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Abstract— The modern trend of increased integration of
formerly disparate systems is necessitating the development of
advanced tools to study large-scale complex systems. This paper
studies bifurcations in solution to an optimal control problem
for robotic formation control. Robotic formation control is
an excellent system-integration prototype problem because the
scale of the problem can grow rapidly with increased numbers
of robots, but the system retains some degree of heterogeneity
which makes its study manageable. Our prior efforts have
numerically studied the bifurcations for particular systems
and performed an asymptotic analysis on those systems which

provided insight into the rich and complicated structure of
the solution space for such systems. The main contribution of
this paper is an extension of the asymptotic analysis beyond the
specific systems studied previously to a general class of systems.
In both the specific and general cases, we show that as a system
parameter is varied, the number of solutions increases from an
unique solution to an infinite number of expected solutions,
which bears resemblance to the cascade of period-doubling
bifurcations typical of a dynamical system that exhibits chaos.

I. INTRODUCTION

This paper studies the optimal trajectories for a formation

of robots moving between specified initial and final forma-

tions. A combination of the control effort and the deviation

from a desired formation is minimized in the solution. The

optimal path is determined by solving a two-point boundary

value problem for a set of second-order ordinary differential

equations. We show that a bifurcation structure is present in

the solutions as the relative emphasis between the control

effort and maintaining the formation is varied. This structure

is characterized by a unique solution when the control effort

is more heavily weighted and an increasing number of

solutions as the formation is more heavily weighted. Our

prior work in [3], [4], [12] showed this for specific systems,

and the main contribution of this paper is to extend those

results to a more general class of systems. In [2] the initial

steps toward generalizing the results were taken, but this

paper further extends those results to more general cost

functions for the inputs in the optimization.

The existence of multiple nontrivial solutions of bound-

ary value problems for nonlinear second order ordinary

differential equations has been investigated by others, but

unfortunately none of those results are directly applicable to

Partial support of the US National Science Foundation under the CPS
Large Grant No. CNS-1035655 is gratefully acknowledged.

Bill Goodwine is with the Department of Aerospace & Mechanical
Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
bill@controls.ame.nd.edu

our problem. For example, for

ẍ+ a(t) f (x) = 0, x(0) = 0, x(1) = 0,

the properties of the solutions depend on the limiting behav-

ior of the function f (x). The existence of positive solutions

of the equation with linear boundary conditions was studied

in [6]. They showed that for

f0 = lim
s→+0

f (s)

s
, f∞ = lim

s→+∞

f (s)

s
,

the existence of at least one positive solution in the case of

either superlinearity ( f0 = 0, f∞ = ∞) or sublinearity ( f0 =
∞, f∞ = 0). The results in [5], showed that there are at least

two positive solutions with superlinearity at one end (zero

or infinity) and sublinearity at the other end. In [11] and [9]

conditions based on the ratio f (s)/s for the existence (or

nonexistence) of solutions were determined. The main result

indicates that there are at least k solutions if the ratio f (s)/s

crosses the k eigenvalues of the associated eigenvalue prob-

lem. The existence, nonexistence, and multiplicity of positive

solutions of the boundary value problem is determined using

the fixed-point theorem of cone expansion/compression type

in [10].

The rest of this paper is organized as follows. Sec-

tion II presents the system under consideration as well

as numerically-determined bifurcation results. Section III

presents an asymptotic analysis which provides a theoretical

for the observed structure of the bifurcation diagram for this

system. Section IV presents an extension of this analysis

from the specific case considered to a broad, general class of

systems. Finally, Section V presents conclusions and future

work.

II. ROBOTIC FORMATION SYSTEM DYNAMICS

This section first presents the system under consideration

and then presents the results of a numerical investigation.

A. Robot Fleet System

We consider a canonical fully actuated two-degree of

freedom system

ẋ = u1, ẏ = u2. (1)

which is a standard model for simple rolling-type robotic

systems. We consider a group of n of robots with states

(xi,yi), i ∈ {1, . . . ,n} and try to find the control inputs

ui1(t),ui2(t) for each robot i, which steer a formation start

formation to a goal formation, while maintaining, to some



degree, the formation throughout the execution of the motion.

