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Abstract— This paper shows that a fractional-order differ-
ential equation may be used to accurately model the dynamic
relationship between the first and last generations in a fleet
of coordinating robots, even when the individual robots and
interconnections have the usual integer-order dynamics. Such
a fractional-order model offers the possibility of general ap-
plicability, particularly in the case of heterogeneous fleets of
robots. Such systems tend to be very high order, and therefore
model reduction is useful in modeling, simulation and control.
Results are presented for the system considered illustrating that
the fractional-order model achieves significant computational
savings compared to simulating the full system.

I. INTRODUCTION

This paper investigates fractional-order modeling for

multi-robot coordinated control problems. We study a spe-

cific system with a topological structure for the interactions

illustrated in Figure 1, which is motivated by a viscoelastic

model from the literature [1], [2]. We show that even

with linear springs and dampers as interconnection models

and robots as dynamic double integrators (all integer-order

dynamics), fractional-order effects are present, and hence is a

consequence of the interconnection topology. While it is the

subject of continued investigation, we believe that fractional-

order dynamics may be very common in formation control

of systems of mobile robots and other complex and cyber-

physical systems.

Recognizing this fractional-order nature of the dynamics

is important for several reasons. First, it leads to a deeper

understanding of the system and broadens the “toolbox”

of control possibilities for multi-robot systems. Second, it

provides for substantial model reduction and computational

savings for modeling and controlling the system. Third, when

considering loop shaping, large frequency ranges character-

ized by non-integer order dynamics (non-integer magnitude

slopes and non-multiple of 90◦ phases) may need to be

addressed by fractional-order control methods.

Control of multi-robot systems is a well-studied area in

robotics and control with many significant contributions. For

example, see [3] (decentralized nearest-neighbor rules), [4]

(consensus problems), [5] (graph theory), [6] (potential func-

tions and virtual leaders), [7] (behavior-based), [8] (vision-

based formation control) and survey papers [9], [10]. Some

of the author’s prior work is directed toward exact model

reduction for symmetric systems [11]–[13].
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Fig. 1. Structure of robotic formation.

Fractional calculus has a much longer history. As a

mathematical subject, it naturally dates back to near the

foundations of calculus, and it has been used in engineering

and robotic applications for at least several decades. Books

on the mathematics and engineering applications include

[14], [15] and there are a number of review articles as

well [16], [17]. One closely related study is [18], [19]

which studied formation control of fractional systems. While

involving fractional-order systems and formation control, that

paper considered a different problem in that the individual

components are fractional in nature; whereas, in this present

paper, the fractional dynamics arise from the structure of the

interaction among the agents. Other related studies include

[20] (walking robots), [21], [22] (flexible manipulators), [23]

(time delays) and control using fractional-order PID control

[22], [24].

The rest of this paper is organized as follows. Section II

introduces a simple multi-robot motivational example with

some attributes that suggest fractional-order dynamics. Sec-

tion III gives an overview of fractional calculus. Section IV

verifies that the system from Section II is, indeed, fractional-

order in nature, illustrates the manner in which the dynamics

of the system converge to the fractional-order model and

presents computational results related to scaling and compu-

tational complexity. Finally, Section V presents conclusions

and future work.

II. SYSTEM FORMATION DYNAMICS

Consider a potential-driven formation control problem, an

example appliction of which would be for contamination

mapping and control. For example, if toxic waste is spilled

at a specific location and has started to diffuse or advect to

the surrounding environment, a fleet of robots to map and

clean the spill could require that many robots be located

where the contamination level is high, and fewer would be

required where it is low. When the spread of contamination

is very dynamic (such as in a river) or extremely dangerous



Fig. 2. Schematic of desired robot formation.

(radiation for example), then precise control of the dynamic

response of the system is needed.

One way to accomplish such a task could be with a

formation with a tree graph structure. In this case, there is

one robot at the first generation, two at the second, four

at the third, etc., where each successive generation with a

greater number of robots is positioned in areas of greater

contamination. This scenario is schematically illustrated in

Figure 2 where the black dots illustrate the robots and the

lines represent the contamination disbursement flow lines.

Hence, where the contours are closer together we desire

a great number of robots per unit area (to the left) and

conversely to the right we need fewer per unit area. Of course

in a real-world deployment the robots in each generation

would be arranged along the level sets of the contamination

concentration, which may have a very complicated shape.

The rest of this paper considers the asymmetric control

structure illustrated in Figure 1. We illustrate the interconnec-

tions with mechanical components; whereas, obviously for

mobile agents these are not mechanical but are implemented

by a controller. In each generation the number of robots is

doubled. Each robot in the lower generation is related to two

in the subsequent generation where the control force between

the lower generation robot and one of the next robots is given

by a linear spring relationship and the relationship to the

other robot is represented by a viscouse damper. We assume

all the robots in the final generation are at the same potential

and f (t) represents the force on the final generation by all

the robots in the penultimate generation.

