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Abstract:

Stability and convergence properties of large-scale integrated systems are essential aspects of
the development of truly useful and well-designed cyber-physical systems (CPS). Because of the
desire for flexible, adaptive and reactive cyber-physical systems, i.e., global operation, nonlinear
analyses and tools are especially important in CPS. Hence, Lyapunov methods are at the core of
many critical control methodologies for such systems. This paper considers Lyapunov stability
for approximately symmetric systems. Many robotic systems, such as swarms and fleets of mobile
robots, distributed sensor networks, highly integrated cyber-physical systems, etc., are comprised
many identical interacting agents, and our prior work has developed computationally efficient
stability analyses of the control and dynamics of such symmetric systems. This paper extends
those results to the important case where all the agents are not identical, which is important
for real-world applications where it is not possible to have exactly identical agents. Importantly,
these results do not require the components to have small differences. However, the bounds on
the nature of the solutions will obviously depend on how different the agents are.
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1. INTRODUCTION

The use of multi-agent systems has a transformative
potential for the ubiquitous use of automated systems
in real-world applications. This partially is due to: 1)
robustness, because if a small subset of agents fail, the
overall performance of a large-scale multi-agent system
is not likely to be significantly reduced, 2) adaptability
and agility, because, in addition to any adaptability built
into an individual agent’s control, significant adaptability
and agility in behavior may emerge from the coordinated
efforts of the agents, significantly beyond what is possible
for a single agent, and 3) economics, because in many
applications it may be simultaneously cheaper and more
effective to accomplish a task using multiple components
than a single more sophisticated one.

Despite these advantages, other than sensor networks,
actually deployed cooperating agent systems are not yet
ubiquitous. This is partly because their promise depends
on a critical control aspect, which is that in order to bring
about the desired system behavior, coordination among
the agents is necessary, which is a difficult theoretical and
technological control problem. One aspect of this difficulty
is that if the agents are coordinating their behavior the
system has a very high dimensional and coupled state
space, making analysis and design of the system difficult.
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Many recent research efforts have attempted to address
this problem. Some efforts have focused on composition-
ality and composability wherein the relationship between
system properties and the properties of individual compo-
nents is determined (Sztipanovits et al. (2012); Julliand
et al. (2007)). While the results in this paper are general
and apply to a broad class of problems, the most natural
focus in robotics would be on problems such as formation
control and consensus. Formation control has a natural
relationship with Lyapunov methods in that potential
functions are an appealing means to define a formation.
Of course there is a vast literature on formation control,
and a representative set of references include: Jadbabaie
et al. (2003); Ren et al. (2007); Fax and Murray (2004); Ri-
mon and Koditschek (1992); Leonard and Fiorelli (2001);
Olfati-Saber and Murray (2002) and the book by Kumar
et al. (2005).

Similarly, in the controls community, consensus has re-
ceived much attention and is an important subject because
of the need for distributed agents to reach a consensus
on many things ranging from collected sensor data to
motions for flocking behavior. While it is emphasized that
our results are much more broadly applicable than just to
the consensus problem, the main example in this paper
is a nonlinear consensus one. In contrast to most work in
consensus which focuses on the interconnectedness of the
system (see for example, Olfati-Saber and Murray (2003);
Ren et al. (2005)), we focus on system properties which
are invariant with a pre-defined regularity in the system



v−(t)

v+(t)

w−(t)

w+(t)

x(t)

u(t)

Fig. 1. System building block in one spatial dimension.

structure with an emphasis on robustness when the system
is not exactly symmetric.

Prior work of the author has focused on control of symmet-
ric systems : Goodwine and Antsaklis (2013); McMickell
and Goodwine (2003b, 2002, 2003a, 2007, 2001); McMick-
ell et al. (2003). The precise meaning of a symmetric sys-
tem will be defined subsequently, but the simplest example
is a system that is composed of identical agents interacting
with each other in a highly-structured manner. In such
a case, it makes sense that the equations of motion for
the system will exhibit significant structure which may be
exploited for analysis and design in control.