This is achieved by minimizing the functional

J =

∫ t f

0

n

∑
i=1

(

(ui1)
2 +(ui2)

2
)

︸ ︷︷ ︸

minimize control effort

+k
n−1

∑
i=1

(
di − d

)2

︸ ︷︷ ︸

maintain formation

dt

subject to the dynamic constraints in Equation 1, where n

is the number of robots, di =
√

(xi − xi+1)2 +(yi − yi+1)2 is

the distance between the ith and (i+ 1)th robots, d is the

desired distance between two adjacent robots, and k is a

weighting factor. When k is small the control effort is more

important and when it is large maintaining the formation is

more important.

Standard methods such as calculus of variations or Pon-

tryagin’s maximum principle give ui1 = pi1/2, ui2 = pi2/2,

and equations of motion1

ẋi =
1

2
pi1

ẏi =
1

2
pi2

ṗi1 =
2k (xi − xi−1)

(
di−1 − d

)

di−1

+
2k (xi − xi+1)

(
di − d

)

di

ṗi2 =
2k (yi − yi−1)

(
di−1 − d

)

di−1

+
2k (yi − yi+1)

(
di − d

)

di

.

(2)

For space limitations we focus on the specific boundary

conditions

xi(0) = c+(i− 1)d, yi(0) = 0

xi(1) = 0, yi(1) = c+(i− 1)d,
(3)

where c is a constant. Hence the initial formation has the

robots evenly spaced along the x-axis and the final formation

has the robots evenly spaced along the y-axis as is illustrated

in any of the following simulation illustrations.

Remark 1: Observe that straight-line trajectories connect-

ing the initial and final formation locations of each robot

will not maintain the desired distance between the robots.

Therefore, solutions that minimizes the control effort, which

are straight lines, will not maintain the desired formation.

Hence relative weighting of the two terms in the cost function

will be important and affect the solution, and, as the rest of

this paper shows, is a means to characterize the nature and

number of solutions to this problem. ⋄

B. Simulation Results

Some of our prior publications have presented extensive

numerical investigations using various numerical solution

methods for the boundary value problem2 for this and other

systems for various numbers of robots in the group [3],

[4], [12]. Here we present the bifurcation results and the

following sections provide a theoretical explanation for the

1Note: because they are the robots at the two ends, the last two equations
in Equation 2 only have the second term when i = 1 and they only have the
first term when i = n. This is because there is no 0 robot or n+1 robot.

2Specifically we have used the shooting method as well as finite difference
methods.

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10 12 14 16

y

x

Fig. 1. Eleven solutions for a seven-robot system with k = 23.
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Fig. 2. Bifurcation diagram for robot number one in a seven-robot system.

results and extends that justification to a very broad class of

systems.

Because the problem in Equations 2 and 3 is a nonlinear

two-point boundary value problem, unique solutions do not

necessarily exist. In fact, many solutions may exist, depend-

ing on the value of k, the parameter that is the relative

importance of maintaining the formation versus the control

effort. For example, for seven robots and k = 23 there are

at least 11 different solutions, which are all illustrated in

Figure 1.

To illustrate the geometric structure of the relationship

among the solutions, we compare each solution to the k = 0

case. When k = 0 the solutions are straight lines that connect

the starting and ending points. The solutions are straight

because k = 0 corresponds to only considering the control

effort and not the formation, and hence the robot will go in

the shortest possible path connecting the starting and ending

locations. While it is not necessarily a perfect measure, if we

measure the distance above or below the k = 0 solution at

one-quarter of the time between the start and end, and plot

that measure for various k values, we can illustrate some

of the geometry of the solution space. Figures 2 through 8

illustrate that for a seven-robot system. The d value is the

of the solution from the k = 0 solution. Positive values of d

are solutions above and negative values are below.

