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Abstract— This paper computes all the continuous point-
transformation symmetries for a planar multi-agent dynamical
control system. The relative configuration among the agents is
often the most important aspect of this problem, and this paper
presents a method to “factor out” the location and orientation
on the plane of a multi-agent formation problem. This is useful
in the case where only the relative positioning of the agents
is of concern. Furthermore, in the case where the location of
the formation is still important, it provides a basis for splitting
the problem into the “formation” part and the “location of
the formation” part. The method to compute the symmetries
and determine the reduced coordinates is well-established. The
contributions of this paper are 1) computing the symmetries for
a multi-agent system, 2) highlighting the utility of the reduction
for the formation control application such as formation stability
and 3) analyzing the symmetries to determine a relatively
broad class of systems which have the same symmetries and
hence identical coordinates for reduction. Although it has been
addressed in various ways, essentially all methods to determine
the stability properties of the formation control problem need
the dynamics to be formulated on a reduced, relative space.
Hence, stability (and stability-like notions such as that which
follow from LaSalle’s Principle) analyses will be the main
beneficiary of this work.

I. BACKGROUND

Consider a planar formation control problem where the

control law for each agent depends only on its relative

position to the other agents as well as its velocity (but not its

absolute position). In such a case it makes sense that if we

compute the solution for the system for a given set of initial

positions and then compute the solution where all the initial

positions are subjected to the same Euclidean transformation,

the solution for the transformed initial conditions would be

the same as the solution for the original system, but simply

subjected to the same transformation. This is illustrated in

Figure 1 for an example considered in detail subsequently.

The contributions of this paper are 1) an explicit compu-

tation of the symmetries for a multi-agent system, 2) the

construction of a coordinate transformation which aligns

the coordinates with the action of the symmetries (which

reduces of the dynamics to the essential relative dynamics),

3) an analysis of the resulting system and symmetries which

provides insight into the very broad class of systems to which

the reduction can apply and 4) an analysis of the transformed

dynamics of the system which make it apparent that the

dynamics in such transformed coordinates are the easiest
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Fig. 1. Multi-agent system with dynamics invariant under Euclidean
transformation. The ×s are the initial conditions and the circles are the
final positions.

ones in which to consider stability-like notions in formation

control.

The application of symmetry analysis to differential equa-

tions is well-established (see [1], [2]) with much atten-

tion particularly in mechanics [3]–[8]. One closely-related

publication is [9], which considers the reduction problem

specifically for two rigid bodies in SE(3) and discusses the

N rigid body case. However, in contrast to this paper, it

considers the problem specifically in the context of Hamil-

tonian mechanics. We take a more “direct computation”

approach to determining and using the symmetries without

appeal to mechanics, which provides another dimension to

our contribution. Formation control and multi-agent control

of cyber-physical systems, of course, has a vast literature and

representative references include [10]–[24]. A publication

closely-related in spirit is [25] dealing with formation control

decomposing the dynamics of a group of agents into the

product of a group configuration (configuration in space) and

a shape manifold.

A prototypical motivation to consider throughout this pa-

per is the question of whether a formation is stable (in some

sense). This is a complicated question because even if the

dynamics of the problem are such that the while the relative

configuration among the robots converges to a desired final

value, it may be the case that the final formation has an

overall constant translational and/or rotational velocity. This

is problematic for tests of stability notions because 1) there

clearly is a set of configurations which are the formation, and

hence the nonlinear analysis tool to use is LaSalle’s Principle

and 2) LaSalle’s Principle requires an invariant compact set,

which is problematic when the final formation has a non-zero
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Fig. 2. System topology for Example 1.

steady-state velocity. Such difficulties are typically addressed

in a case-specific manner, for example using notions such

as moving center of mass coordinates in a formation [26]

or in the consensus context, by defining a “disagreement

functions” [27]–[29]. These are, in effect, going “part way”

to exploit the translational symmetries present in the system,

and the contribution of this paper is that we explicitly do so.

The example throughout this paper is the following.