One shortcoming of the existing work is that it requires the
system to be exactly symmetric in that all the agents must
either be identical (at least diffeomorphically). This work
is part of a series of efforts to extend those results to the
case where the agents in the system are only approximately
symmetric. This will encompass the realities that it is not
possible in the real world to have agents that are exactly
identical as well as the fact that it may be desirable for
the agents to differ. Closely related current work by the
author includes Goodwine (2013).

2. SYMMETRIC AND APPROXIMATELY
SYMMETRIC SYSTEMS

This section is a summary of our results from Goodwine
and Antsaklis (2013) and gives an overview of symmetric
systems and the relationship among symmetric systems
with different numbers of components. It also extends
these to allow for additive symmetry-breaking terms to
each component.

Consider the “building block” for symmetric systems il-
lustrated in Figure 1. The w+(t) and w−(t) signals are
the outputs from the component and u, v−(t) and v+(t)
are the inputs. The signals v± represent coupling with the
other components and u are the control inputs. We wish
to consider fully nonlinear symmetric systems of the form

ẋi(t) = fi
(
xi(t)

)
+

mi∑

j=1

gi,j
(
xi(t)

)
ui,j (t)

w−
i (t) = w−

i (xi(t)) , w+

i (t) = w+

i (xi(t)) .

(1)

If the system is controlled via feedback, the control input
for component i in Equation 1 may depend on the outputs
from the neighbors, which can be expressed by

ui,j(t) = ui,j

(
xi(t), w

+

i−1
(xi−1(t)), w

−
i+1

(xi+1(t))
)
. (2)

The block in Figure 1 has only + and − inputs and
outputs, so we consider systems defined on groups in
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Fig. 2. System topology for Example 1.

order to allow systems with a more general interconnection
structure. Recall, that a group is a set, G with

(1) a binary associative operation, G×G → G,
(2) an identity element e such that eg = ge = g for all

g ∈ G, and
(3) for every g ∈ G there exists an element g−1 ∈ G such

that gg−1 = g−1g = e.

Let |G| denote the number of elements in a set G.

Following the development in Recht and D’Andrea (2004),
interconnections in systems we consider will be represented
by a set of generators, denoted by X. If X is a subset of
a group G, then the smallest subgroup of G containing X
is called the subgroup generated by X. For the rest of this
paper assume that G itself is the group generated by X
and that if s ∈ X, then s−1 ∈ X as well. Relations define
constraints among the generators, and are of the form
s1s2 . . . sm = e for s1, . . . , sm ∈ X. Finally, we represent
systems by a Cayley graph, which is a graph with vertices
that are the elements of a group, G, generated by the
subset X, with a directed edge from g1 to g2 if g2 = sg1 for
some s ∈ X (see Rotman (1995)). A directed edge from
node g1 to g2 represents that a coupling input to g2 is
equal to an output from g1.

The following example will be developed throughout this
paper. It has a similar interconnection structure to the
formation control problem we have published in Goodwine
and Antsaklis (2013), but the dynamics are for a consensus
problem rather than formation control.

Example 1. Consider the system with the Cayley graph
illustrated in Figure 2. Each vertex has edges connecting
to four other vertices and hence the system is gener-
ated by four elements. Let g denote a vertex, i.e., g ∈
{−2,−1, 0, 1, . . . , N − 3} = G. Consider the generators
X = {−2,−1, 1, 2}, the group operation to be addition and
the relation sN = e = 0. This relation makes the group
operation of addition to be modN , and hence the group
is the quotient of the set of integers Z where elements of Z
that differ by an integer multiple of N are equivalent. ⋄

Next, we develop some notation. For a system on the group
G with generatorsX =

{
s1, s2, . . . , s|X|

}
, let xg denote the



states corresponding to g ∈ G, Xg =
{
s1g, s2g, . . . , s|X|g

}

denote the neighbors of component g ∈ G, xXg denote
the states of the neighbors of g ∈ G, and xXXg denote
the states of the neighbors of the neighbors, etc. For a
component g, let

