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Abstract—Differential equations with fractional-order deriva-
tives, e.g., the “one-half” derivative, have a long history in
mathematics, but have not yet attained mainstream use in
engineering and applied science. While applications do exist in
modeling specific phenomena such as visco-elasticity and other
types of difficult-to-model phenomena, and extensions to control
such as in fractional-order PID do exist, everyday use of fractional
order modeling is uncommon. A subset of complex systems called
Cyber-Physical Systems (CPS) is receiving much emphasis in
the research community. In this paper we show examples of
networked system models which exhibit fractional-order dynamic
responses. This suggests that fractional-order dynamics may be
prevalent in CPS and hence may be an important and useful
modeling tool in that area. We particularly focus on a scale free
networked system.

I. INTRODUCTION

This paper investigates fractional-order modeling for net-

worked Cyber-Physical Systems (CPS). We show that for

distinct types of linear systems with integer-order component

dynamics, the interaction among the components lead to

fractional-order dynamics. While it is the subject of continued

investigation, we believe that fractional-order dynamics may

be very common in formation control of systems of mobile

robots and other complex and cyber-physical systems. The

examples in this paper make it evident that such effects may

be commonplace, and hence if tractable models and accurate

descriptions of system dynamics are necessary, then fractional-

order models and system identification may be necessary in

CPS.

Recognizing this fractional-order nature of the dynamics is

important for several reasons. First, it leads to a deeper under-

standing of the system and broadens the “toolbox” of control

possibilities for multi-robot systems. Second, it provides for

substantial model reduction and computational savings for

modeling and controlling the system. Third, when considering

loop shaping, large frequency ranges characterized by non-

integer order dynamics (non-integer magnitude slopes and

non-multiple of 90◦ phases) may need to be addressed by

fractional-order control methods.

Control of multi-robot systems is a well-studied area in

robotics and control with many significant contributions (see

for example, [1, 10, 12, 16, 26] and survey papers [8, 23]).

Some of the author’s prior work is directed toward exact

model reduction for symmetric systems [14, 20, 21]. Fractional

calculus has a much longer history. As a mathematical subject,

it dates back to near the foundations of calculus, and it has been

used in engineering applications for at least several decades.

Books on the mathematics and engineering applications in-

clude [2, 24] and there are a number of review articles [17, 25].

A closely related study is [6, 7] which studied formation

control of fractional systems. While involving fractional-order

systems and formation control, that paper considered a differ-

ent problem in that the individual components were fractional

in nature; whereas, in this paper, the fractional dynamics arise

from the structure of the interaction among the agents. Other

related studies include [27] (walking robots), [11, 28] (flexible

manipulators), [9] (time delays) and control using fractional-

order PID control [22, 28]. Studies in other areas such as visco-

elastic phenomena can be found in [15, 19].

The type of system considered in this paper is a scale-

free network. Scale-free networks are such that a relatively

small number of nodes have a very high degree (degree of

connectivity to other notes) while most nodes have a relatively

small degree. Self-similarity is a common characteristic of

scale-free networks, and we will make use of that fact in the

subsequent analysis. The literature on scale-free networks is

vast, but notable papers include [3, 4] and the book [5].

II. DYNAMICS OF AN EXAMPLE SCALE-FREE NETWORK

We consider a network of agents. Each agent is connected to

some of the other agents and the network is configured initially

with few agents all connected. As additional agents are added,

they preferentially connect to the agents with a relatively large

number of connectected agents. Specifically we consider 200

agents. Initially four agents are created and all four of the

agents are connected to the other three. Then 196 agents are

added one at a time. Each of these 196 agents are connected

to three other agents when they are added to the network, and

they are preferentially connected to agents with a large degree.

Specifically, we construct an adjacency matrix, A with a 1 in

the (n,m) position if agents n and m are connected. Because

we will model the interconnections as mechanical components,

we consider an undirected graph representation and hence A
is symmetric. Specifically, the algorithm in Table I (Ocatave

syntax) generated the network studied in this paper.

A system created by this algorithm is illustrated in Fig-

ure 1.1 Obviously we represent the system with a graph,

where the nodes represent individual agents and an edge

1The illustrated graph was created using the gephi visualization package,
http://gephi.org.



Fig. 1. Scale-free network.

TABLE I
ALGORITHM FOR CONSTRUCTING THE NETWORK.