Remark 2: The main feature to note from these bifurca-
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Fig. 3. Bifurcation diagram for robot number two in a seven-robot system.
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Fig. 4. Bifurcation diagram for robot number three in a seven-robot system.
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Fig. 5. Bifurcation diagram for robot number four in a seven-robot system.
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Fig. 6. Bifurcation diagram for robot number five in a seven-robot system.
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Fig. 7. Bifurcation diagram for robot number six in a seven-robot system.
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Fig. 8. Bifurcation diagram for robot number seven in a seven-robot system.



tion diagrams is the increasing number of solutions as k is

increased. For a small k value, there is only one solution, and

as k is increased, the number of solutions increases. This is

similar to period-doubling bifurcations in scalar dynamical

system transitioning to chaos. However, in the present case

it is fundamentally very different because we are solving

boundary value problems is contrast to ordinary differential

equations. ⋄

The remainder of this paper shows that as k is increased,

an increasing number of solutions is expected. This has im-

portant ramifications for large scale robotic control because a

proliferation of locally optimal solutions will make it difficult

to apply optimization methods to integrated systems of many

interacting robots.

III. ASYMPTOTIC ANALYSIS

Because the governing equations are nonlinear, global

results are difficult to obtain and the bifurcation diagrams

we present here and in the other references were all obtained

via extensive numerical searches. Such a method does not

preclude the existence of solutions we did not find.

This section presents a theoretical analysis that validates

the qualitative dependence of the number of solutions on the

bifurcation parameter. An asymptotic expansion is used to

investigate the cases of very small k and very large k, with

the focus of the analysis on the number of solutions. This

analysis is consistent with the existence of a unique solution

for small values of k and many solutions for very large k,

which is the pattern indicated in the numerical results.

A. Emphasis on Control Effort: Small k

We use standard perturbation methods [7], [8] to determine

a series expansion for solutions to Equations 2 for k ≪ 1. Let

xi = xi,0 + kxi,1 + k2xi,2 + k3xi,3 + · · ·+ k jxi, j + · · · ,

yi = yi,0 + kyi,1+ k2yi,2 + k3yi,3 + · · ·+ k jyi, j + · · · ,

pi1 = pi1,0 + kpi1,1 + k2 pi1,2 + k3 pi1,3 + · · ·+ k j pi1, j + · · · ,

pi2 = pi2,0 + kpi2,1 + k2 pi2,2 + k3 pi2,3 + · · ·+ k j pi2, j + · · · ,

and substitute into Equation 2, which results in a set of linear

differential equations for each power of k. Space limitations

prevent inclusion here, but the nature and structure of the

asymptotic expansion for all orders of this system appears

in [1].

The equation corresponding to k0 terms gives the set of

linear equations for the ith robot as

ẋi,0 =
1

2
pi1,0,

ẏi,0 =
1

2
pi2,0,

ṗi1,0 = 0,

ṗi2,0 = 0,

with boundary conditions

xi,0(0) = x1,0(0)+ (i− 1)d

yi,0(0) = 0

xi,0(1) = 0

yi,0(1) = y1,0(1)+ (i− 1)d.

These can be solved by direct integration with solutions

xi,0 =−xi,0(0)t + xi,0(0),

yi,0 = yi,0(1)t,

pi1,0 =−2xi,0(0),

pi2,0 = 2yi,0(1).

Remark 3: These are straight line, constant velocity solu-

tions, which is expected because the 0th order equation will

not contain k. Because k multiplies the formation term, this

corresponds to only considering the control effort and giving

no weight at all to the formation. Furthermore, the solutions

are unique, validating the qualitative nature of the bifurcation

diagrams presented above. ⋄
The k1th order equations are of the form

ẋi,1 =
pi1,1

2

ẏi,1 =
pi2,1

2

ṗi1,1 = 2

((
xi,0 −xi−1,0

)(
di−1,0 −d

)

di−1,0
+

(
xi,0 −xi+1,0

)(
di,0 −d

)

di,0

)

ṗi2,1 = 2

((
yi,0 −yi−1,0

)(
di−1,0 −d

)

di−1,0
+

(
yi,0 −yi+1,0

)(
di,0 −d

)

di,0

)

,

(4)

where di,0 is the distance term as a function of the zeroth-

order solutions.

The equations corresponding to higher orders of k are

obtained similarly, but naturally grow in complexity and are

omitted due to space limitations. As is typical for an asymp-

totic analysis, the differential equations for k1 depend only on

xi,1,yi,1, pi1,1 and pi2,1 as well as the lower order solutions,

but not the higher-order solutions. Thus, the zeroth-order

solutions appear as nonhomogenous terms in the first-order

equations, and recursively so for the higher-order equations.

The solutions to the k1 order equations are also unique.