{
ws1

g , ws2
g , . . . , w

s|X|
g

}
denote of outputs,

and correspondingly let
{
vs1g , vs2g , . . . , v

s|X|
g

}
denote the

inputs. In this more general setting, the dynamics of a
component, g ∈ G are represented by

ẋg(t) = fg (xg(t)) (3)

+

mg∑

j=1

gg,j (xg(t))ug,j

(
xg(t), v

s1
g (t), , . . . , v

s|X|
g (t)

)

ws
g(t) = ws

g (xg(t)) ,

for all s ∈ X.

Definition 1. A system with with dynamics given by
Equation 3 has periodic interconnections if

vsg (t) = ws
s−1g

(
xs−1g(t)

)
, (4)

for all g ∈ G and s ∈ X. Furthermore, if

fg1(x) = fg2(x), gg1,j(x) = gg2,j(x), (5)

ws
g1
(x) = ws

g2
(x), mg1 = mg2 = m

for all s ∈ X, g1, g2 ∈ G, x ∈ R
n and j ∈ {1, . . . ,m}, then

G has symmetric components. Finally, if the control laws
also satisfy

ug1,j

(

x1, w
s1

s
−1

1
g1
(x2), . . . , w

s|X|

s
−1

|X|
g1
(x|X|+1)

)

=

ug2,j

(

x1, w
s1

s
−1

1
g2
(x2), . . . , w

s|X|

s
−1

|X|
g2
(x|X|+1)

)

(6)

for all g1, g2 ∈ G, j ∈ {1, . . . ,m}, s ∈ X and
(x1, x2, . . . , x|X|+1) ∈ R

n ×R
n × · · · ×R

n then the system
is called a symmetric system on G. ⋄
Remark 1. Definition 1 provides the natural mathematical
requirements for the agents to be “the same”. Equation 4
simply requires that the coupling inputs to agent g are the
outputs from the corresponding neighbors, the equations
in 5 require the dynamics of each agent to be identical and
Equation 6 requires the feedback control laws be identical
for each agent.

Example 2. We will return to Example 1 and add dynam-
ics to each component. We will take the equation of motion
for the ith agent to be in a modified nonlinear consensus
form

ẋi = ui = k
∑

j∈N

(xj − xi)
3 − xi (7)

where N = {i− 2, i− 1, i+ 1, i+ 2} (modN). We will
show this is a symmetric system.

In Example 1 we showed that this be represented by the
graph illustrated in Figure 2 with

G = {−2,−1, 0, 1, 2, . . . , N − 3} ,
the group operation to be addition and X = {−2,−1, 1, 2}
with the relation sN = 0, N ≥ 5. Also observe from
Equation 7, the control for robot i depends on its own state
as well as the states for robots i− 2, i− 1, i+1 and i+2,
which are equivalent to the four generators. Hence, define
all four outputs for robot i to be the vector of the robot’s
position, i.e., ws

i = xi where s ∈ X = {−2,−1, 1, 2, }. De-
fine the inputs to i ∈ {−2,−1, . . . , N − 3} to be vsi = xi+s,
s ∈ {−2,−1, 1, 2} which satisfies Equation 4. The dynam-
ics, as given in Equation 7 satisfy Equation 5. Finally,

the feedback law given in Equation 7 satisfies Equation 6.
Because these hold for all i ∈ {−2,−1, 0, . . . , N − 3} the
system is a symmetric system. ⋄

Now, we will define two systems to be equivalent if they are
symmetric with identical components which are intercon-
nected in the same manner, but possibly with a different
number of components. This will allow us to either “build
up” or reduce the size of a system by adding or remov-
ing components, respectively. Because interconnections are
defined by the generators if the two systems have the
same generators, then any new agent will have the same
relationship with its neighbors.

