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Abstract— The dynamics of many large-scale robotic forma-
tion systems, including structured systems as well as some ran-
dom scale-free networks of agents, can be accurately described
using fractional-order differential equations. A fractional-order
differential equation can contain derivative terms with non-
integer order, e.g., the one-half derivative. This paper demon-
strates that the fractional order of the dynamics of a system may
be a potentially powerful new way to monitor the operational
status of such systems. When the order of the system changes,
it can indicate an important change in the status of the system.
Integer-order models will never exhibit a change in order
because the order is dictated by a natural first principle and
the structure of the system. For this reason, traditional health
monitoring tools essentially focus on identifying parameter
variations in a mathematical description of the system, but not
changes in order. When fractional-order models are considered,
the infinite number of possible real-valued orders between
any two integer orders may capture essential changes in the
system’s dynamics. This paper provides an example of such
changes, provides a theoretical justification for the approach,
and explores possible limitations to the approach.

I. MOTIVATIONAL EXAMPLE

We start with the example that motivated this work. In the

next section we provide a literature review and set the context

for this work in the broader research area. In a previous

ICRA paper we demonstrated that the following system is

fractional-order in nature [1].

Consider a toxic waste spill and a system or robots

deployed to map and/or clean up the spill. Generally in water

or ground spills, the contaminant will diffuse and advect

due to groundwater flow to the surrounding environment,

as illustrated in Figure 1. In such a case, a system of robots

deployed for remediation will need many robots where the

contamination concentration is high and few where it is low.

In the figure, the black circles represent the robots.

This task could be accomplished with a formation with

a tree graph structure, an example of which is illustrated

in Figure 2. In this case, there is one robot at the first

generation, two at the second, four at the third, etc., where

each successive generation with a greater number of robots is

positioned in an area of greater contamination. To simplify

the analysis, the robots in this example are constrained to

move horizontally, and xi j represents the horizontal location

of robot j in the ith generation. The robots maintain their

relative positions by either a potential force represented by

a spring with constant k or by a damper-type relationship, b.

*The partial support of the US National Science Foundation under the
CPS Large Grant No. CNS-1035655 is gratefully acknowledged.

1Both authors are with the Department of Aerospace & Mechanical
Engineering, University of Notre Dame, Notre Dame, IN 46556 USA,
kleyden@nd.edu and bill@controls.ame.nd.edu
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Fig. 1. Robotic environmental contamination remediation. Darker shaded
regions indicate areas with greater contamination.
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Fig. 2. Structure of robotic formation.

Figure 3 illustrates the frequency response of the relation-

ship between the first robot, x11, and the robots in the last

generation, xlast , with a system of seven generations. The

blue curve illustrates the case where all the spring constants

are k = 2, all the damper coefficients are b = 1, the mass

of the first robot is m11 = 1, the mass of the robots in the

seventh generation is 1, and the masses of the interior robots

are negligible.

The extended frequency range over which the phase is

−45◦ and the slope of the magnitude curve is −10 dB/decade

suggests that the system may have 1/2-order dynamics,

and the results in [1] gave both analytical and numerical

justifications for that interpretation. In Figure 3, the red curve

is the frequency response for the case where some of the

robots’ interactions are degraded. Specifically, the system

is “damaged” such that all parameters match the first case,

except that one spring (the left-most one between x11 and

x12) is reduced to kd = 1/5. The phase plot has shifted to

−60◦, which suggests dynamics of fractional order 2/3.

The rest of this paper supports this interpretation, both

analytically and numerically. This suggests that changes in

fractional order of a system could provide a novel and useful

health monitoring tool for engineering systems, particularly

robotic formation systems.
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Fig. 3. Frequency response: blue curve undamaged, red curve damaged.

