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Abstract— This work is part of a larger research effort inves-
tigating the role of symmetries in control of large-scale cyber-
physical-systems (CPS). Most prior efforts have considered
discrete symmetries, and the work in this paper reflects our
initial efforts directed toward investigating continuous symme-
tries. Specifically, we consider a formation control problem,
limited for now to only two agents, and determine all the point
transformation symmetries associated with that system. We also
determine a reduced description of the dynamics of the system
particularly important for formation control and show stability
of the system in those coordinates.

I. INTRODUCTION

This paper considers the multi-agent formation control

problem characterized by two important symmetry features.

First, by “formation” we mean a desired relative config-

uration among mobile agents that only depends upon the

relative positioning of the agents, and not on their absolute

position. Second, the individual agents are symmetric in the

sense that they are identical and interact with their neighbors

in the same way. This work involves the initial steps to

bring together the benefits of both types of symmetries for

formation control.

Since the formation only depends on the relative configu-

ration of the agents, a successful formation can be translated

and rotated in the full space of the system and hence is

characterized by an SE(n) symmetry. If the control law only

depends on the relative configuration of the agents and the

individual agent dynamics are independent of absolute posi-

tion, then the dynamics of the system will also be invariant

with respect to SE(n). Hence, the formation stability problem

is more easily and naturally considered on some quotient

space defined by factoring out the SE(n) symmetry.

Such a symmetry actually complicates the formation

stability analysis if it is considered in the full space for

the system because there are an infinite number of valid

formations, so stability can not be formulated in terms of

an equilibrium. Hence LaSalle’s Invariance Principle must

be used instead of a Lyapunov approach. While LaSalle’s

Principle has many attractive attributes, one limitation is the

need to show the existence of a compact invariant set for

the system, at least for the manner in which the Principle

is normally stated (see [1]). In the case where only the

relative configuration is considered and a non-zero steady-

state velocity can result, such a set does not exist because

the agents may converge to the desired relative positions,
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but with a non-zero steady-state overall formation velocity.

Even with damping on the absolute velocity terms, if one

is to allow arbitrary initial conditions, showing the existence

of this set can be problematic. In contrast, if the dynamics

are expressed on a quotient manifold associated with the

symmetry some simplifications result because it typically

becomes stability of an equilibrium point.

We are certainly not the first to recognize the appeal

of the symmetry in this problem. Books on differential

equations and continuous symmetries include [2], [3]. In

[4] the problem of defining unique formations (up to a

symmetry) using a graph-theoretic formulation is addressed

and local stability of formations is shown using LaSalle’s

Principle via a definition of a neighborhood of a formation.

In [5] flocking convergence is established by the definition of

a moving frame at the center of mass of the vehicles, which,

along with assumptions on the control law, establishes the

necessary invariant compact set to use LaSalle’s Principle.

In [6] (and some related papers), flocking convergence is

established by defining a Lyapunov function that depends

only on the relative positioning of the agents. All of these

references hint at and make use of aspects of reduction

to a quotient space (especially notions such as “center of

mass coordinates” and a V that depends only on relative

configurations), but none of them fully explore it.

A closely related reference is [7], where the formation

control problem for a group of robots is abstracted in a

manner where the control law is formulated in terms of a

low-dimensional trivial fiber bundle type structure composed

of group and shape components. Then individual robot

control laws are designed for convergence to the desired

shape. A second closely-related set of publications is from

[8], [9] involving the use of potential functions for formation

control and, especially in [9], making use of classical reduc-

tion theory from mechanics for coordinated control of rigid

bodies. In contrast, this work is not restricted to mechanical

systems, but rather allows for more generic dynamics.

Some of our prior work considers symmetric control sys-

tems wherein the system is composed of repeated instances

of identical components [10], [11], [12], [13], which is, to

some degree, a nonlinear extension of [14], [15], i,e,, discrete

symmetries. The focus of [10] is to exploit the discrete

symmetric structure of the system for stability independent of

the number of components in the system. The focus of [11] is

to extend such results to approximately symmetric systems.

The main utility of such stability results is scalability. If the

system is stable for a given number of components, it is then

guaranteed for a larger system composed of the same type

of components with a similar interconnection structure.
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Fig. 1. System with discrete symmetric structure.

II. SYMMETRIC SYSTEMS

Consider the system illustrated in Figure 1 where each

node in the graph represents an agent and each edge repre-

sents interactions among the agents.