Example 1: Consider the system illustrated in Figure 2

where the goal formation is a regular N-polygon. Each agent

is a point mass with second-order dynamics, and the control

law (formation force) for each agent is from a quadratic

potential based on the deviation from the desired distance

from its neighbors. The set of neighbors considered by each

robot is four other robots, its two nearest neighbors in each

direction. Hence, the nonlinear equations of motion are

ẍi =−ẋi + ∑
j∈Ni

(xi − x j)
(

(xi − x j)
2 +(yi − y j)

2 − d̂i j

)

ÿi =−ẏi + ∑
j∈Ni

(yi − y j)
(

(xi − x j)
2 +(yi − y j)

2 − d̂i j

)

where d̂i j is the desired distance between robots i and j,

d̂i j =

{

1, |i− j|= 1
sin2π/N

sinπ/N
, |i− j|= 2

.

It will be clear that the results in this paper will apply

regardless of which of the other agents are an agent’s

neighbors.

II. SYMMETRIES OF A SYSTEM OF

SECOND-ORDER EQUATIONS

Throughout this section we generally follow the develop-

ment and notation from [2]. A system of m second order

differential equations

q̈1 = ω1
(

q1, . . . ,qm, q̇1, . . . , q̇m
)

...

q̈m = ωm
(

q1, . . . ,qm, q̇1, . . . , q̇m
)

,

can be written as a partial differential equation A f = 0, where

A =
∂

∂ t
+ q̇1 ∂

∂q1
+ω1 ∂

∂ q̇1
+ · · ·+ q̇m ∂

∂qm
+ωm ∂

∂ q̇m
.

Typically symmetry analysis is easier using a linear operator

than the full, typically nonlinear, symmetry transformation.

Such a linear operator can be considered the “velocity” of

the transformation (in this context called a generator), and

if a system of equations is invariant in that direction at all

points, then it will be invariant under the full transformation.

If our goal is to determine all the symmetries, then we

express the generator in an general form and apply it to

the system of interest to determine the unknown terms in

the generator. In this case the general form for a symmetry

expressed as a generator, X , of m second order differential

equations is the vector field

X = ξ (t,q1, . . . ,qm)
∂

∂ t
+η1(t,q1, . . . ,qm)

∂

∂q1
+ · · ·

+ηm(t,q1, . . . ,qm)
∂

∂qm
.

Invariance under the action of the generator is expressed

by the Lie commutator [X ,A] = λ A, which, for a system

of second-order equations, may be expressed as

xiωa
,t +ηbωa

,b +
(

ηb
,t + q̇cηb

,c − q̇bξ,t − q̇bq̇cξ,c

) ∂ωa

∂ q̇b

+ 2ωa
(

ξ,t + q̇bξ,b

)

+ωb
(

q̇aξ,b −ηa
,b

)

+ q̇aq̇bq̇cξ,bc

+ 2q̇aq̇cξ,tc − q̇cq̇bηa
,bc + q̇aξ,tt − 2q̇bηa

,tb −ηa
,tt = 0,

with (a,b,c = 1, . . . ,m) and, as conventional, η,a represents

partial differentiation with respect to qa and we adopt the

summation convention (so a is the free index). Because ξ
and ηa are functions of t and qa and not q̇a, we are able to

arrange the equations in the order of the q̇a terms.

Returning to the example, we may write

q̈i = ω i =−q̇i − ∑
j∈Ni

(qi − ql)
(

(qi − ql)2 +(qk − qm)2 − d̂i
j

)

where i ∈ {0, . . . ,2N} ,k = i − (−1)i, l = i + 2 j

(mod 2N),m = k + 2 j (mod 2N) and qi is either x or

y depending on whether the index is odd or even. Note that

the system does not depend explicitly on time and the q̇a

terms do not appear in the input force from the formation

potential, so q̈i = ω i = −q̇i − gi with ga(q1, . . . ,q2N) only a

function of the configuration and not velocities.