For clarity of presentation, consider the case where the

interior robots have high-gain controllers or small masses

and treat their dynamics as algebraic rather than second-

order. In that case [2] shows that the network is self-similar

and the transfer function from the difference in force exerted

by the first and last generation to how much the network

is compressed or extended from equilibrium given by a

repeated fraction. Specifically, let

G(s) =
X1(s)−Xlast(s)

F(s)
,

where x1 denotes the position of the first generation and

xlast denotes the position of the last generation. If we let

G1(s) = 1/k and G2(s) = 1/(bs), then

G(s) =
1

1

G1(s)+
1

1
G1(s)+···+

1
G2(s)+···

+ 1

G2(s)+
1

1
G1(s)+···+

1
Gs(s)+···

. (1)
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Fig. 3. Network stress-strain frequency response.

This transfer has a denominator with order 2N where N is

the number of generations in the system.1 The frequency

response for this transfer function for k = b = 1 and for 7

generations is illustrated in Figure 3.

The important feature of Figure 3 is that there is a large

frequency band over which the slope of the magnitude plot is

−10 db/decade and the phase is −45◦. Naturally, this leads us

to consider to what extent this system can be approximated

by a transfer function containing a term of the form
√

s, or

equivalently, in the time domain, a derivative of order 1/2,

which is essentially the focus of the rest of this paper.

To understand the fractional-order nature of the Bode

plot, Figure 4 illustrates the pole-zero map for this system

with 5 generations. The poles and zeros are evenly spaced

(logarithmically), so that half way between any two poles

is a zero. Hence as frequency is increased, any pole that

adds −20 db/decade to the slope is offset by a zero half

way to the next pole, so if they are closely spaced over a

broad frequency range, a persistent range with a slope of

−10 db/decade results.2 Clearly, this mechanism can to lead

to just about any slope and could be constructed by varying

the spacing between the poles and zeros.

III. FRACTIONAL-ORDER DIFFERENTIAL

EQUATIONS

It is, of course, natural to ask, given a function, f (t) with a

first derivative, f (1)(t) and second derivative, f (2)(t), whether

there are operators “in between” the integer order derivatives

such as
d

1
2

dt
1
2

f = f (
1
2)

which generalizes the notion of an integer-order derivative.

We start with f (t) = tk, and observe that

dn

dtn
tk =

k!

(k− n)!
tk−n (2)

1This can be considered a stress-strain relationship because it relates how
much the network is compressed or extended to the difference in force
exerted on the first and last elements.

2The pole-zero map for the 7-generation network is similar, but has many
complex pole-zero pairs, which makes the interpretation less transparent, but
it is essentially the same.
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Fig. 4. Pole-zero map for 5 generation network.
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for the usual case where n is an integer. Recall that a

generalization of the factorial function is the gamma function

defined by by

Γ(α) =

∫ ∞

0
e−ttα−1dt,

and illustrated in Figure 5. In the case where α is an integer,

this can be integrated by parts multiple times to eliminate the

t-term in the integrand and it is clear that Γ(n) = (n− 1)!
which are indicated by the × marks in Figure 5.

Replacing the factorials in Equation 2 with gamma func-

tions gives
dα

dtα
tk =

Γ(k+ 1)

Γ(k+ 1−α)
tk−α ,

which provides a nice generalization of the derivative, as is

illustrated in Figure 6 for several α ∈ [0,1] for f (t) = t2.

To extend this notion beyond simple polynomials, consider

Cauchy’s formula for repeated integration, which is given by

∫ t

0

∫ τ1

0
· · ·

∫ τn−1

0
f (τn)dτndτn−1 · · ·dτ1 =

1

(n− 1)!

∫ t

0
(t − τ)n−1

f (τ)dτ, (3)

and is easily proven by induction.
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Fig. 6. Fractional-order derivatives for f (t) = t2 for various orders between
0 and 1. Note that the zeroth derivative is the parabola, the first derivative
the expected straight line and the fractional derivatives between these two
vary in a reasonably expected manner.

One interpretation of this formula is that “integrating the

function, f , n times” is given by the single integral on the

right-hand side of Equation 3. In that expression, the number

of integrations, n, only appears in the factorial function and in

the exponent in the integrand. Of these two, only the factorial

function requires n to be an integer. Hence, if we denote n

such integrations by f−n(t), we can write

f−α (t) =
1

Γ(α)

∫ t

0
(t − τ)α

f (τ)dτ, (4)

which provides a means for fractional-order integration,

from which fractional-order derivatives immediately follow.