Definition 2. Two symmetric systems on the finite groups
G1 and G2 are equivalent if G1 and G2 are generated by
the same set of generators, X,

fg1(x) = fg2(x), gg1,j(x) = gg2,j(x),

ws
s−1g1

(x) = ws
s−1g2

(x)
(8)

and the feedback part of the control laws satisfy

ug1,j

(

x1(t), w
s1

s
−1

1
g1
(x2(t)), . . . , w

s|X|

s
−1

|X|
g1
(x|X|+1(t))

)

=

ug2,j

(

x1(t), w
s1

s
−1

1
g2
(x2(t)), . . . , w

s|X|

s
−1

|X|
g2
(x|X|+1(t))

)

(9)

for all g1 ∈ G1, g2 ∈ G2, s ∈ X, x ∈ R
n,(

x1, x2, . . . , x|X|+1

)
∈ R

n × R
n × · · · × R

n and j ∈
{1, . . . ,m} where m = mg1 = mg2 . ✄

Example 3. Continuing Example 2 consider two systems
with components that satisfy Equation 7 and components
belonging to

G1 = {−2,−1, 0, 1, 2, . . . , N − 3}
G2 = {−2,−1, 0, 1, 2, . . . ,M − 3}

where M > N . Because the dynamics of all the compo-
nents are identical and the feedback definitions are iden-
tical, these systems are equivalent. Both have generating
sets X = {−2,−1, 1, 2} with the only difference being the
relation for G1 is s

N = 0 and the relation for G2 is s
M = 0.

⋄

Finally, we define an approximately symmetric system.

Definition 3. Consider

ẋg(t) = fg (xg(t)) + pg (xG(t))

+

mg∑

j=1

gg,j (xg(t))ug,j

(
xg(t), v

s1
g (t), , . . . , v

s|X|
g (t)

)

ws
g(t) = ws

g (xg(t)) , (10)

for all s ∈ X. If, in the absence of the pg vector field,
the system satisfies all the requirements of a symmetric
system, then it is an approximately symmetric system.
The system obtained by setting pg = 0 for all g ∈ G is
called the corresponding symmetric system. If two different
approximately symmetric have equivalent corresponding
symmetric systems, then they are called equivalent approx-
imately symmetric systems.

Note the form of pg is very general and hence can encom-
pass additive perturbations on the drift term, fg, on the
control vector fields gg or on the control inputs.

Example 4. Returning to Example 3, adding a perturba-
tion to each agent’s dynamics of the form



ẋi = k
∑

j∈N

(xj − xi)
3 − xi + pi (x−2, . . . , xN−3) . (11)

This is an approximately symmetric system regardless of
the specific form of pi.

3. STABILITY AND BOUNDEDNESS OF
APPROXIMATELY SYMMETRIC SYSTEMS

The main result in this paper is based on incorporating
the following result into the symmetric context. There are
many results on boundedness of solutions for systems with
perturbed dynamics and this paper presents one of the
possible ways to address the problem.

Theorem 2. Consider

ẋ = f(x). (12)

Suppose that there exists a Lyapunov function, V (x)
defined on 0 ≤ t < ∞ , ‖x‖ ≥ R where R may be large,
which satisfies the following conditions:

(1) α (‖x‖) ≤ V (x) ≤ β (‖x‖) where α(r) is continuously
increasing and radially unbounded and β(r) is con-
tinuously increasing, and

(2) the derivative, V̇ satisfies

∂V

∂x
(x)f(x) ≤ 0.

Then the solutions of Equation 12 are uniform-bounded.

Proof. This is a corollary from Yoshizawa (1966) to
Theorem 10.12 but simplified with autonomous dynamics.
Results along a similar line are also in Khalil (2002). ✷

The idea, of course, is that if V̇ < 0 for large ‖x‖ but not
necessarily so for ‖x‖ ≤ R, then any solution starting with
large magnitude initial conditions will decrease at least to
near ‖x‖ = R.