The m = 2N equations that define the symmetry are

ηb(−ga),b +
(

ηb
,t + q̇cηb

,c − q̇bξ,t − q̇bq̇cξ,c

)

(−1)δab

+ 2(−q̇a − ga)
(

ξ,t + q̇bξ,b

)

+(−q̇b− gb)
(

q̇aξ,b −ηa
,b

)

+ q̇aq̇bq̇cξ,bc + 2q̇aq̇cξ,tc − q̇cq̇bηa
,bc + q̇aξ,tt − 2q̇bηa

,tb

−ηa
,tt = 0,



with δab = 1 if a = b and 0 otherwise. Rearranging in

decreasing powers of q̇a gives

q̇aq̇bq̇cξ,bc + q̇bq̇cξ,cδab − 3q̇aq̇bξ,b + 2q̇aq̇cξ,tc − q̇cq̇bηa
,bc

− q̇cηb
,cδab + q̇bξ,tδab − 2q̇aξ,t − 2q̇bgaξ,b + q̇bηa

,b − q̇agbξ,b

+ q̇aξ,tt −2q̇bηa
,tb−ηbga

,b−ηb
,tδab−2gaξ,t +gbηa

,b−ηa
,tt = 0.

Because the q̇a are independent for different orders, the

coefficient of each term much be zero. Thus q̇aq̇bq̇cξ,bc = 0

gives that

ξ = α0(t)+α1(t)q1 + · · ·+α2N(t)q2N ,

which gives

ξ,t = α̇0(t)+ α̇1(t)q1 + · · ·+ α̇2N(t)q2N

ξ,b = αb(t)

ξ,tb = α̇b(t).

The symmetry condition equations are now

q̇bq̇cαc(t)δab − 3q̇aq̇bαb(t)+ 2q̇aq̇cα̇c(t)− q̇cq̇bηa
,bc

− q̇cηb
,cδab + q̇bδab(α̇

0(t)+ α̇c(t)qc)−2q̇a
(

α̇0(t)+ α̇c(t)qc
)

− 2q̇bgaαb(t)+ q̇bηa
,b − q̇agbαb(t)+ q̇a(α̈0(t)+ α̈c(t)qc)

− 2q̇bηa
,tb −ηbga

,b −ηb
,tδab − 2ga(α̇0(t)+ α̇c(t)qc)+ gbηa

,b

−ηa
,tt = 0,

Proceeding to the next lower-order term gives

q̇bq̇cαc(t)δab − 3q̇aq̇bαb(t)+ 2q̇aq̇cα̇c(t)− q̇cq̇bηa
,bc = 0,

which simplifies to

2q̇aq̇b(α̇b(t)−αb(t))− q̇cq̇bηa
,bc = 0.

Recall that a designates which symmetry condition equation

while b and c are summation indices. This gives that

2(α̇b(t)−αb(t)) = ηa
,ba,

ηa
,bc = 0 when c 6= a.

Since partial derivatives commute,

ηa
,bc = 0,

ηa = β a(t)+ γa
b (t)q

b

2(α̇b(t)−αb(t)) = 0,

α̇b(t) = αb(t),

αb(t) = αb exp(t),

where αb is a scalar.

The symmetry condition equations are now

− q̇aα̇0(t)+ q̇aα̈0(t)− 2q̇bγ̇a
b (t)− 2q̇bgaαb exp(t)

− q̇agbαb exp(t)−ga
,bβ b(t)−ga

,bγb
c (t)q

c− γ̇a
b (t)q

b−2gaα̇0(t)

−2gaαb exp(t)qb +gbγa
b (t)− γ̈a

b (t)q
b − β̇ a(t)− β̈ a(t) = 0.

In the general case, one would continue with the q̇i terms,

however, note that the purely time based terms are quite

simple to solve. The equation to solve is β̇ a(t) + β̈ a(t) =

0, which gives β a(t) = β a
1 +β a

2 exp(−t), where β a
1 and β a

2

are constants. The updated expression for ηa is ηa = β a
1 +

β a
2 exp(−t)+ γa

b(t)q
b.