II. BACKGROUND

A. Literature Review and Research Context

Our work in [1], which considered the undamaged system

in Figure 2, was motivated by a viscoelastic model from

the literature [2], [3], and we showed that the system was

accurately modeled by a differential equation with a half-

order term. Because interacting, multi-agent systems are

inherently of very high order, recognizing the fractional-

order dynamics of the system is important when a reduced-

order and concise model is needed, and it will expand the

set of tools available to roboticists when they need a model

for design or analysis of their systems.

For the proposed system monitoring to be practical, it must

be supported by a method of fractional-order system iden-

tification. Mathematical treatments of this topic include [4],

which seeks a continuous order distribution to describe the

system, since the order can be any real number. The method

in [5] is motivated similarly but establishes a linear system

of equations, yielding a discrete order distribution. A series-

based approach to identifying governing equation parameters

is detailed in [6]. Computational system identification pro-

cedures include the iterative optimization approach of [7].

Genetic algorithms are employed to optimize fractional-order

governing equations in [8].

Multi-robot systems are well-studied and present interest-

ing and challenging control problems. For example, see [9]–

[14]. Some of the author’s prior work is directed toward exact

model reduction for symmetric systems [15]–[18]. Fractional

calculus as a mathematical subject has a long history. Books

on the mathematics and engineering applications include

[19]–[21], and there are a number of review articles as well

[22], [23]. One closely related study is [24], [25], concern-

ing formation control of fractional systems. Those papers

consider a problem in which the individual components are

fractional in nature. In contrast, in this present paper, the

fractional dynamics arise from the structure of the interaction

among the agents. Other related studies include [26] (walking

robots), [27], [28] (flexible manipulators), [29] (time delays)

and control using fractional-order PID control [28], [30]. Our

other prior papers on fractional calculus in engineering are

[31], [32].

B. Fractional Calculus

It is natural to ask, given a function, f (t), with a first

derivative, f (1)(t), and second derivative, f (2)(t), whether

there are operators “in between” the integer order derivatives

such as
d

1
2

dt
1
2

f = f (
1
2)

that generalize the notion of an integer-order derivative.

While closed-form solutions for fractional-order differen-

tial equations do exist (see our prior work for a brief sum-

mary or the other literature for more in-depth presentations),

we also must resort to numerical approximations. To that

end, consider the first and second derivatives of a function

to be defined as

d f

dt
(t) = lim

∆t→0

f (t)− f (t −∆t)

∆t

d2 f

dt2
(t) = lim

∆t→0

f (t)− 2 f (t −∆t)+ f (t− 2∆t)

(∆t)2
,

or in general for an integer n

dn f

dtn
(t) = lim

∆t→0

∑0≤m≤n(−1)m

(

n

m

)

f (t +(n−m)∆t)

(∆t)n ,

where the usual binomial coefficient is given by
(

n

m

)

=
n!

m!(n−m)!
.

This is easily generalized to non-integers by gamma func-

tions (

α

m

)

=
Γ(α + 1)

Γ(m+ 1)Γ(α −m+ 1)
,

giving the Grünwald - Letnikov derivative:

dα f

dtα
(t) = lim

∆t→0

1

(∆t)α

∞

∑
j=0

(−1) j

(

α

j

)

f (t +(α − j)∆t) . (1)

If ∆t ≪ 1 and t = m∆t, then the time shift by α is small, and

if all the initial conditions are zero, then we have

dα f

dtα
(t)≈ 1

(∆t)α

m

∑
j=0

(−1) j

(

α

j

)

f (t − j∆t) ,

which is a useful approximation to solve fractional-order

differential equations.

It is worth emphasizing that, unlike integer-order deriva-

tives, fractional-order derivatives require more than local

information. In fact, it is apparent from the sum in the

definition in Equation 1, that all past values of a function

enter into the computation for the fractional derivative.

III. MATHEMATICAL ANALYSIS

This section presents a mathematical analysis relating the

damaged and undamaged systems.



