harrier which is a planar vertical/short take-

off and landing aircraft in the absence of gravity [14], a

hovercraft type vehicle [16] and a planar rigid body with

two thrusters moving on a flat horizontal plane [8].

The class of quadratically coupled mechanical systems

underactuated by one control is closely related to the systems

considered in [5] where a homogeneous, discontinuous,

stabilising feedback controller is designed based on the

underlying quadratic structure. Our constructive algorithm

can also be applied to their example system. In general,

quadratic or symmetric bilinear structures can be found in

a variety of areas in control theory which has motivated a

new initiative to understand the underlying geometry [1] [2].

We focus our analysis on such systems whose underlying

quadratic structure is indefinite and independent of the con-

figuration. We demonstrate the applicability of our stopping

algorithm by applying it to the underactuated planar rigid

body [2] whose linearization is not controllable and it is

not full-state feedback linearizable. We provide a schematic

drawing, the geometric model, our alternative representation

and explicit control law for this system.

II. GEOMETRIC MODEL

A. Mechanical Control System

We consider a simple mechanical control system with no

potential to be comprised of an n-dimensional configuration

manifold M ; a Riemannian metric G which represents the ki-

netic energy; m linearly independent one forms F 1, . . . , Fm

on M which represents the input forces; and U = Rm

which represents the set of inputs. We represent the input

forces as one forms and use the associated dual vector fields

Ya = G♯(F a), a = 1, . . . ,m in our computations. Formally,

we denote the control system by the tuple Σ = {M,G,Y, U}
where Y = {Ya | Ya = G

♯(F a) ∀ a} is the input

distribution. Note we restrict our attention to control systems

where the input forces are dependent upon configuration and

independent of velocity and time. A thorough description of

simple mechanical control systems is provided by Bullo and

Lewis [2].

It is well known that the Lagrange-d’Alembert principle

can be used to generate the equations of motion for a forced

simple mechanical system in coordinate invariant form. If

we set the Lagrangian equal to the kinetic energy, then the

equations are given by

∇γ̇(t)γ̇(t) = ua(t)Ya(γ(t)) (1)

where ∇ is the Levi-Civita connection corresponding to G,

u is a map from I ⊂ R 7→ Rm, γ : I → M is a curve

on M and t ∈ I . Therefore, a controlled trajectory for Σ is

taken to be the pair (γ, u) where γ and u are defined on the

same interval I ⊂ R. The usual summation notation will be

assumed over repeated indices throughout this paper.

A critical tool used to analyze distributions and mechanical

control systems is the symmetric product [2]. Given a pair

of vector fields X,Y , their symmetric product is the vector

field defined by

〈X : Y 〉 = ∇XY +∇Y X

where ∇XY is the covariant derivative of Y with respect to

X . In coordinates we have

∇XY =

(
∂Y i

∂qj
X i + Γi

jkX
jY k

)

where X = X i ∂
∂qi and Y = Y i ∂

∂qi . The Christoffel symbols

are given by

Γi
jk =

1

2
G

il

(
∂Glj

∂qk
+

∂Glk

∂qj
− ∂Gjk

∂ql

)

where Gij is the inverse of the matrix Gij that represents G.

B. Alternative Representation

An input distribution Y on M is a subset Y ⊂ TM having

the property that for each q ∈ M there exists a family of

vector fields {Y1, . . . , Ym} on M so that for each q ∈ M
we have

Yq ≡ Y ∩ TqM = span
R
{Y1(q), . . . , Ym(q)}.

We refer to the vector fields {Y1, . . . , Ym} as generators

for Y and {W1, . . . ,Wm} as the orthonormal generators for

Y where G(Wa,Wp) = 1 when a = p and G(Wa,Wp) =
0 when a 6= p . Let Y⊥ denote an orthonormal frame

{Y ⊥
1 , . . . , Y ⊥

n−m} that generates the G-orthogonal comple-

ment of the input distribution Y . Note that even though Y⊥ is

canonically defined, we must choose an orthonormal basis. It

is clear that {Yq,Y⊥
q } forms a basis for TqM at each q ∈ M .

Note that Y = {W1, . . . ,Wm} is a set of m orthonormal

vector fields while Y⊥ = {Y ⊥
1 , . . . , Y ⊥

n−m} is a set of n−m
orthonormal vector fields.