The symmetry condition equations are now

− q̇aα̇0(t)+ q̇aα̈0(t)− 2q̇bγ̇a
b (t)− 2q̇bgaαb exp(t)

− q̇agbαb exp(t)− ga
,b(β

b
1 +β b

2 exp(−t))− ga
,bγb

c (t)q
c

− γ̇a
b (t)q

b − 2gaα̇0(t)− 2gaαb exp(t)qb + gbγa
b (t)

− γ̈a
b (t)q

b = 0.

At this point the formation force needs to be substituted for

ga to solve the q̇a and qa equations, which will be omitted

due to space limitations. The final result is the collection of

expressions

X = ξ
∂

∂ t
+ηa ∂

∂qa

ξ = α0

η = β (t)+Γ ·q = (η1, . . . ,η2N)T ,

q = (q1, . . . ,q2N)T , β (t) = (β 1(t), . . . ,β 2N(t))T ,

β i(t) =

{

β 1
1 +β 1

2 exp(−t) for i odd

β 2
1 +β 2

2 exp(−t) for i even
,

Γ =













B C · · · C

C B
...

...
. . . C

C . . . C B













,

B =

(

γ1
1 γ1

2

γ2
1 γ2

2

)

, C =

(

γ1
1 γ1

4

γ1
2 − γ1

4 + γ2
1 γ2

2

)

.

Each constant, or free variable, corresponds to a symmetry.

By setting a free variable equal to one and the rest equal to

zero, the individual symmetries can be enumerated. Note that

the number of free variables is the same for any number of

agents1 that reference any number of neighbors, provided

that if agent A references agent B, then agent B references

agent A, i.e., the edges in the graph representing the system

are undirected.

For brevity of presentation, we enumerate all the symme-

tries for a system with two agents:

• X1 = ∂
∂ t

• X2 = ∂
∂q1 +

∂
∂q3

• X3 = ∂
∂q2 +

∂
∂q4

• X4 = exp(−t) ·
(

∂
∂q1 +

∂
∂q3

)

• X5 = exp(−t) ·
(

∂
∂q2 +

∂
∂q4

)

• X6 =−q2 ∂
∂q1 + q1 ∂

∂q2 − q4 ∂
∂q3 + q3 ∂

∂q4

• X7 = (q2 + q4) ·
(

∂
∂q1 +

∂
∂q3

)

• X8 = (q1 + q3) ·
(

∂
∂q2 +

∂
∂q4

)

• X9 = (q1 + q3) ·
(

∂
∂q1 +

∂
∂q3

)

• X10 = (q2 + q4) ·
(

∂
∂q2 +

∂
∂q4

)

.

1When there are three agents, an additional free variable is obtained in
the Γ matrix, which becomes a circulant matrix.



The first three symmetries have easy interpretations: transla-

tion in time, the x-direction and the y-direction, respectively.

The fourth and fifth correspond to “center of mass coor-

dinates” which decay in time due to the form of damping

present in the example problem and the sixth is rigid body

rotation.

III. REDUCED-ORDER DYNAMICS

For a given symmetry, X k = ξk
∂
∂ t
+η i

k
∂

∂qi , it is possible

to define a coordinate transformation such that X k = ∂
∂ s

, i.e.,

define one of the coordinates so that it is “parallel” with

the symmetry. These new coordinates are in some sense

canonical, and result in simplifying the expression for the

dynamics of the system. This transformation is determined

by defining (r j,s), such that X ks = 1 and X kr j = 0. This may

often be done by inspection, or in general by determining

the trajectories (orbits) of the group generated by X k. The

trajectories are defined by

dqi

dλ
= η i

k,
dt

dλ
= ξk,

which can be rewritten as

dq1

η1
k

=
dq2

η2
k

= · · ·=
dqn

ηn
k

=
dt

ξk

.

It is possible to take the initial values for these trajectories

as r j and solve X ks = 1 by a line integral.

For the case of one equation, to solve Xr = 0, we take an

orbit where r equals a constant. This gives the expression

dr = 0 = r,tdt + r,qdq.

Note that Xr = 0 can be rewritten as

Xr = ξ r,t +ηr,q = 0.

It is then possible to eliminate r,t and r,q by the prior two

equations and obtain the expression

ξ dq−ηdt = 0.