This is because the first-order costate equations only depend

on the lower-order solutions they may be solved by direct

integration. Once the first-order costates are determined,

xi,1 and yi,1 may be obtained by direct integration and the

four boundary conditions will can be satisfied by the four

constants of integration. Because the 0th-order solutions are

continuous and bounded, a unique solution for each integral

exits.

Therefore, this is consistent with the solution in the neigh-

borhood of the straight-line k = 0 zeroth-order solution being

unique, which is furthermore consistent with the physical

interpretation that when the formation weighting is zero, the

only optimal solution is the one that minimizes the path

length, which is a straight line.



Because the zeroth-order solutions are straight lines, only

the first and nth equations will have non-zero solutions for

the first-order equations because straight lines are such that

effect of its neighbors on the ith robot cancel. This can be

seen in Equation 4 because the right-hand side of the costate

equations depend only on the 0th-order solutions. Thus the

costate equations will have constant solutions and because

the end robots do not have a neighbor on each side, they are

the only robots that will have a first-order effect from k.

Space limitations prevent including the higher-order equa-

tions (an interested reader is referred to [1]), but the second

from the end robots have a zero first-order solution and non-

zero second-order solution, etc. Hence, the deviation from

the straight-line solution is of increasingly higher order in

k toward the middle of the formation. This is consistent

with an intuitive idea that robots near the outside of the

formation have greater flexibility in their path to move away

from the straight line, and, in contrast, robots in the middle

are “squeezed” by the formation.

B. Emphasis on Maintaining Formation: Large k

When k is very large, maintaining the distance between the

robots is weighted more heavily in the cost function than the

control effort and ε = 1/k is used as the expansion parameter.

As before, let

xi = xi,0 + εxi,1 + ε2xi,2 + ε3xi,3 + · · ·+ ε jxi, j + · · · ,

yi = yi,0 + εyi,1 + ε2yi,2 + ε3yi,3 + · · ·+ ε jyi, j + · · · ,

pi1 = pi1,0 + ε pi1,1 + ε2 pi1,2 + ε3 pi1,3 + · · ·+ ε j pi1, j + · · · ,

pi2 = pi2,0 + ε pi2,1 + ε2 pi2,2 + ε3 pi2,3 + · · ·+ ε j pi2, j + · · · ,

and the resulting equations corresponding to ε0 are

ẋi,0 =
1

2
pi1,0

ẏi,0 =
1

2
pi2,0

0 =
2k
(
xi,0 −xi−1,0

)(
di−1,0 −d

)

di−1,0
+

2k
(
xi,0 −xi+1,0

)(
di,0 −d

)

di,0

0 =
2k
(
yi,0 −yi−1,0

)(
di−1,0 −d

)

di−1,0
+

2k
(
yi,0 −yi+1,0

)(
di,0 −d

)

di0
.

The last two equations are equivalent to

(xi,0 − xi−1,0)
2 +(yi,0 − yi−1,0)

2 = d
2
, (5)

so that the limit for large k requires that the distance

constraint be exactly maintained.

Since the third and fourth equations are algebraic, then

the costates, p are unconstrained and therefore any path

that maintains the desired distance between the robots and

satisfies the boundary conditions is a solution to these

equations. This makes intuitive sense because in the limit as

k → ∞, the control effort becomes negligible relative to the

formation constraint. Therefore, as k becomes very large, the

asymptotic analysis indicates that there is an infinite number

of solutions. As long as the separation distance is maintained

and the boundary conditions are satisfied, any path is optimal.

Remark 4: This analysis validates the right-hand extremes

of the bifurcation diagrams illustrated in Figures 2 through

8 where an increasing number of possible solutions are

obtained as k is increased. ⋄

IV. EXTENSION OF RESULTS TO THE GENERAL

CASE

Up to this point, the results in this section are for the

specific example in this paper. The same qualitative nature

of the number of solutions (a unique solution for small k and

an increasing number of solutions as k is increased), has been

observed in other systems as well [4], [12], which naturally

leads to inquire as to whether this is a generic feature in such

problems.

The main contribution of this paper is to show that this

general feature will be present in a very broad class of

problems. To do this, consider a much more general cost

functional, which will naturally lead to a more general

class of differential equations governing the dynamics of the

system. It makes compelling engineering sense to minimize

the control effort, so we generalize the formation function

component of the functional.