As detailed in [10], if the inputs and outputs for each agent

are related with sufficient regularity, then the system has

periodic interconnections. If the dynamics of each agent are

the same and the system has periodic interconnections, then

the system is a symmetric system and an equivalence class

of symmetric systems can be defined for different numbers

of agents. If the system has a positive-definite Lyapunov

function with a negative definite derivative and the Lyapunov

function can be appropriately decomposed into a sum of

terms corresponding to each agent, then it is shown that

stability of only one system in the equivalence class implies

stability for all members of the equivalence class.

As a specific example, let the formation be defined by

a distance metric between an agent i and the agents in its

neighborhood, denoted by Ni. For example, in Figure 1, Ni

contains the two agents in the counter-clockwise direction

from i and the two agents in the clock-wise direction from

i. Consider the controlled dynamics of each agent to be

ẍi = ux,i = −ẋi −
∑

j∈Ni

(xi − xj)dij

ÿi = uy,i = −ẏi −
∑

j∈Ni

(yi − yj)dij

with

dij = (xi − xj)
2 + (yi − yj)

2 − d̂ij ,

where d̂ij is the square of the desired distance between

agents i and j.

For this system, consider

Vi =
1

2
(ẋ2

i + ẏ2i ) +
1

8

∑

j∈Ni

d2ij ,

with V =
∑N

i=1 Vi. This then gives

V̇ = −

N
∑

i=1

(ẋ2
i + ẏ2i ).

This is negative semi-definite, which of course means that we

cannot infer asymptotic stability from Lyapunov’s Theorem.

One might infer notions of asymptotic stability properties

from LaSalle’s Principle. However, it is not straight-forward

to define an invariant compact set containing all of the

desired formations, as the initial conditions play a significant

role in determining where the formation will be in space. In

[10] this was addressed in the examples by adding a term

to the control attracting the formation to the origin, which

allowed for the identification of an invariant compact set

which led to the use of LaSalle’s Principle. Then, using the

discrete symmetry, scaling of O(0) was obtained where the

order is with respect to the number of agents in the system.

In the present efforts, we want to project the dynamics

onto the quotient space defined by the symmetries of the

system to allow for similar results without the need for a

term attracting the formation to the origin. The goal of the

present work is to make use of the symmetries present in

the problem to rigorously factor out the dependence of the

dynamics and stability analysis on the explicit position of

the agents, and instead only depend on the relative position

between them. To show some of the details of this approach,

we consider a simple two-agent model using the same control

approach as above.

For the two agent system, there is only one distance term

and control laws simplify to

ẍ1 = ω1 = −ẋ1 − d12(x1 − x2)

ÿ1 = ω2 = −ẏ1 − d12(y1 − y2)

ẍ2 = ω3 = −ẋ2 − d21(x2 − x1)

ÿ2 = ω4 = −ẏ2 − d21(y2 − y1)

(1)

with

d12 = (x1 − x2)
2 + (y1 − y2)

2 − d̂12 = d21,

where the ωi terms are defined for use subsequently.

In order to factor out the symmetries present in a system,

one must first be able to find and represent the symmetries.

It is possible to represent Lie symmetries by an infinitesimal

point transformation in terms of at least one parameter.

For example, the rotational symmetry in the plane can be

represented by the point transformation

x̃(x, y; ε) = x cos ε− y sin ε

ỹ(x, y; ε) = x sin ε+ y cos ε,

where ε can be thought of as the angle of rotation. A

function, f(x, y) = 0 has a rotational symmetry if f(x, y) =
f(x̃, ỹ) = 0 for the point transformation defined above.

It is also possible to represent the symmetry as a linear

operator, called a generator and denoted by X . The generator

can be found from the point transformation or a general form

can be assumed to find all of the symmetries of a system.

The generator can be defined by terms in the Taylor series
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expansion of the point transformation about ε = 0. Consider

x̃(x, y; ε) = x̃(x, y; 0) +
∂x̃

∂ε

∣

∣

∣

∣

ε=0

(ε− 0) + · · ·

= x+ εη1(x, y) + · · ·

= x+ εXx+ · · ·

ỹ(x, y; ε) = ỹ(x, y; 0) +
∂ỹ

∂ε

∣

∣

∣

∣

ε=0

(ε− 0) + · · ·

= y + εη2(x, y) + · · ·

= y + εXy + · · · ,

which gives

X = η1(x, y)
∂

∂x
+ η2(x, y)

∂

∂y
.

Note that is also possible to have a transformation in the

independent variable. The rest of this paper is limited to

point transformations in the dependent variables or a shift

in one independent variable. More general transformations

in the independent variables are possible, which introduce

some complexities. These do not apply to the system we are

considering, and therefore not included in this paper.