Given a basis of G-orthonormal vector fields

{X1, . . . , Xn} on M , the generalized Christoffel symbols

are defined by the n3 functions Γ̂k
ij : M → R where

∇Xi
Xj = Γ̂k

ijXk.

Definition 2.1: We define the generalized symmetric

Christoffel symbols for ∇ with respect to the basis of G-

orthonormal vector fields {X1, . . . , Xn} on M as the n3

functions Γ̃k
ij : M → R defined by

Γ̃k
ijXk =

1

2

(

Γ̂k
ij + Γ̂k

ji

)

Xk =
1

2
G (〈Xi : Xj〉, Xk)Xk.

We may define the velocity vector γ̇(t) = vi(t) ∂
∂qi of the

curve γ(t) in terms of the family of vector fields {Y,Y⊥}.

The new expression for γ̇(t) is in the form

γ̇(t) = wa(t)Wa(γ(t)) + sb(t)Y ⊥
b (γ(t)) (2)

where

wa = G(γ̇(t),Wa(γ(t))) (3)

sb = G(γ̇(t), Y ⊥
b (γ(t))). (4)



Proposition 2.2: Let Σ = {M,G,Y, U} be a simple

mechanical control system defined above. The following

holds along the curve γ(t) satisfying (1):

d

dt
wl = −Γ̃l

apw
awp − 2Γ̃l

arw
asr−m (5)

− Γ̃l
rks

r−m(t)sk−m + uag(Ya,Wl)

d

dt
sb−m = −Γ̃b

apw
awp − 2Γ̃b

arw
asr−m (6)

− Γ̃b
rks

r−msk−m

where a, l, p ∈ {1, . . . ,m}, b, k, r ∈ {m+ 1, . . . , n}.

Proof: We proceed by substituting Equation 2 into

Equation 3 and Equation 4 then differentiating and taking

advantage of the compatibility associated with the Levi-

Civita connection.

C. Partial Feedback Linearization

By inspection we see that Equation 5 can be written as

dw

dt
=

[
w s

] [

Γ̃
] [

w

s

]

︸ ︷︷ ︸

F

+Gu. (7)

We perform feedback linearization on Equation 7 by defining

our input to be

u = −G−1F+G−1z

where we assume that G is full rank. Now substituting u

into Equation 7 to get

dw

dt
= z.

III. QUADRATICALLY COUPLED CONTROL SYSTEM

Let us consider a class of nonlinear mechanical systems

where n −m = 1 and the right-hand-side of Equation 6 is

independent of q and s. The governing equations in local

coordinates are

dq

dt
= v,

dw

dt
= z,

ds

dt
= Q(w) (8)

where the configuration and pseudo-velocity states are

(q,w, s) ∈ Y × Y⊥, z ∈ Z ⊆ Rm is the control, and

Q : Yq → R is a quadratic map, i.e., Q(λw) = λ2Q(w)
for all w ∈ R

m and λ ∈ R. We refer to w and s to be

pseudo-velocities because in general (w, s) 6= v. This class

of system is clearly not linearly controllable. Let us define

the control system to be the tuple ∆ = (TM, dwdt ,
ds
dt , V ) that

defines the state space, governing equations of motion and

the set of available inputs. A basic property of R-valued

quadratic forms is that indefiniteness is equivalent to the

existence of a basis V for Rm such that the diagonal entries

in the matrix representation of Q are all zero [2]. In other

words, if Q is indefinite then exists a basis V for Rm such

that the expansion

ds

dt
= Qijw

iwj (9)

= 2Q12w
1w2 + · · ·+ 2Q1mw1wm + · · ·

+ 2Q23w
2w3 + · · ·+ 2Q2mw2wm + · · ·

+ 2Qm−1mwm−1wm (10)

where indices i, j = 1, . . . ,m and Qij = 0 when i = j.

It is also clear that if Q is indefinite then there exists at

least 1 symmetric term Qij 6= 0 where i 6= j. In order to

simplify the derivation and presentation of our algorithm we

will refer to the first coefficient Qij 6= 0 in in Equation 10

as Qc and the corresponding w parameters as w1
c and w2

c .

IV. ALGORITHM

This section contains the main result of this paper. We

provide a global discontinuous control law with state depen-

dent switches for a class of mechanical control systems that

will drive the system to an arbitrarily small neighborhood

of (q,0) ∈ TM from all initial configurations and initial

velocities in arbitrarily small time. This class of mechanical

control systems is characterized by a quadratic coupling Q
between the equations of motion for the actuated velocity

states and the unactuated velocity state. Our results are ap-

plicable to the case when the quadratic coupling is indefinite.