N = 200;

micon = 3;

A = zeros(N,N);

A(1:mincon+1,1:mincon+1) =...

ones(mincon+1,mincon+1)-eye(mincon+1);

for n=5:N

adj = sum(A’);

for i=1:mincon

flag = 0;

while(flag<1)

target = floor(rand()*(n-1))+1;

if(adj(target) > rand()*(n+mincon)...

&& target != n && A(target,n) != 1)

A(target,n) = 1;

A(n,target) = 1;

flag = 1;

end

end

end

end

between nodes represents connectedness. This network is, at

least approximately, scale-free. Figure 2 plots the degree of a

node versus the number of agents with that degree, which is

approximately a power law, indicated by the nearly straight

line on the log-log plot.

Now we consider the dynamics of the system. Motivated by

formation control, each agent has a unit mass and one degree

of freedom. Each edge in the network is randomly assigned

either a spring or viscous dashpot with equal probability (this

assignment is not illustrated in the graph in Figure 1). The

equation of motion for agent i is

mẍi =
∑

j∈N

fi,j(xj , ẋj) (1)

where N represents the set of neighbors of agent i,

fi,j(xj , ẋj) =

{

kxj , edge (i, j) is a spring

bẋj , edge (i, j) is a dashpot
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Fig. 2. Scale free network.
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Fig. 3. Step response of scale free network.

where k = 1, b = 10 and m = 1. All agents have zero initial

conditions except one agent (selected randomly) which has an

initial value of one and initial velocity of zero.

In this example, agent 27 (colored in blue in Figure 1) was

randomly selected, so the dynamics of the system are described

by the set of 200 second-order differential equations given in

Equation 1 with xi(0) = ẋi(0) = 0 for all i except x27(0) = 1
and ẋ27(0) = 0. Thus, this is a type of step response where

agent 27 is the input. The response of the system is illustrated

in Figure 3. All 200 agent responses are plotted with the

thin lines. The thicker red and blue lines are exponential and

fractional-order solutions described subsequently.

We emphasize that while fractional-order dynamics are

present in this problem and therefore important to understand,

it is not the case that the step response with other nodes

selected as the input are necessarily fractional-order in nature.

The contribution of this paper is to highlight the fractional-

order nature of some of the dynamics which should be

considered in control and analysis of such problems. Indeed,

integer-order dynamics may even predominant, but a full

understanding of the problem requires consideration of both
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Fig. 4. Fractional-order derivatives for f(t) = t2 for various orders between
0 and 1. Note that the zeroth derivative is the parabola, the first derivative the
expected straight line and the fractional derivatives between these two vary in
a reasonably expected manner.

fractional- and integer-order dynamics.

III. DYNAMICS OF FRACTIONAL-ORDER SYSTEMS

This section reviews fractional-order derivatives, integrals

and differential equations, and generally follows the develop-

ment from the references cited in the Introduction.

It is natural to ask, given a function, f(t) with a first

derivative, f (1)(t) and second derivative, f (2)(t), etc., whether

there are operators “in between” the integer order derivatives

such as
d

1

2 f

dt
1

2

(t) = f(
1

2 )(t).

To begin, consider f(t) = tk, and observe that

dn

dtn
tk =

k!

(k − n)!
tk−n (2)

when n is an integer. The most common generalization of the

factorial function is the gamma function defined by

Γ(α) =

∫ ∞

0

e−ttα−1dt.

Note that in the case where α is an integer, this can be

integrated by parts multiple times to eliminate the t-term in

the integrand and it is clear that Γ(n) = (n− 1)!. Replacing

the factorials in Equation 2 with gamma functions gives

dα

dtα
tk =

Γ(k + 1)

Γ(k + 1− α)
tk−α,

which is illustrated in Figure 4 for several α ∈ [0, 1] for f(t) =
t2. The intermediate-order derivatives between 0 and 1 are

such that they provide an intuitively acceptable interpolation

between the two integer-order derivatives.

To extend this notion beyond simple polynomials, we use

Cauchy’s formula for repeated integration, which is given by

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

f (τn) dτndτn−1 · · · dτ1 =

1

(n− 1)!

∫ t

0

(t− τ)n−1 f(τ)dτ, (3)



and is easily proven by induction. One interpretation of this

formula is that “integrating the function, f , n times” is given

by the single integral on the right-hand side of Equation 3. In

that expression, the number of integrations, n, only appears

in the factorial function and in the exponent in the integrand.