A. Undamaged System

Observe that the tree network in Figure 2 is the composi-

tion of two types of transfer functions. The transfer function

from the x11 node to the x21 node is G1(s) = 1/k, and the

transfer function from the x11 node to the x22 node is G2(s) =
1/(bs). The entire system is parallel and series combinations

of these. Specifically, if we consider the relationship between

the total force created by relative displacements between the

first and last generations, we can see that

X11(s)−Xlast(s)

F(s)
=

1
1

G1(s)+
1

G1(s)+
1

G1(s)+···

+ 1

G2(s)+
1

G2(s)+
1

G2(s)+···

.

In the limit where there are an infinite number of gen-

erations, the transfer function from any node to the last

generation is equal to the transfer function from the first node

to the last generation; this is the mathematical manifestation

of self-similarity in the network. If we denote that by G∞(s),
we have

G∞(s) =
1

1
G1(s)+G∞(s)

+ 1
G2(s)+G∞(s)

,

which can easily be solved for

G∞(s) =
√

G1(s)G2(s).

This holds in general for any G1(s) and G2(s), and for the

specific system in question we have

G∞(s) =
1√
kbs

. (2)

Because s is the derivative operator in the frequency domain,

the square root term in the denominator is indicative of 1/2-

order dynamics.

To further validate the 1/2-order dynamics, we use Equa-

tion 1 and numerically compute the response of the last

generation, xlast , when x11 is displaced. In particular, we take

x11 =











t, 0 ≤ t < 1

2− t, 1 ≤ t < 2

0, t ≥ 2

,

and Newton’s law on the last generation with the transfer

function in Equation 2 gives

ms2Xlast(s) =
√

kbs(X1(s)−Xlast(s)) ,

or in the time domain

m
d2xlast

dt2
(t)+

√
kb

d
1
2 xlast

dt
1
2

(t) =
√

kb
d

1
2 x1

dt
1
2

(t).
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Fig. 4. Comparison of solution to Equation 3 to full dynamics of an
eight-generation system. Red: fractional response, blue: full response.

Using Equation 1 and solving for xlast at t = n∆t gives

xlast(n∆t)≈





1

m

(∆t)2 +
√

kb√
∆t





×
[

m

(∆t)2
(2x((n− 1)∆ t)− x((n− 2)∆t))

−
n

∑
j=1

(−1) j

(

1
2

j

)

xlast((n− j)∆t)

+

√
kb√
∆t

n

∑
j=0

(−1) j

(

1
2

j

)

x1((n− j)∆t)

]

.

(3)

Figure 4 compares the fractional-order response to the

response of the full system with eight generations when k =
2, b = 1, and m = 1. The fractional-order approximation was

a single fractional-order equation, and the full system had

255 second-order differential equations. Clearly the solutions

are very close, and the fractional equation provides a very

good approximation for the full system.

B. Damaged System

Consider the system where the leftmost spring has a

different value that has been changed from its nominal

value. In such a case, in the limit of an infinite number of

generations with kd = k+ ε ,

Gdamaged(s) =
1

1
1

k+ε +
1√
kbs

+ 1
1
bs+

1√
kbs

.

Note that this is not self-similar because of the perturbation

on the first spring, but the generations greater than one

are self-similar, indicated by the 1/
√

kbs terms. Simplifying

gives

Gdamaged(s) =
(k+ ε)

√
bks+ bs

(√
bks+ 2k+ ε

)

bs

(

k

(

2
√

bks+ bs+ ε

)

+ 2ε
√

bks+ k2
) .

(4)



-80
-60
-40
-20

0
20
40
60

10−6 10−4 10−2 100 102 104 106

-80

-60

-40

-20

0

10−6 10−4 10−2 100 102 104 106

|G
(i

ω
)|

[d
B

]
∠

G
(i

ω
)

[d
eg

]

Frequency [rad/s]

Fig. 5. Frequency response of damaged system with an infinite number
of generations (red) compared to a half-order system frequency response
(blue).
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Fig. 6. Frequency response of damaged system with an infinite number of
generations. Red: undamaged system with an infinite number of generations.
Blue: damaged first generation followed by infinite number of undamaged
generations.