The idea of the main result in this paper is that if an
exactly symmetric system has very stable dynamics, then
the bounded perturbed terms result in, at most, solutions
which deviate from asymptotically stable behavior by an
amount determined by the perturbation terms. Further-
more, this result holds for the entire equivalence class of
systems, so a robotics control engineer only needs to check
one system in the entire class to ensure stable operation
of the entire class of systems.

Proposition 3. Given a symmetric system on a finite group
G with generators X, let DG ⊂ R

n × · · · ×R
n (|G| times)

be an open domain,

δ = sup
g∈G,x∈DG

‖pg(xG)‖

and assume there is a smooth function VG : DG → R,
α1 ‖xG‖2 ≤ VG (xG) ≤ α2 ‖xG‖2 for all xG ∈ DG and
α1, α2 > 0 such that:

(1) VG may be expressed as the sum of terms correspond-
ing to each component where

Vg : Rn × · · · × R
n

︸ ︷︷ ︸

1+|X|times

→ R

VG(xG) =
∑

g∈G

Vg (xg, xXg)

=
∑

g∈G

Vg

(

xg, w
s1

s
−1

1
g
(xs

−1

1
g), . . . , w

s|X|

s
−1

|X|
g
(xs

−1

|X|
g)

)

,

(13)

for all x ∈ DG,
(2) the individual functions corresponding to each com-

ponent in G are equal as functions, i.e.,

Vg1 = Vg2 = V (14)

for all g1, g2 ∈ G, and
(3) for any one of the g ∈ G,

∥
∥
∥
∥

∂VG

∂xg

(xG)

∥
∥
∥
∥
≤ α3 ‖xg‖ (15)

and

∂VG

∂xg

(xG)



fg(xg) +

m∑

j=1

gg,j(xg)ug,j (xg, xXg)





≤ −α4 ‖xg‖2 (16)

for some α3, α4 > 0.

Then the solution to any system in the equivalence class
is uniform-bounded.

Proof. First we show that the conditions for Theorem 2
are satisfied and then we will show that any equivalent
system on Ĝ is such that Theorem 2 is also satisfied.

Because the Lyapunov functions corresponding to each
component are identical, we may take

DG = D × · · · × D
︸ ︷︷ ︸

|G|times

for some subset D ⊂ R
n. Note that for h ∈ G, because

only Vh and its neighbors depend on xh,

∂VG

∂xh

(xG) =
∂

∂xh




∑

g∈G

Vg (xg, xXg)





=
∂

∂xh




∑

s=e,s∈X

Vsh (xsh, xXsh)





where e is the identity element in G. Hence,

V̇G(xG) =
∑

g∈G




∂

∂xg




∑

s=e,s∈X

Vsg (xsg, xXsg)







fg(xg) +
m∑

j=1

gg,j(xg)ug,j (xg, xXg) + pg(xG)







 . (17)

We will show that without pg every term in the series
in Equation 17 is equal to every other term as functions.
Hence, because the domains of each function are restricted
to the same range of values, then satisfaction of Equa-
tion 16 by one of them implies the same for all of them.

Consider any two g1, g2 ∈ G. Because of the definition of
a symmetric system, fg1 = fg2 and gg1,j = gg2,j as vector
fields (Equation 8) and ug1,j = ug2,j as functions (Equa-
tion 9). Finally, if we define the mappings corresponding
to the differentials by



DgV : D × · · · × D → R
n

DgV (xg, xXg, xXXg) =
∂

∂xg




∑

s=e,s∈X

Vsg (xsg, xXsg)



 ,

the differentials corresponding to different components
are equal as differentials i.e., Dg1V = Dg2V . Hence, as
functions, each term in the square brackets (without the
pg vector fields) are equal, and because the domain of each
is restricted to the same set of values, each term satisfies
Equation 16.

Thus, inequalities 15 and 16 give

V̇G(xG) ≤
∑

g∈G

(

−α4 ‖xg‖2 −
∂VG

∂xg

pg(xG)

)

≤
∑

g∈G

(

−α4 ‖xg‖2 + α3δ ‖xg‖
)

.