Now r is the constant of integration that appears in the

solution to the equation above. Recall that we defined for

an orbit that r is a constant. Each orbit of the system is

defined by an r value and it is possible to invert the system

to obtain an expression for r in terms of q and t.

IV. EXAMPLE

Returning to the example system

q̈i =−q̇i− ∑
j∈Ni

(

qi − ql
)(

(qi − ql)2 +(qk − qm)2 − d̂i
j

)

(with k, l, and m as defined previously) we will illustrate

the reduction process for the two-agent system. Additionally,

since the process requires multiple coordinate transforma-

tions, a subscript will be added to indicate the step in the

process. In detail, for two-agents

q̈1
0 =−q̇1

0 − (q1
0 − q3

0)
(

q1
0 − q3

0)
2 +(q2

0 − q4
0)

2 − d̂1

)

q̈2
0 =−q̇2

0 − (q2
0 − q4

0)
(

q1
0 − q3

0)
2 +(q2

0 − q4
0)

2 − d̂1

)

q̈3
0 =−q̇3

0 +(q1
0 − q3

0)
(

q1
0 − q3

0)
2 +(q2

0 − q4
0)

2 − d̂1

)

q̈4
0 =−q̇4

0 +(q2
0 − q4

0)
(

q1
0 − q3

0)
2 +(q2

0 − q4
0)

2 − d̂1

)

.

A. Translation in x-Direction

Consider X2
0 = ∂

∂q1
0

+ ∂
∂q3

0

. We need to find a coordinate

transformation φ1 such that X2
0 r j = 0 and X2

0 s1 = 1. One

such transformation is

φ1

(

q1
0,q

2
0,q

3
0,q

4
0

)

=
(

q1
0,q

1
0 − q3

0,q
2
0,q

4
0

)

=
(

s1,r1,r2,r2
)

.

Since this process will be repeated, the coordinates (r1,r2,r3)
will be changed to (q1

1,q
2
1,q

3
1), respectively. The inverse

transformation is

φ−1
1

(

s1,q1
1,q

2
1,q

3
2

)

=
(

s1,q2
1,s

1 − q1
1,q

3
1

)

=
(

q1
0,q

2
0,q

3
0,q

4
0

)

.

The updated symmetries are found by transforming the

system to the new coordinates and recalculating the symme-

tries. The updated system of equations is

s̈1 =−ṡ1 − q1
1

(

(q1
1)

2 +(q2
1 − q3

1)
2 − d̂1

)

q̈1
1 =−q̇1

1 − 2q1
1

(

(q1
1)

2 +(q2
1 − q3

1)
2 − d̂1

)

q̈2
1 =−q̇2

1 − (q2
1 − q3

1)
(

(q1
1)

2 +(q2
1 − q3

1)
2 − d̂1

)

q̈3
1 =−q̇3

1 +(q2
1 − q3

1)
(

(q1
1)

2 +(q2
1 − q3

1)
2 − d̂1

)

.

The most important point to note is that s1 does not

appear in the q-dynamics, i.e., the last three equations are

independent of the first variable. We may consider the q-

dynamics to be a form of a reduced system that may be

solved independently. The s1 equation can be solved if one

wants to recover the full dynamics of the system, which in

this case would be the absolute x location and velocity.

Now, the process is repeated until all the symmetries

are eliminated. The updated symmetries for the reduced q-

dynamics are then X1
1 = ∂

∂ t
, X2

1 = 0, X4
1 = 0, X7

1 = 0, X8
1 = 0,

X9
1 = 0 and

X3
1 =

∂

∂q2
1

+
∂

∂q3
1

X5
1 = e−t ·

(

∂

∂q2
1

+
∂

∂q3
1

)

X6
1 =−(q2

1 − q3
1)

∂

∂q1
1

+
1

2
q1

1

(

∂

∂q2
1

−
∂

∂q3
1

)

X10
1 = (q2

1 + q3
1) ·

(

∂

∂q2
1

+
∂

∂q3
1

)

.