The check for whether a function, f(x, y) = 0, has the

symmetry defined by a generator, X , is simply Xf = 0,

which is satisfied if the gradient of the function is orthogonal

to the tangent to the action of the point transformation. For

a rotational symmetry, the generator is

X = −y
∂

∂x
+ x

∂

∂y
.

In order to apply the generator to differential equations,

we must first prolong it to include derivatives. This is done

by taking the Taylor series expansion of the expressions for

transforming the derivatives. For an independent variable t,

the expression for the prolongation of the generator is

X = η1(x, y)
∂

∂x
+ η2(x, y)

∂

∂y
+

d

dt
(η1(x, y))

∂

∂x′

+
d

dt
(η2(x, y))

∂

∂y′
+ · · · ,

provided that there is either no transformation in the inde-

pendent variable or only a shift by a constant scalar. It is

possible to prolong the generator when this is not the case,

however, for brevity it is not included. For further details,

see [3].

The prolongation of the rotational symmetry is then

X = −y
∂

∂x
+ x

∂

∂y
− y′

∂

∂x′
+ x′ ∂

∂y′
− y′′

∂

∂x′′
+ x′′ ∂

∂y′′
,

where prime denotes the derivative with respect to time, t.

A differential equation, H = 0, has a symmetry defined

by a generator, X , if XH = 0. Note that for systems of

differential equations, H1 = 0, H2 = 0, it is possible that

XH1 = H2, which equals zero since H2 equals zero by

definition.

One way to find the symmetries of a differential equation

is by “solving for X .” This is done systematically when the

differential equation is expressed as a linear operator. This

relationship is found by the first integrals, f of a differential

equation and is

Af =

(

∂

∂t
+ y′

∂

∂y
+ · · ·+ y(n)

∂

∂y(n−1)

)

f = 0.

Note that a system of differential equations can be repre-

sented by a single linear operator. Then by use of the skew

symmetric Lie commutator, [M,N ] = MN − NM , the

symmetries of a differential equation can be found by

[X,A] = λ(t, y, y′, . . . , y(n−1))A,

which is equivalent to

Xω = η(n),

where H = y(n)−ω = 0. Recall that this ω is defined for the

example system in Equation (1). For a system of equations,

this expression becomes Xωa = Aη
(n)
a , with a as an index.

This equation was used to find all of the symmetries for

the two-agent model defined above. The symmetries for this

system are

X1 =
∂

∂t

X2 = e−t(
∂

∂x1
+

∂

∂x2
)

X3 = e−t(
∂

∂y1
+

∂

∂y2
)

X4 =
∂

∂x1
+

∂

∂x2

X5 =
∂

∂y1
+

∂

∂y2

X6 = −y1
∂

∂x1
+ x1

∂

∂y1
− y2

∂

∂x2
+ x2

∂

∂y2

X7 = (y1 + y2)(
∂

∂x1
+

∂

∂x2
)

X8 = (x1 + x2)(
∂

∂y1
+

∂

∂y2
)

X9 = (x1 + x2)(
∂

∂x1
+

∂

∂x2
)

X10 = (y1 + y2)(
∂

∂y1
+

∂

∂y2
).

The generators X1, X4, and X5 correspond to a translation

in time and the x- and y-directions, respectively. Planar

rotation is represented by X6.

It is possible to express the dynamics of the two-agent

model in a reduced set of coordinates that have the same

symmetries. An obvious choice for the first coordinate is a

distance metric, d12. The derivative of the distance is also

invariant to the group actions as is a third variable that is a

function of the distance and its derivative. Hence, we take

q1 = d12 = (x1 − x2)
2 + (y1 − y2)

2 − d̂12

q2 = (x1 − x2)(ẋ1 − ẋ2) + (y1 − y2)(ẏ1 − ẏ2)

q3 = (ẋ1 − ẋ2)
2 + (ẏ1 − ẏ2)

2 + d212,
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and the dynamics are given by

q̇1 = 2q2

q̇2 = −2d̂12q1 − q2 + q3 − 3q21

q̇3 = −2q3 + 2q21 .

In order to consider stability of this reduced system,

consider the candidate Lyapunov function

V =
1

2

[

q1 q2
]

[

2d̂12
1
4

1
4 2

] [

q1
q2

]

+ q23 ,

which gives

V̇ =
[

q1 q2 q3
]





−

d̂12

2
−

3

40

1

8

−

3

40
−

3

2
1

1

8
1 −2









q1
q2
q3





−

3

4
q
3

1 + 2q41 − 6q21q2 − 2(q21 + q3)
2
.