Important complications arise, but the easiest way to see this

if, for example, if we want the 2.3 derivative, we integrate

0.7 times and then differentiate (normally) 3 times.

It is worth emphasizing that, unlike integer-order deriva-

tives, fractional-order derivatives require more than local

information. In fact, it is apparent from the integral in the

definition in Equation 4, that all past values of a function

enter into the computation for the fractional derivative. Here

we will take a standard linear control-theoretic approach and

assume that all initial conditions are zero and also that all

the history for all signals for negative times are zero as well.

While closed-form solutions for fractional-order differen-

tial equations do exist, we also must resort to numerical

approximations. To that end, if we consider the first and

second derivatives of a function to be defined as

d f

dt
(t) = lim

∆t→0

f (t)− f (t −∆t)

∆t

d2 f

dt2
(t) = lim

∆t→0

f (t)− 2 f (t −∆t)+ f (t − 2∆t)

(∆t)2

or in general for an integer n

dn f

dtn
(t) = lim

∆t→0

∑0≤m≤n(−1)m

(

n

m

)

f (t +(n−m)∆t)

(∆t)n ,

where the usual binomial coefficient is given by
(

n

m

)

=
n!

m!(n−m)!
,
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Fig. 7. Solution to Equation 5 using Equation 6.

which, consistent with what we have done so far is easily

generalized to non-integers by gamma functions
(

α

m

)

=
Γ(α + 1)

Γ(m+ 1)Γ(α −m+ 1)
.

Using this we arrive at the Grünwald - Letnikov derivative:

dα f

dtα
(t) = lim

∆t→0

1

(∆t)α

∞

∑
j=0

(−1) j

(

α

j

)

f (t +(α − j)∆t) ,

which, similar to Equation 4 includes all past values of f (t).
If ∆t ≪ 1 and t = m∆t, then the time shift by α is small and

if all the initial conditions are zero, then we have

dα f

dtα
(t)≈ 1

(∆t)α

m

∑
j=0

(−1) j

(

α

j

)

f (t − j∆t) ,

which is a useful approximation to solve fractional-order

differential equations.

For example, for

dα x

dtα
(t)+ 2x(t) = 1 (5)

substituting the finite-difference approximation from the

Grünwald - Letnikov definition and letting t = m∆t, then

dα x

dtα
(m∆t)+ 2x(m∆t) = 1

is approximated by

1

(∆t)α

m

∑
j=0

(−1) j

(

α

j

)

x((m− j)∆t)+ 2x(m∆t) = 1.

Solving for x(m∆t) gives

x(m∆t)≈
1− 1

(∆t)α ∑
m
j=1 (−1) j

(

α

j

)

x((m− j)∆t)

2+ 1
(∆t)α

. (6)

Solutions for various α ∈ [0.25,2.0] are illustrated in Fig-

ure 7. When α = 1 and 2 we observe the expected exponen-

tial and harmonic solutions, respectively. Intermediate values

for the order of the derivative produce reasonably intuitive

intermediate responses.

Octave code computing these solutions is:

for alpha = [1/3 2/3 1 4/3 5/3 2]

x = 0;

coefs = 0;

coefs(1) = -bincoeff(alpha,1);

for i = 2:length(t)

sum = dot(fliplr(x),coefs);

x(i) = (1 - sum/(dtˆalpha))/...

(2 + 1/dtˆalpha);

coefs(i) = (-1)ˆi*bincoeff(alpha,i);

endfor

endfor

IV. RESULTS

Returning to the robot formation control problem, note

that in the limit of an infinite number of generations, the

transfer function in Equation 1 may be written as [2]

G∞(s) =
1

1
G1(s)+G∞(s)

+ 1
G2(s)+G∞(s)

=
√

G1(s)G2(s) =

√

1

kbs
.

This transfer function clearly will have a Bode plot com-

prised of a magnitude plot that is a straight line with slope of

−10 db/decade and a constant phase of −45◦, i.e., the entire

Bode plot will look like the interesting parts of Figure 3.

Hence, in the limit, the network produces a fractional-

order relationship between the positions of the first and last

robots given by

X1(s)−Xlast(s)

F(s)
=

(

1√
kb

)

1√
s
.

If we take as the input to the network the position of the

first robot, then we have

mlasts
2Xlast(s) = (X1(s)−Xlast(s))

√
kbs

or the fractional-order transfer function

Xlast(s)

X1(s)
=

√
kbs

mlasts
2 +

√
kbs

,

which can be represented by the reduced system illustrated

in Figure 8. This can be represented in the time domain by

m
d2xlast

dt2
(t)+

√
kb

d
1
2 xlast

dt
1
2

(t) =
√

kb
d

1
2 x1

dt
1
2

(t).