B. Translation in y-Direction

Now the process will be repeated for X3
1 = ∂

∂q2
1

+ ∂
∂q3

1

.

We need to find a coordinate transformation φ2 such that

X3
1 r j = 0 and X3

1 s2 = 1. Note that this is s2 as s1 will be left

unchanged. One such transformation is

φ2

(

q1
1,q

2
1,q

3
1

)

=
(

q2
1,q

1
1,q

2
1 − q3

1

)

=
(

s2,r1,r2
)

.

Again, the coordinates (r1,r2) will be rewritten with (q1
2,q

2
2),

respectively. The inverse transformation is

φ−1
2

(

s2,r1r2
)

=
(

q1
2,s

2,s2 − q2
2

)

=
(

q1
1,q

2
1,q

3
1

)

.



The transformation φ−1
2 is used to write the system in the

new coordinates.

s̈1 =−ṡ1 − q1
2

(

(q1
2)

2 +(q2
2)

2 − d̂1

)

s̈2 =−ṡ2 − q2
2

(

(q1
2)

2 +(q2
2)

2 − d̂1

)

q̈1
2 =−q̇1

2 − 2q1
2

(

(q1
2)

2 +(q2
2)

2 − d̂1

)

q̈1
2 =−q̇2

2 − 2q2
2

(

(q1
2)

2 +(q2
2)

2 − d̂1

)

.

(1)

Using this additional symmetry has resulted in further

decoupling of the equations of motion in the new coordinates.

Specifically, the last two equations do not depend on the

first two variables and may be solved independently. If

the location or velocity in either the x- or y-coordinates is

needed, then the first two equations may be solved after

solving the last two equations.

Now the updated symmetries for the reduced q-dynamics

are then X1
2 = ∂

∂ t
, X2

2 = 0, X3
2 = 0, X4

2 = 0, X5
2 = 0, X7

2 = 0,

X8
2 = 0 X9

2 = 0, X10
2 = 0 and

X6
2 =−q2

2

∂

∂q1
2

+ q1
2

∂

∂q2
2

.

C. A Comment on the Coordinate Transformations Thus Far

Depending on the application, it may be important that the

agents are at rest (Case A), while other applications are only

concerned that the agents are not moving relative to each

other (Case B). This method is able to handle both cases.

For Case B, each coordinate transformation thus far has been

able to eliminate two variables, si and ṡi. This is shown by

the q dynamics not being dependent on si and ṡi. As will be

shown with the rotational case, it is not always possible to

eliminate two variables with one coordinate transformation,

however it a pleasant result when it does occur. The reduced

dynamics for this case is the q- dynamics

q̈1
2 =−q̇1

2 − 2q1
2

(

(q1
2)

2 +(q2
2)

2 − d̂1

)

q̈2
2 =−q̇2

2 − 2q2
2

(

(q1
2)

2 +(q2
2)

2 − d̂1

)

.

For Case A, each coordinate transformation has eliminated

only one variable, which is all that the method guarantees.

In this case is convenient to define a new variable pi = ṡi,

which defines the quadrature

si =

∫ ∞

0
pidt.

The quadrature is now the equation to be solved if one wishes

to determine where on the x- and y-axis the formation is. The

reduced dynamics is a system of two first order differential

equations and two second order differential equations

ṗ1 =−p1 − q1
2

(

(q1
2)

2 +(q2
2)

2 − d̂1

)

ṗ2 =−p2 − q2
2

(

(q1
2)

2 +(q2
2)

2 − d̂1

)

q̈1
2 =−q̇1

2 − 2q1
2

(

(q1
2)

2 +(q2
2)

2 − d̂1

)

q̈2
2 =−q̇2

2 − 2q2
2

(

(q1
2)

2 +(q2
2)

2 − d̂1

)

.

Since the q dynamics do not depend on the p variables, it

is possible solve the q dynamics first and then solve the

p dynamics. For example, in terms of showing stability, one

would proceed the same way as with Case B to show stability

of the q dynamics only, because that is specifically what is

relevant to notions of “stability of the formation.” It will be

the focus of a future publication to work out the additional

details regarding Lyapunov stability of the q dynamics.