Using

[

q1 q2 q3
]





− d̂12

2 − 3
40

1
8

− 3
40 − 3

2 1
1
8 1 −2









q1
q2
q3





≤ λmax(q
2
1 + q22 + q23)

it is possible to define a domain that proves that the origin

is stable. For illustrative purposes, a value of d̂12 = 1 will

be used, however, it is possible to show stability for values

larger than 0.153 with this Lyapunov function. Note that d̂12
must be greater than 0.03125 for the Lyapunov function to

be positive definite. This then gives

V̇ ≤− 0.48(q21 + q22 + q23)− 2(q21 + q3)
2

−
3

4
q31 + 2q41 − 6q21q2

which is negative semi-definite for all values of qi and

negative definite for −0.136 ≤ q1 ≤ 0.172.

A simulation illustrates both the stability of the dynamics

and validity of the reduced dynamics. In Figure 2, the

distance metric d12 is computed two different ways. The

blue line corresponds to solving the system using the original

(full) dynamics, while the dashed red line corresponds to the

reduced dynamics.

III. CONCLUSIONS

In this paper we presented a way to find all of the

Lie continuous symmetries of a system. An example was

given for a two-agent system with the formation control

law based on a distance metric. The reduced dynamics for

the two-agent system were presented that have the same

set of symmetries as the original full dynamics. Reduced

dynamics for continuous symmetries are beneficial for for-

mation control, beyond the reduction in dimension, as the

stability analysis simplifies due to several relative equilibria

are reduced to the origin. Lyapunov stability analysis was

performed on the reduced system and the results confirmed

with a simulation. The simulation confirmed that the reduced

dynamics and the original full dynamics can be solved to
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Fig. 2. Distance computation comparing full and reduced dynamics.

produce the same distance metric response. Further work will

focus on extending the reduced system stability analysis for

N agents and combining it with prior work done on discrete

symmetries.

REFERENCES

[1] Hassan K Khalil. Nonlinear systems. Prentice hall Upper Saddle River,
3rd edition, 2002.

[2] Peter J Olver. Applications of Lie groups to differential equations,
volume 107. Springer, 2000.

[3] Hans Stephani. Differential equations: their solution using symmetries.
Cambridge University Press, 1989. Malcolm MacCallum, Editor.

[4] Reza Olfati-Saber and Richard M Murray. Distributed cooperative
control of multiple vehicle formations using structural potential func-
tions. In IFAC World Congress, pages 346–352, 2002.

[5] Reza Olfati-Saber. Flocking for multi-agent dynamic systems: Al-
gorithms and theory. IEEE Transactions on Automatic Control,
51(3):401–420, 2006.

[6] Herbert G Tanner, Ali Jadbabaie, and George J Pappas. Stable flocking
of mobile agents, Part I: Fixed topology. In Proceedings of the 42nd
IEEE Conference on Decision and Control, volume 2, pages 2010–
2015. IEEE, 2003.

[7] Calin Belta and Vijay Kumar. Abstraction and control for groups of
robots. IEEE Transactions on Robotics, 20(5):865–875, 2004.

[8] Naomi Ehrich Leonard and Edward Fiorelli. Virtual leaders, artificial
potentials and coordinated control of groups. In Proceedings of the

40th IEEE Conference on Decision and Control, volume 3, pages
2968–2973. IEEE, 2001.

[9] Heinz Hanßmann, Naomi Ehrich Leonard, and Troy R Smith. Sym-
metry and reduction for coordinated rigid bodies. European journal

of control, 12(2):176–194, 2006.
[10] Bill Goodwine and Panos Antsaklis. Multi-agent compositional

stability exploiting system symmetries. Automatica, 49(11):3158–
3166, 2013.

[11] Bill Goodwine. Compositional stability of approximately symmetric
systems: Initial results. In Proceedings of the 21st Mediterranean

Conference on Control & Automation (MED), pages 1470–1476.
IEEE, 2013.

[12] Bill Goodwine. Compositional boundedness of solutions for symmet-
ric nonautonomous control systems. 2014. Accepted for publication
in the Proceedings of the 2014 Mediteranean Conference on Control
and Automation.

[13] Bill Goodwine. Nonlinear stability of approximately symmetric large-
scale systems. 2014. Accepted for Publiction in the Proceedings of
the 2014 IFAC World Congress.

[14] Raffaello D’Andrea and Geir E. Dullerud. Distributed control design
for spatially interconnected systems. IEEE Transactions on Automatic

Control, 48(9):1478–1495, September 2003.
[15] Benjamin Recht and Raffaello D’Andrea. Distributed control of

systems over discrete groups. IEEE Transactions on Automatic

Control, 49(9):1446–1452, September 2004.

MTNS 2014
Groningen, The Netherlands

1343