The frequency response of this irrational transfer function is

illustrated in Figure 5 with kd = 1/5 (ε = −9k/10), b = 1,

and m = 1.

Figure 6 is the same frequency response, but limited to

be over the same frequency range as Figure 3. It clearly

illustrates the same shift in frequency to approximately −60◦

at ω ≈ 1, which we saw in the original damaged system in

Figure 3, corresponding to an order of approximately 2/3.

Furthermore the magnitude plot is shifted by approximately

7 dB, which corresponds to a decrease in the force produced

by the network by a factor of 0.45.

Finally, we validate the response by computing the time

domain response of a seven-generation system with the

damaged spring and a fractional-order system with order 0.6.

The full system will be the same as previously, but with
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Fig. 7. Comparison of 2/3-order fractional solution (blue) to full solution
(red) illustrating good agreement for damaged system.

kd = 1/5. The fractional system will be the solution to

xlast(n∆t)≈





1

m

(∆t)2 +
M
√

kb

(∆t)0.6





×
[

m

(∆t)2
(2x((n− 1)∆ t)− x((n− 2)∆t))

−
n

∑
j=1

(−1) j

(

0.6
j

)

xlast((n− j)∆t)

+
M
√

kb

(∆t)0.6

n

∑
j=0

(−1) j

(

1
2

j

)

x1((n− j)∆t)

]

,

(5)

which is the same fractional solution as before, except with

the order being 0.6 instead of 1/2 and scaling the force,√
kb, by a factor of -7 dB. A comparison of the solutions

where k = 2, b = 1, m = 1 is illustrated in Figure 7, which

clearly indicates that the predicted change in order accurately

represents the change in dynamics of the damaged system.

The implication of the result in Figure 7 is that the change

in a parameter of the system, in this case k → kd , produces

a predictable change in the fractional order of the system

from 1/2 to 2/3. This, in turn, implies that if we are able

to monitor or periodically check the order of a system, that

may provide useful information regarding the status of the

system.

C. Another Example

Consider the same system, but now decrease the coeffi-

cient of the leftmost damper from b = 1 to b = 1/10. The

frequency response for this system is illustrated in Figure 8.

Unlike the damaged spring, this shows a decrease in order

from 1/2 to approximately 1/3. Like the damaged spring

case, the magnitude term will be decreased, in this case by

approximately 10−8/20.



-30

-20

-10

0

10

20

10−1 100 101 102

-80

-60

-40

-20

0

10−1 100 101 102

|G
(i

ω
)|

[d
B

]
∠

G
(i

ω
)

[d
eg

]

Frequency [rad/s]

Fig. 8. Frequency response for damaged system with reduced damping in
the first generation.
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Fig. 9. Fractional vs exact response for damaged damper.

In this case the equation we solved numerically was

xlast(n∆t)≈





1

m

(∆t)2 +
M
√

kb

(∆t)0.33





×
[

m

(∆t)2
(2x((n− 1)∆ t)− x((n− 2)∆t))

−
n

∑
j=1

(−1) j

(

0.33

j

)

xlast((n− j)∆t)

+
M
√

kb

(∆t)0.33

n

∑
j=0

(−1) j

(

1
2

j

)

x1((n− j)∆t)

]

(6)

with M = 10−8/20. Again, the fractional-order response

shows close agreement with the full dynamics.

IV. DISCUSSION

The following are findings from preliminary investigations

into other damage cases for this example system. These

inform the potential scope of fractional order measurement

as a monitoring tool.

A. Damage Detection

The previous sections consider damage to the leftmost

spring and damper. In the example system, the springs and

dampers are assumed identical before damage, so the effects

of damage to the other components in the formation are

of interest as well. The components that have the greatest

effect on the system’s frequency response are those in serial

connection with only like elements. These comprise the

upper (all springs) and lower (all dampers) edges of the tree

diagram in Figure 2 and will be referenced as the critical

components.