D. Rotational Symmetry

Now the rotational symmetry, X6
2 , will be used. For the

prior two symmetries, it was convenient to keep the system

as system of second order differential equations and define

the coordinate transformation in terms of only the positions.

This is not necessary to do so and at this point we convert

the dynamics into a system of first order equations.

For both the original x- and y- translation symmetries, the

prolongation is equal to the original symmetry. This is due

to the coefficient in front of the partials being a constant.

The prolongation of the rotational symmetry is

X6
2 =−q2

2

∂

∂q1
2

+ q1
2

∂

∂q2
2

− q̇2
2

∂

∂ q̇1
2

+ q̇1
2

∂

∂ q̇2
2

.

To create a simplified set of reduced dynamics, a coor-

dinate transformation will be defined such that the reduced

dynamics are all first order differential equations. One such

transformation is

φ3

(

q1
2,q

2
2, q̇

1
2, q̇

2
2

)

=











arctan2
(

q2
2

q1
2

)

(q1
2)

2 +(q2
2)

2 − d̂1

q̇1
2q1

2 + q̇2
2q2

2

(q̇1
2)

2 +(q̇2
2)

2 +((q1
2)

2 +(q2
2)

2 − d̂1)
2











=
[

s3 r1 r2 r3
]T

with inverse in the configuration variables

φ−1
3

(

s3,r1
)

=

(
√

r1 + d̂1 coss3,

√

r1 + d̂1 sins3

)

=
(

q1
2,q

2
2

)

.

The transformation φ−1
3 is used to write the system in the

new coordinates expressed as the four first-order equations

ṡ3 =

√

(r1 + d̂1)(r3 − (r1)2)− (r2)2/(r1 + d̂1)

ṙ1 = 2r2

ṙ2 =−2d̂1r1 − r2 + r3 − 3(r1)2

ṙ3 =−2r3 + 2(r1)2.

(2)

Note that r1 is simply deviation from the desired distance,

r2 is related to the cross product between configuration and

velocity, and hence is a type of relative angular momentum

term, and r3 is related to the kinetic energy. As was the case

before, s3 does not appear in any of the other equations.

The s3 equation only needs to be solved if one wishes to

know the orientation of the formation. Thus, the rotational

symmetry reduced the fourth-order system represented by

the two, second-order q2 equations in Equation 1, to the

third-order system represented by the last three first-order

equations in Equation 2.

As a check on the reduced equations, we compute a

solution in the original coordinates and in the reduced, r-

coordinates. Figures 3-4 illustrate solutions for a simulation

with initial conditions given by ((x1, ẋ1,y1, ẏ1,x2, ẋ2,y2, ẏ2) =
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Fig. 3. Solution for two-agent system, agent 1 (red) and agent 2 (blue).
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Fig. 4. Validation of reduced dynamics by comparing reduced coordinates
computed from full system dynamics and reduced system dynamics.

(1,0,1,0,−2,3,−3,−3,). Figure 3 illustrates the solution in

the plane and Figure 4 illustrates the evolution of the three

reduced r coordinates. In Figure 4 the red curves, which can

not be seen, are the values of the coordinates computed using

the simulation data for the original (full) system transformed

through the coordinate transformation; whereas, the blue

curves (on top of the red ones) illustrate the simulation data

from the reduced coordinates from Equation 2. For all three

variables, r1 through r3 the curves for the two cases are

identical, validating the relationship among the coordinate

transformation and the original system dynamics and the

reduced system dynamics in Equation 2.

Remark 1: Returning to one of the motivations for this

work, it is clear that the origin is an equilibrium for the

last three equations in 2. Hence, the stability analysis for

the formation control problem is reduced from an eight-

dimensional system (the original system with two masses,

each with a second-order equation in both x and y with

many feasible “formations” to a simple set of three equations

with the origin as an equilibrium. Due to space limitations,

completely fleshing out the application of this method to

formation stability will be the subject of a future publication.

The rest of this paper will consider the more general, N-agent

system.