Of these two, only the factorial function requires n to be an

integer. Hence, if we denote n such integrations by f−n(t),
we can write

f−α(t) =
1

Γ(α)

∫ t

0

(t− τ)
α
f(τ)dτ, (4)

which provides a means for fractional-order integration, from

which fractional-order derivatives immediately follow because

if we want, for example, the 3/4 derivative, we can integrate

1/4 times and then differentiate once (one time, integer order).

Note that, unlike integer-order derivatives, fractional-order

derivatives require more than local information. In fact, it is

apparent from the integral in the definition in Equation 4,

that all past values of a function enter into the computation

for the fractional derivative. This imposes some significant

computational cost on evaluating fractional-order derivatives.

It is worth noting, however, that for differential equations

most contexts implicitly assume analytic solutions, which also

effectively incorporate non-local information by way of all the

derivatives of the function under consideration.

Here we will take a standard linear control-theoretic ap-

proach and assume that all initial conditions are zero and

also that all the history for all signals for negative times are

zero as well. While closed-form solutions for fractional-order

differential equations do exist, we also must resort to numerical

approximations. To that end, if we consider the first and second

derivatives of a function to be defined as

df

dt
(t) = lim

∆t→0

f(t)− f(t−∆t)

∆t
d2f

dt2
(t) = lim

∆t→0

f(t)− 2f(t−∆t) + f(t− 2∆t)

(∆t)
2

or in general for an integer n

dnf

dtn
(t) = lim

∆t→0

∑

0≤m≤n(−1)m
(

n
m

)

f (t+ (n−m)∆t)

(∆t)n
,

where the usual binomial coefficient is given by
(

n
m

)

=
n!

m! (n−m)!
,

which, consistent with what we have done so far is easily

generalized to non-integers by gamma functions
(

α
m

)

=
Γ(α+ 1)

Γ(m+ 1)Γ (α−m+ 1)
.

Using this we arrive at the Grünwald - Letnikov derivative:

dαf

dtα
(t) = lim

∆t→0

1

(∆t)α

∞
∑

j=0

(−1)
j

(

α
j

)

f (t+ (α− j)∆t) ,
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Fig. 5. Solution to Equation 5 using Equation 6.

which, similar to Equation 4 includes all past values of f(t).
If ∆t ≪ 1 and t = m∆t, then the time shift by α is small

and if x(t) = 0 for t ≤ 0, then we have

dαf

dtα
(t) ≈ 1

(∆t)α

m
∑

j=0

(−1)
j

(

α
j

)

f (t− j∆t) ,

which is a useful approximation to solve fractional-order

differential equations.

For example, for

dαx

dtα
(t) + 2x(t) = 1 (5)

substituting the finite-difference approximation from the

Grünwald - Letnikov definition and letting t = m∆t, then

dαx

dtα
(m∆t) + 2x(m∆t) = 1

is approximated by

1

(∆t)
α

m
∑

j=0

(−1)j
(

α
j

)

x ((m− j)∆t) + 2x(m∆t) = 1.

Solving for x(m∆t) gives

x(m∆t) ≈
1− 1

(∆t)α
∑m

j=1 (−1)j
(

α
j

)

x ((m− j)∆t)

2 + 1
(∆t)α

. (6)

Solutions for various α ∈ [0.25, 2.0] are illustrated in Figure 5.

When α = 1 and 2 we observe the expected exponential and

harmonic solutions, respectively. Intermediate values for the

order of the derivative produce reasonably intuitive interme-

diate responses. Octave code computing these solutions is in

Table II.

Observe that the step response for fractional-order systems

with orders between zero and one initially increase faster

than first order, but then qualitatively turn more sharply and

have a slower tail of convergence to the steady-state solution.

Referring back to the scale-free networks response in Figure 3,

we can observe a similar phenomena. A first-order exponential

solution that, by eye, matches the general response of the

system fairly well has the same relationship to the system



TABLE II
CODE TO COMPUTE SOLUTIONS TO EQUATION 5 USING EQUATION 6.

for alpha = [1/3 2/3 1 4/3 5/3 2]

x = 0;

coefs = 0;

coefs(1) = -bincoeff(alpha,1);

for i = 2:length(t)

sum = dot(fliplr(x),coefs);

x(i) = (1 - sum/(dtˆalpha))/(2 + 1/dtˆalpha);

coefs(i) = (-1)ˆi*bincoeff(alpha,i);

end

end
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Fig. 6. Structure of robotic formation.

response: initially the system response rises faster, and then

crosses the first-order solution and converges to the steady-

state solution more slowly. This suggests that a fractional-order

model may provide a good reduced-order representation.