Our method can easily be extended to construct a global

discontinuous control law with state dependent switches that

will drive the system to an arbitrarily small neighborhood of

any velocity from any initial configuration and velocity in

arbitrarily small time. Our procedure for demonstrating the

existence of such a control law involves three basic steps.

1) Drive w → 0 in time κ.

2) Drive s → 0 in time γ.

3) Drive w → 0 while keeping s ∈ B(0, ǫ) in time τ .

We begin by introducing a series of lemmas which contain

the control laws corresponding to each step in our basic

procedure. The lemmas will be used to prove our main result.

Lemma 4.1: For all w(t0) and κ > 0 if z defined on

[t0, t1] is z(t) = −w(t0)/κ where t1 = t0+κ then w(t1) =
0.

Proof: We substitute the control law v(t) into Equation

8 to get
dw

dt
= −w(t0)

κ
.

We can apply separation of variables and integration to get

w(t) = w(t0)−
w(t0)

κ
(t− t0)

on [t0, t1]. It’s clear from w(t) that w(t1) = 0 holds.

Remark 4.2: For the remainder of the proofs, we will only

need the first nonzero term Qc in the expansion of Equation

9 and the corresponding w terms w1
c and w2

c . Once the w is

driven to zero then we will only utilize the z inputs z1c and

z2c corresponding to Qc, w1
c and w2

c . The remaining z inputs

will be set to zero. Again, this simplifies our derivation and

presentation of the stopping algorithm.

Lemma 4.3: For all s(t1), w(t1) = 0 and γ > 0 if Q :
Rm → R is indefinite and z defined on [t1, t2] is

z1c = − sgn(Qc)|M |, z2c = sgn(s(t1))|M |

where t2 = t1 + γ and

M =

(
3

2

s(t1)

Qcγ3

)1/2



then s(t2) = 0.

Proof: We substitute the control law z(t) into Equation

8 to get

dw1

dt
= − sgn(Qc)|M |, dw2

dt
= sgn(s(t1))|M |

with

M =

(
3

2

s(t1)

Qcγ3

)1/2

.

We can apply separation of variables and integration to get

w1
c (t) = − sgn(Qc)|M |(t− t1)

w2
c (t) = sgn(s(t1))|M |(t− t1)

on [t1, t2]. We also know that

s(t2) = s(t1) +A

(
ds

dt

)

γ

where

A

(
ds

dt

)

=
1

t2 − t1

∫ t2

t1

2Qcw
1
c (t)w

2
c (t)dt

=
2Qcz

1
cz

2
c

γ

∫ γ

0

t2dt =
2Qcz

1
cz

2
c

3
γ2.

This gives us

s(t2) = s(t1) +
2Qcz

1
cz

2
c

3
γ3.

Now substitute for z1c and z2c to get

s(t2) = s(t1) +
2Qc(− sgn(Qc)|M |)(sgn(s(t1)))|M |

3
γ3.

Now substitute for M and simplify to get

s(t2) = s(t1)−
2|Qc|

∣
∣
∣

(
3
2

s(t1)
Qcγ3

)∣
∣
∣ (sgn(s(t1)))

3
γ3

s(t2) = s(t1)− |s(t1)| sgn(s(t1))
s(t2) = 0.

Lemma 4.4: Let us assume that

w1
c (t2) = − sgn(Qc)|M |γ

and

w2
c (t2) = sgn(s(t1))|M |γ.

For all s(t1), ǫ, γ > 0 and s(t2) = 0, if

z1c =
sgn(Qc)

τ
|M |, z2c = − sgn(s(t1))

τ
|M |

where

τ <
ǫγ3

|s(t1)|
and M =

(
3

2

s(t1)

Qcγ3

)1/2

then (w(t3), s(t3)) ∈ B(0, ǫ).
Proof: We substitute the control law z(t) into Equation

8 to get

dw1

dt
=

sgn(Qc)

τ
|M |, dw2

dt
= − sgn(s(t1))

τ
|M |

with

τ <
ǫγ3

|s(t1)|
and M =

(
3

2

s(t1)

Qcγ3

)1/2

.