While the damage to the leftmost spring and damper

appear to bring about a change in order, damage to the other

critical components brings about different behaviors in the

frequency response. The extent of these frequency response

adjustments is dependent on which component is damaged.

Naturally, damages on the left side of the formation tree

are more severe because those components are connected to

significant portions of the tree. Indeed, there is a progression

in the appearance of the frequency response plots from the

cases of most critical damage to that of no damage.

This progression relates to the concavity of the phase

difference. Damage to critical springs yields a similar re-

sponse to the damage case in Figure 3, except that for

high frequencies, the behavior more closely resembles the

undamaged system. Therefore, the progression is described

as follows: there is a frequency band over which the effect of

the damage is seen. The deeper in the formation the damage

occurs, and thus the less critical the damage, the smaller that

frequency band.

If the damaged element is a damper, the result has char-

acteristics opposite to the spring damage cases. The system

response mimics the undamaged system response for lower

frequencies and the case of worst damage for higher fre-

quencies. The apparent duality between the results from the

spring and damper cases despite clear dynamical differences

between those elements could perhaps be exploited in an

extension of this method.

B. Limitations

Thus far, this discussion has neglected the springs and

dampers that are not on the outer edges of the tree diagram

in Figure 2. Damaging these inner components has negligible

effect on the overall frequency response. The damage causes

some change in the full dynamics of the system, but there

are no emergent properties in these new dynamics that differ

in any meaningful sense from the undamaged system.

Compounding of these subtle damages might eventually

cause more severe dynamical changes. In an extreme case

where each of the inner element coefficients, k or b, is

reduced to 1/10 of its normal operating value, the frequency

band suggestive of fractional-order dynamics vanishes. This

aligns with intuition, since that level of damage would

essentially reduce the system to two elements: a series of



springs with an effective stiffness constant and a series of

dampers with an effective damping constant.

A different type of compounding that could hinder damage

detection is one in which k and b may both change for a

spring-damper pair, but their product is approximately pre-

served. This is because k and b are multiplied in Equation 2

and, in turn, the governing equation. It is unclear what type

of damage might have this effect. Our current efforts are

directed toward defining the extent of these limitations, or

correspondingly, the limits of the efficacy of our proposed

approach.

C. Implementation

The application of this method to a physical system would

first require frequency data from an operational state. Similar

data would then be collected from the damaged state. If the

order of dynamic response evident in the medium-frequency

range is higher than expected, the damage would likely

have occurred in an elastic component; if lower, a damping

component. Furthermore, the location of the damaged ele-

ment could be estimated by measuring the frequency band

in which the response mimics that of a damaged system.

The wider this band is, the more critical the location of the

damage. The full extent of applicability for this method is

not yet known.

V. CONCLUDING REMARKS

This paper has presented a new method for detection

of damage to a component in a system such as a robotic

formation. The damage may be seen as a result of a change

in the fractional order of the system’s governing equation.

Given the ubiquity of models based on spring and damper

elements, this method has the potential to be widely useful

in structural or systemic health monitoring.

Three main directions of research to build upon these

preliminary findings are apparent. The first looks inward;

the method should be shown to deliver similar results for

other example systems. These results would include more

specific quantitative findings; however, every physical system

is different, so the main advantage is the transparent nature

of the differences between frequency responses.

The second is pursuit of further consolidation of this

method with the theory of fractional calculus and differential

equations. For instance, there may be an explicit relationship

between the governing equation of a damaged system and the

equation for a fully operational one, given a specific type and

extent of damage. Additional mathematical analysis would

solidify the intuitively affirmative results thus far.

The third is extension into the realms of system identifi-

cation and structural health monitoring, which is indeed the

primary motivation for these advances. The former suggests

issues of robustness to be examined; the latter, fundamental

questions about the utility of the method for other types of

models. These three directions point to a versatile approach

for detecting damage in a system in light of the fractional-

order behavior evident in its frequency response.
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