Specifically, let

J =

∫ t f

0
g(u11

,u12
, . . . ,un1

,un2
)

+ k f (x1,x2, . . . ,xn,y1,y2, . . . ,yn)dt

where the function, f , is a differentiable function of the

relative configuration of the robots that is minimized when

the robots are in the desired formation. Calculus of variations

yields pi1 = ∂g/∂ui1 and pi2 = ∂g/∂ui2 and

ẋi =

(
∂g

∂ui1

)−1

(pi1)

ẏi =

(
∂g

∂ui2

)−1

(pi2)

ṗi1 = 2k
∂ f

∂xi

ṗi2 = 2k
∂ f

∂yi

.

Following the same asymptotic analysis as above, it is clear

that for k ≪ 1, we have

ẋi =

(
∂g

∂ui1

)−1

(pi1)

ẏi =

(
∂g

∂ui2

)−1

(pi2)

ṗi1 = 0

ṗi2 = 0

which will be satisfied if pi1 = ∂g/∂ui1 and pi2 = ∂g/∂ui2

satisfy the inverse function theorem and there exist constant

costate values such that the boundary conditions are satisfied.

This will usually be true in common engineering scenarios

with sufficient regularity on the function g, for example



positive functions with nonzero derivatives away from zero,

such as sums of even powers of the inputs.

Also, when k ≫ 1 we have

ẋi =

(
∂g

∂ui1

)−1

(pi1)

0 = 2k
∂ f

∂xi

0 = 2k
∂ f

∂yi

which is satisfied by any trajectory when the formation

function is minimized. Hence, as was the case for the very

specific system we considered, the same results hold for any

formation function which is differentiable and minimized

when the formation is satisfied. Specifically, there is a unique

solution for small k and infinitely many solutions in the limit

as k → ∞, suggesting a cascade of bifurcations qualitatively

the same as we found for the specific system considered in

this paper.

V. CONCLUSIONS AND FUTURE WORK

This paper analyzed the nature and structure of multiple

solutions to an optimal control problem for formation control

for multiple mobile robots. Our previous results were limited

to numerical investigations of specific systems, and the main

contribution of this paper is a theoretical component that

indicates a relatively broad generality to the results. The

subject matter of this paper is important in both robotics and

the broader system integration communities because various

forms of optimization are common in both areas and an

understanding of the global structure of the solution space

will lead to more efficient and optimal solution methods.

When considering the trade-off between minimizing con-

trol effort and maintaining the desired formation, a compli-

cated and rich solution bifurcation structure is present. By

considering a specific system, numerical simulation results

show a unique solution when a much greater weight was

given to the control effort compared to the formation cost and

when the formation is given a much greater weight, many

solutions are present.

The main contribution of this paper was to extend the

theoretical reach of these results beyond specific examples,

which was a limitation of our prior work. Specifically, we

showed that for a very general class of systems, if an opti-

mization method is used for trajectory generation for fleets

of robots, if the cost function contains “control effort” terms

and “formation maintaining” terms, as increasing emphasis

is placed on the formation terms, an increasing number of

solutions is expected. Specifically, in the limit, any trajectory

that maintains the formation will satisfy the optimization

criterion.

There are several valuable avenues for future research.

• First, a systematic means for characterizing bifurcations

for boundary value problems is needed. This seems

to be an open problem in the mathematical research

community without an obvious generalization for bifur-

cations of fixed points of dynamical systems because the

entire solution, as opposed to an isolated equilibrium,

is what bifurcates. This fundamentally arises because

of the two-point boundary value problem nature of the

optimization.

• Second, numerically efficient methods are necessary

for searching for solutions. The shooting method and

finite difference methods are only somewhat efficient for

finding isolated solutions because they are iterative. Ex-

tending the methods to globally search for solutions is

obviously problematic. Some initial results exist based

on polynomial homotopy methods [4] but due to the

manner in which the number of roots of polynomial

systems grow with the order of the polynomial and

dimension of the problem, such an approach does not

seem to scale well.

• Finally, due to the utility in practical implementations,

connecting these results with receding-horizon methods

would be useful.
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