Because DG is the Cartesian product of the subspaces
corresponding to each g ∈ G, ‖xG‖2 =

∑ ‖xg‖2. Thus,
there must be at least one component such that, ‖xg‖ >

‖xG‖ /
√

|G|. Because each term is a quadratic, there will
be a magnitude ‖xg‖ that maximizes its corresponding
term in the sum. Hence, there exists a magnitude, R, for
which if ‖xG‖ > R even if all the remaining terms are
such that ‖xg‖ maximize the corresponding term in the
sum, the remaining term is sufficiently large so that the
overall sum is negative. Hence, for ‖xG‖ > R, the terms
of Theorem 2 are satisfied.

For any equivalent system, hence with the same gener-
ators, all the arguments based on symmetry still apply.
The only difference may be a different bound on ‖xG‖ due
to the different number of components. ✷

Remark 4. The conditions expressed in Inequalities 15 and
16 are stricter than they might initially appear. The left-
hand sides of each are functions of (xg, xXg) while the
right-hand sides are a function only of xg. Hence, any
contribution from the states of the neighbors must either
cancel or be strictly negative.

In words, what Proposition 3 provides is that if the
corresponding symmetric system for an approximately
symmetric system has the right stability properties, then

• the perturbed system has bounded solutions with a
known bound, and,

• any equivalent approximately symmetric system also
has bounded solutions if the perturbation terms are
bounded.

4. EXAMPLE

We will illustrate the application of the results to the
approximately symmetric system from Example 4. We
will consider two equivalent symmetric systems one with
five agents and one with fifteen agents. In each case, the
equations of motion are given by Equation 11 with k = 1
and we take the perturbation terms to be of the form

pi(x) = ki tan
−1 (x2) (18)

with k1 = 3, k2 = 6 and k4 = −9 and the rest of the ki = 0.
With these perturbation terms, δ =

√
126π/2 ≈ 17.6.
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Let

V =
1

2
‖x‖2 =

1

2

N−3∑

i=−2

x2
i

which is of the form of Equation 13. Then for the ith agent

V̇i = xiẋi = xi




∑

j∈N

(xj − xi)
3 − xi + pi





=
1

2

∑

j∈N

(

xi (xj − xi)
3
+ xj (xi − xj)

3
)

− x2
i + xipi

= −1

2

∑

j∈N

(xj − xi)
4 − x2

i + xipi.

Note that if the perturbation term is removed, Equation 16
is satisfied. Also, ∂V

∂xi
= xi, so the bound is satisfied with

α3 = 1. Hence, all the conditions for ultimate-bounded are
satisfied.

Solutions for a five-agent system are illustrated illustrated
in Figure 3. By Proposition 3, these results must hold for
any equivalent system as well. For a fifteen agent system
with the same perturbation terms on agents one, two and
four, the solution is illustrated in Figure 4.



5. CONCLUSIONS AND FUTURE WORK

This paper presented results which provide a guaranteed
bound on solutions for approximately symmetric systems.
It is an important extension of existing work in the lit-
erature on symmetric systems in that it allows for a
much broader application of the results because it does
not require an exactly symmetric system. As long as the
system possesses an underlying symmetric structure which
has asymptotically stable associated dynamics, then per-
turbations (not necessarily small) may prevent asymptotic
stability, but are guaranteed to not produce solutions
which grow unbounded. Importantly, because of the under-
lying symmetric structure, these results hold for an entire
equivalence class of approximately symmetric systems.

Future work is focused on several related issues. First,
more structural requirements on the perturbation will
allow for stronger results, such as stability and asymptotic
stability, as opposed to boundedness, in the presence of
symmetry-breaking perturbations. Second, the work in
this paper focused on systems with a stable equilibrium.
Set-based results, based on LaSalle’s theorem or related
invariance principles, are an important focus for investiga-
tion because many robotic formation control problems do
not have a single, stable equilibrium, but rather a set of
an infinite number acceptable formations.
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