Using the Grünwald - Letnikov definition for the fractional

derivatives and solving for xlast(t) gives the following nu-

merical approximation at t = n∆t:

xlast(n∆t)≈





1

m

(∆t)2 +
√

kb√
∆t





×
[

m

(∆t)2
(2x((n− 1)∆t)− x((n− 2)∆t))

−
n

∑
j=1

(−1) j

(

1
2

j

)

xlast((n− j)∆t)

+

√
kb√
∆t

n

∑
j=0

(−1) j

(

1
2

j

)

x1((n− j)∆t)

]

.
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Fig. 8. Fractional order transfer function between first and last generations
in the robotic formation.

1

2

3

4

5

6

0 5 10 15 20

x
i

t

Fig. 9. Comparison of fractional-order solution with full solution for k =
b = 1 and four generations.

Now we consider to what extent a finite network is charac-

terized by such fractional-order dynamics. If the fractional-

order representation is only true in the limit, then this paper

is only of academic interest. If it is accurate for a relatively

small number of generations, then it is of practical control

and robot fleet design importance.

We specify the acceleration profile of the first robot as

d2x1

dt2
(t) =











1, 0 < t ≤ 1

−1, 1 < t ≤ 2

0, t > 2

and numerically solve for the solution of xlast . In the case

where k = b = 1, ∆t = 0.005 and there are only four genera-

tions, the solution for all 8 robots is illustrated in Figure 9.

In the figure, it is assumed that the uncompressed length of

the springs is one and each generation starts from rest at the

equilibrium configuration. A comparison of the fractional-

order solution and the full solution for the last robot is

illustrated in Figure 10. Clearly the match is excellent.

The accuracy of the fractional-order approximation is

dependent on the numerical values chosen for the simulation.

Taking k = 1, b = 1/4, ∆t = 0.005 and varying the number

of generations, a comparison of the full solution and the

fractional-order solution is illustrated in Figure 11, where

the convergence of the fractional-order solution to the full

solution as the number of generations increases is apparent.

To study the computational aspects of the problem, the

simulations were performed on a HP DL165 G6 server with
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Fig. 10. Comparison of fractional-order solution with full solution for
k = b = 1 and four generations.
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Fig. 11. Convergence to fractional-order solution for k−1, b = 1/4, ∆t =
0.005 and various numbers of generations.

dual six-core 2.4 GHz AMD Opteron processors (Model

2431), 12 cores per node and 12 GB RAM. The software

used was the lsode() function in octave for the full solu-

tions and an octave script similar to that illustrated previously

for the fractional-order solution. The computation times are

in seconds and were reported by the octave cputime()

function and are illustrated in Figure 12 and summarized in

Table I. As is apparent from the table, adding one generation,

which doubles the number of robots and interconnections,

roughly increases the computation time by a factor of four.

For the problem at hand, the fractional-order computation

becomes more efficient for the system with more than four

generations.

V. CONCLUSIONS AND FUTURE WORK

This paper studied the accuracy and computational aspects

of modeling a multi-robot system using fractional-order

differential equations. We showed that even for a relatively

small system comprised of simple elements with integer-

order dynamics, the resulting relationship between the first

and last generation of robots exhibited significant fractional-

order effects. This was demonstrated both in a frequency-

response analysis as well as simulations comparing the full

integer-order solutions and a fractional-order approximation.
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Generations Full Simulation (s) Fractional Simulation (s)

3 .43393 2.4596
4 1.2768 2.4596
5 4.4983 2.4596
6 19.398 2.4596
7 70.408 2.4596
8 261.22 2.4596
9 938.74 2.4596
10 3769.9 2.4596
11 14822 2.4596

TABLE I

COMPUTATION TIMES FOR DIFFERENT NETWORK SIZES.

The contributions of this work is putting forth the fractional-

order model as a useful tool in the multi-robot control area,

which has been relatively unstudied.

Future work left to do is substantial. While the mere

presence of fractional-order dynamics is important for full

understanding of the problem, if we are to effectively control

such systems, incorporating the fractional-order effects into

control design is necessary. Fractional-order control is not

new (fractional PID, for example), but it is new in the

present context and the nature of the problem naturally leads

to the question of fractional-order loopshaping. Another

important area is related to fractional-order system identifi-

cation for complex multi-robot and cyber-physical systems.

In our view, the largest open question is to what extent

fractional-order dynamics are present in general for multi-

agent systems? This paper illustrated the fact that fractional-

order effects can arise simply from the interconnections, and

complex and cyber-physical systems are characterized, in

general, with such structure. If such effects are relatively

commonplace, then fractional-order modeling may have a

huge impact and be recognized more significantly by the

mainstream engineering communities.
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