We can apply separation of variables and integration to get

w1
c(t) = w1

c (t2) +
sgn(Qc)

τ
|M |(t− t2)

w2
c(t) = w2

c (t2)−
sgn(s(t1))

τ
|M |(t− t2)

on [t2, t3]. It is clear that w(t3) = 0. Now we need to check

that |s(t3)| < ǫ. Since s(t2) = 0 then we also know that

s(t3) = A

(
ds

dt

)

τ

where

A

(
ds

dt

)

=
1

t3 − t2

∫ t3

t2

2Qcw
1
c (t)w

2
c (t)dt

=
2Qcz

1
cz

2
c

τ

∫ τ

0

t2dt =
2Qcz

1
cz

2
c

3
τ2.

This gives us

s(t3) =
2Qcz

1
cz

2
c

3
τ3.

Now substitute for z1c and z2c to get

s(t3) =
2Qc(

sgn(Qc)
τ |M |)(− sgn(s(t1)))|M |

3
τ3.

Now substitute for M and simplify to get

|s(t3)| = |
∣
∣
∣
∣

2Qc

3

(
3

2

|s(t1)|
Qcγ3

)

τ

∣
∣
∣
∣
|

|s(t3)| = |s(t1)|
τ

γ3
.

It is clear that if

τ =
ǫγ3

|s(t1)|
then |s(t3)| = ǫ. Recall by construction we pick

τ <
ǫγ3

|s(t1)|
which implies |s(t3)| < ǫ.

Theorem 4.5: Given the control system ∆ =
(TM, dwdt ,

ds
dt , Z). For all initial conditions w(t0) and

s(t0) and constants ǫ, δ > 0 if Q is indefinite and z(t) is

defined on [t0, t3] to be

Time Interval z1c (t) z2c (t)

[t0, t1) −w1

c
(t0)
κ −w2

c
(t0)
κ

[t1, t2) − sgn(Qc)|M | sgn(s(t1))|M |

[t2, t3]
sgn(Qc)

τ |M | − sgn(s(t1))
τ |M |



where

M =

(
3

2

s(t1)

Qcγ3

)1/2

and τ <
ǫγ3

|s(t1)|
then (w(t3), s(t3)) ∈ B(0, ǫ) and |t3 − t0| < δ.

Proof: It follows from Lemma 4.1 that the control law

defined on the interval [t0, t1) will give rise to w(t1) = 0.

Now we apply Lemma 4.3 to see that given w(t1) = 0
and any s(t1) that the control law defined on the interval

[t1, t2) will result in s(t2) = 0, w1
c(t2) = − sgn(QC)|M |γ

and w2
c (t2) = sgn(s(t1))|M |γ . Finally, we can appeal

to Lemma 4.4 to show that given s(t2) = 0, w1
c (t2) =

− sgn(Qc)|M |γ and w2
c (t2) = sgn(s(t1))|M |γ that the

control law defined on the final interval [t2, t3] will drive

the system to (w(t3), s(t3)) ∈ B(0, ǫ). In order to ensure

that |t3 − t0| < δ pick κ, γ, τ such that κ+ γ + τ < δ.

Remark 4.6: Theorem 4.5 can be easily extended to con-

struct a global discontinuous control law with state dependent

switches that will drive the system to an arbitrarily small

neighborhood of any velocity from any (q,w, s) ∈ TM in

arbitrarily small time. In addition, it can be shown that as

long as the controls for ∆ take values in a subset Z ⊂ R
m

for which 0 ∈ int(conv(U)) then we can still drive ∆ to an

arbitrarily small neighborhood of rest.

V. EXAMPLE: FORCED PLANAR RIGID BODY

HOVERCRAFT ROBOT

In this section we review the geometric model, construct

the alternative representation of the equations of motion,

perform partial feedback linearization and construct the

stopping algorithm for the planar rigid body (Figure 1).

The configuration manifold for the system is the Lie group

SE(2). Use coordinates (x, y, θ) for the planar robot where

(x, y) describes the position of the center of mass and θ
describes the orientation of the body frame {b1, b2} with

respect to the inertial frame {e1, e2}. In these coordinates,

the Riemannian metric is given by

G = mdx⊗ dx +mdy ⊗ dy + Jdθ ⊗ dθ,

where m is the mass of the body and J is the moment of

inertia about the center of mass. Let us analyze the set of

inputs that consist of the force F 1 applied to a point and

a torque F 3 about the center of mass. We assume that the

point of application of the force is a distance h > 0 from the

center of mass along the b1 body-axis. The input force can

represent a variable-direction thruster on the body which can

be resolve into components along the b1 and b2 directions.