V. USING THE SYMMETRIES FOR THE N-AGENT SYSTEM

There are several different ways to extend these results to

the general system. It is possible to pick s1 = q1
0 again, or

one can use an average of all of the odd coordinates. For

simplicity and ease of notation, take s1 = q1
0 and s2 = q2

0

where s1 corresponds to X2
0 and s2 corresponds to X3

0 , where

X2
0 =

∂

∂q1
0

+
∂

∂q3
0

+ · · ·+
∂

∂q2N−1
0

X3
0 =

∂

∂q2
0

+
∂

∂q4
0

+ · · ·+
∂

∂q2N
0

.

Note that these two symmetries correspond to the x− and y−
translation, respectively. Since these symmetries are indepen-

dent, it is possible to define a coordinate transformation that

will take care of both symmetries at once.

One possible coordinate transformation is

s1 = q1
0 s2 = q2

0

r1 = q1
0 − q3

0 r2 = q2
0 − q4

0

...
...

r2N−3 = q1
0 − q2N−1

0 r2N−2 = q2
0 − q2N

0 .

As was done with the two coordinate system, ri will be

rewritten as qi
1. The inverse coordinate transformation is

q1
0 = s1 q2

0 = s2

q3
0 = s1 − q1

1 q4
0 = s2 − q2

1

...
...

q2N−1
0 = s1 − q2N−3

1 q2N
0 = s2 − q2N−2

1 .

The system of equations written in the new coordinates is

now

s̈1 =−ṡ1 − ∑
j∈N

s1

ds1

j (q
j
1)

s̈2 =−ṡ2 − ∑
j∈N

s2

ds2

j (q
j
1)

q̈i
1 =−q̇i + ∑

s j∈Ni

ds j

i (qi
1)− ∑

j∈Ni

di
j(q

i
1 − q

j
1)

ds1

j = (q
j
1)

2 +(q j+1)2 − d̂s1

j

ds2

j = (q j−1
1 )2 +(q j

1)
2 − d̂s2

j

di
j = (qi − ql)2 +(qk − qm)2 − d̂i

j,

where i ∈ {0, . . . ,2N − 2} , k = i − (−1)i, l = i + 2 j

(mod 2N −2), m = k+2 j (mod 2N −2), and care needs to

be taken to make sure that Ni is defined properly to be

consistent with the original system.

Note that the reduced system defined by qi
1 does not

depend on s j , but rather only ṡ j . This means that it is possible

to define a quadrature

si =

∫ ∞

0
pidt, pi = ṡi.



To continue the reduction, it is not necessary to find all of

the symmetries, but rather only the one to reduce the system

by. The updated rotational symmetry is

X6
1 =−p2 ∂

∂ p1
+ p1 ∂

∂ p2
− q2

1

∂

∂q1
1

+ q1
1

∂

∂q2
1

+ · · ·+−q2N−2
1

∂

∂q2N−3
1

+ q2N−3
1

∂

∂q2N−2
1

.

From here one can choose to use s3 = arctan2
(

q2
1/q1

1

)

again, or any other combination of the pi’s and qi’s that

results in X6
1 s3 = 1. A similar extension of the ri’s for the

two agent coordinate transformation can be used to define

the coordinate transformation for the general case, however,

due to the general case having an unspecified number of

neighbors, it is not shown here.

It is important to note that these coordinate transformations

are found based on the symmetries. Therefore, if another

second order system of equations is found to have the

symmetries X2
0 ,X

3
0 , and X6

0 , it is possible to use the same

coordinate transformation to reduce the system.

VI. CONCLUSIONS AND FUTURE WORK

This paper computed all the symmetries for a planar

multi-agent coordination control problem. This is important

because many of the important attributes of the problem

only depend on the relationship among the agents, and

determining a formulation for the dynamics of the system

that eliminates the absolution position and orientation of

the formation helps reduce the complexity of the dynamics

of the system to a reduced-dimension, and hence, simpler,

representation. An important way in which this will be used

is for formation stability analysis, which will be the subject

of a future publication and is the focus of our current efforts.
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