Indeed, if we numerically compute the solution to

d0.8x

dt
4

5

(t) + 0.075x(t) = 0.075

with x(t) = 0 for t ≤ 0, we obtain the blue step response

plotted in Figure 3. Clearly, this matches the dynamic response

of the system better than the first-order exponential response.

We emphasize that for neither case, the first-order exponential

nor the fractional-order solution, did we utilize an optimized

system identification procedure, but rather did the matching

“by hand”, so better matches may exist. However, in the case

of the first-order response, because the system solutions cross

the exponential (twice in fact), it is not possible to match the

curve with any solution of the form 1− exp(−αt) regardless

of the system identification method used.

IV. DYNAMICS OF A SELF-SIMILAR NETWORK

In this section we summarize some prior work which

indicates that fractional-order dynamics must be present in a

type of self-similar network, and because such self-similarity

is present in scale-free networks, the presence of fractional-

order dynamics is not surprising. Much of this is a summary

from [13] which was motivated by [18, 19].

Consider the system illustrated in Figure 6, which is a fleet

of robots arranged in a tree network where in each generation

every robot is connected with three other robots, one from

the previous generation and two in the subsequent generation.

Going to the subsequent generation, one of the robots is

connected via a spring and the other by a damper.

In the case where there is an infinite number of generations,

this system is self-similar. Consider the transfer function from

the input robot, x1 to the last generation, xlast and consider

also the transfer function from any other robot, say one in

the second generation, to the last robot. In the limit of an

infinite number of generations, these transfer functions are

equal, which gives recursive relation the transfer function must

satisfy, which leads to a repeated fraction representation, which

ultimately leads to the transfer function relating the spacing

between the first and last generations to the difference in force

applied to the first and last robots:

X1(s)−Xlast(s)

F (s)
=

(

1√
kb

)

1√
s
.

The
√
s term in the denominator of the transfer function

obviously corresponds to a 1/2-order derivative in the time

domain, which is robustly present in the actual system. Even

for a relatively small number of generations, such as 6 or 7, the

Bode plot for the system is characterized by a wide frequency

band with a magnitude plot with slope −10 db/decade and a

phase of −45◦, corresponding to such a half-order derivative.

Also numerically the step response almost exactly matches a

half-order step response.

The reason to expect fractional-order dynamics in a generic

scale-free network follows similar reasoning. Scale invariance

is a generic property of self-similar networks. For example,

if we select two nodes in the network at random, they will

likely be connected nodes with a higher degree and nodes

with a lower degree. Because the distribution of degree in a

scale-free network follows a power law distribution, at least

statistically, the relative degree of the neighbors of randomly

selected nodes will be characterized by that power law. As

such, at least relatively, the recursive structure of the transfer

function between elements in our fixed network in Figure 6

will likely also be present in the randomly-generated scale-

free network, and hence similar fractional-order dynamics are

not unexpected.

V. CONCLUSIONS AND FUTURE WORK

This paper constructed a scale-free network of mechanical

agents and studied the dynamic response of the system. By

choosing an agent at random, the dynamic response of the

rest of the network was computed and it was observed that

the nature of the solutions were such that fractional-order

dynamics were present. Specifically, by tuning a fractional-

order step response by hand, it was determined that the order of

the response was approximately, 4/5, i.e., the dynamics were

a solution to a differential equation that had a derivative of

4/5 order. This was not unexpected, because prior work had

indicated that self-similarity was at the core of the analysis

indicating that another system was characterized by fractional-

order dynamics, and scale-free networks are similarly charac-

terized by self-similarity.

Future work involves several related lines of work. First,

using formal system identification methods we may say pre-

cisely in what manner the first-order exponential solution is

the best fit we can find and thus characterize in a quantifiable

way the degree to which it does not model the system well.



Correspondingly, using a fractional-order identification method

we can also find the best fractional-order model for the system.

Also, the big open question is the second line of inquiry:

to what degree can it be stated with certainty that scale-free

networks exhibit fractional-order dynamics so that we can be

be guaranteed to observe them?
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