The control inputs are given by

F 1 = cos θdx+ sin θdy, F 3 = dθ.

Problem Statement 5.1: Given the planar rigid body with

input forces {F 1, F 3}, construct the control law z(t) that

will drive the system from any (q(t0),w(t0), s(t0)) ∈ TM
to (q, B(0, ǫ)) ∈ TM in time δ.

Solution 5.2: We use the metric G to compute the input

vector fields Ya = G♯(F a) to be

Y1 =
1

m
cos θ

∂

∂x
+

1

m
sin θ

∂

∂y
, Y3 =

1

J

∂

∂θ
.

Now let us construct the orthonormal basis vector fields

W1,W2 that generate Y . It’s clear that Y1 and Y3 are

orthogonal with respect to G. All we need to do is normalize

Y1 and Y3 with respect to G and set them equal to W1 and

W2 respectively. This gives us

W1 =

√
m

m
cos θ

∂

∂x
+

√
m

m
sin θ

∂

∂y
, W2 =

√
J

J

∂

∂θ
.

Now we construct the single vector field

Y ⊥ = −
√
m

m
sin θ

∂

∂x
+

√
m

m
cos θ

∂

∂y

where by inspection we see that it is orthogonal to Y
and normalized. The only non-zero generalized symmetric

Christoffel symbols are

Γ̃1
23 = −

√
J

2J
, Γ̃3

21 = −
√
J

2J
.

The resulting equations of motion are

dx

dt
= w1

√
m

m
cos θ − s

√
m

m
sin θ,

dy

dt
= w1

√
m

m
sin θ + s

√
m

m
cos θ,

dθ

dt
= w2

√
J

J
, (11)

dw1

dt
=

√
J

J
w2s+ u1

√
m

m
,

dw2

dt
= u2

√
J

J
,

ds

dt
=

√
J

J
w2w1.

Now we set u equal to

u1 =
m√
m
z1 − m√

m

√
J

J
w2s, u2 =

J√
J
z2.

Substitute u into Equation 11 to get

dw1

dt
= z1,

dw2

dt
= z2,

ds

dt
=

√
J

J
w2w1.

By inspection, we have Qc =
√
J
J . Since J > 0 we conclude

that Q =
√
J
J w2w1 is indefinite.

Time Interval z1(t) z2(t)

[t0, t1) −w1(t0)
κ −w2(t0)

κ

[t1, t2) −|M | sgn(s(t1))|M |

[t2, t3]
|M|
τ − sgn(s(t1))

τ |M |
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Fig. 2. Application of stopping algorithm to hovercraft robot.
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Fig. 3. Application of stopping algorithm to hovercraft robot with a
different set of initial conditions.

where

M =

(
3

2

Js(t1)√
Jγ3

)1/2

, τ <
ǫγ3

|s(t1)|
,

and we pick κ, γ and τ such that κ+ γ + τ < δ.

Figures 2 and 3 illustrate the application of the algorithm

by plotting the controlled and uncontrolled velocity direc-

tions for the planar hovercraft for two different sets of initial

conditions. In each case the goal was to stop the robot in 0.5

seconds. �

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an algorithm to bring a simple

mechanical system underactuated by one to rest from an

arbitrary initial velocity. The method relies upon the analysis

of an intrinsic bilinear symmetric quadratic form which

naturally is present in mechanical systems of this form

and the resulting control law is discontinuous with state-

dependent switches. Because this form represents the degree

to which the controlled and uncontrolled degrees of freedom

are coupled, when the form is indefinite it corresponds

to the “ability” of the controlled degrees of freedom to

both increase and decrease the uncontrolled velocity, which

is needed for arbitrary initial conditions. Our result is an

important and novel contribution to the state of the art

because in the general nonlinear controls context, analysis

and synthesis away from equilibria is generally difficult. Our

approach exploits the structure of the system as a mechanical

system as the basis for the stopping algorithm.

Some preliminary work has been done to extend our

results to systems where Q depends on w, s and q. We are

also working on an iterative algorithm under bounded control

inputs. Finally, we are less optimistic about systems where

Q is vector-valued instead of real-valued. A computationally

efficient method for determining the indefiniteness of a

vector-valued quadratic form does not exist [2]. This has

been given some initial consideration in control literature

[1]. Additional lines of future inquiry are into mechanics

and control in robotic legged locomotion with the goal of

extending analyses such as in [19] to the more general

context.
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