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Abstract— Fractional-order differential equations can de-
scribe the dynamics of robot formations and other high-order
systems. These equations are useful models for such systems
because of the ability to include noninteger derivatives. This
work presents a procedure to identify the fractional order
of a system’s dynamics, which is of interest because the
order may change in response to mechanical or operational
damage. The possibility of an order change is not typically
considered in structural health monitoring or other system
monitoring tools; this is because the order is assumed to be
an integer from the physics of the system, while behaviors are
left to be captured by parameters within the chosen model.
In contrast, the inclusion of fractional orders allows for the
order itself to measure dynamical changes. This work presents
the identification procedure in the form of an explanation of
its mathematical foundations, examples matching previously
observed results, and a discussion of possible extensions for
greater versatility in monitoring.

I. INTRODUCTION

Consider a group of robots intended to work together in

a common space. To be specific, most of the robots must be

positioned toward one side of the space to accomplish their

task. The best arrangement for this situation could resemble

a tree graph, as does the formation in Figure 1. Each

generation has twice as many robots as the preceding one.

For simplicity, the robots may only translate horizontally;

xi j represents the position of robot j in the ith generation.

The robots are connected by positional relationships, each

behaving as either a spring with constant k or a damper

with constant b. Previous work [1] shows the fractional-order

nature of this system.

Figure 2 is a frequency response showing the transfer

function between the position of the first robot, x11, and

that of the last generation, xlast. In other words, the figure

shows the amplification in displacement resulting from the

force applied to the last (seventh in this case) generation from

the spring-damper structure. Under normal circumstances for

this formation, all the k = 2, all the b = 1, the masses of

the first and last generations are 1, and the interior robots

have negligible mass. The last of these is enforced so that

the spring and damper elements dominate the system. This

frequency response is shown in blue.

In Figure 2, the medium-frequency band showing a phase

of −45◦ and a slope in magnitude of −10 dB/decade

suggests 1/2-order dynamics, as explained analytically and
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Fig. 1. Structure of robotic formation and spring and damper connections.
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Fig. 2. Frequency responses for undamaged system (blue) and damaged
system with kd = 0.2 (red).

numerically in [1]. Meanwhile, the red curve is the frequency

response for the case where there is damage among the

interactions comprising the system. All parameters are as

in the first case, except that the constant of the spring

connecting x11 and x21 takes the value of kd = 0.2. Here, the

phase plot has a prominent band at −60◦, implying behavior

of order 2/3.

This interpretation is supported in [2]. That previous work

of the authors suggests that measurement of changes in frac-

tional order could be foundational for health monitoring of

complex engineering systems. Applications for this monitor-

ing may include formation problems such as cleanup of toxic

waste, as illustrated in Figure 3. This paper contributes a

computational identification technique that supports the goal

of measuring order changes. The presence of a systematic

procedure for detecting these order changes is promising for

the development of a widely applicable monitoring tool.



Advection direction

Fig. 3. Sketch of the waste spill example. More robots are placed in more
contaminated areas, indicated with darker shading.

II. BACKGROUND

A. Literature Review and Research Context

The system in Figure 1, which was inspired by a vis-

coelastic model from [3], [4], was accurately modeled in

[1] by a fractional-order differential equation with a term of

order 1/2. Concise models with few terms are advantageous

in robotics, and to that end, fractional-order dynamics can

be exploited for efficient models of high-order systems such

as interacting, multi-agent networks.

For the system monitoring of [2] to evolve into a practical

tool, it must be connected to some type of fractional-

order system identification. Mathematical works on this topic

include [5], which seeks a continuous distribution of real-

valued orders to describe a system’s behavior. The approach

in [6] solves a linear system of equations, resulting in a

discrete order distribution. Governing equation parameters

can be determined by the series-based method of [7]. Com-

putationally formulated identification procedures include the

iterative process described in [8]. Genetic algorithms are

employed for optimization of fractional-order governing

equations in [9]. The method most compatible with the aims

of this work is given in [10]; this method will be explained

in detail in the following sections.

The field of control of multi-robot systems is rich with

problems of great interest. For a selection of these, see

[11]–[16]. Some previous work by the author concerns exact

model reduction for systems with symmetries [17]–[20].

Fractional calculus is an area of mathematics dating back

near the birth of calculus as a whole. Books on the mathemat-

ical fundamentals and engineering applications include [21]–

[23], and review articles include [24], [25]. One study along

a similar line of inquiry to that in this work is [26], [27],

concerning formation control of fractional systems. In those

references, the individual components within the system are

fractional. Meanwhile, in this paper, the fractional dynam-

ics originate from the structure of the agents’ interactions.

Additional papers from the authors on fractional calculus in

engineering are [28], [29].

B. Fractional Calculus

Put simply, fractional calculus is the answer to the question

of, given a function f (t) with first derivative f (1)(t) and

second derivative f (2)(t), whether there are operators “in

between” these such as

f (1/2)(t) =
d1/2 f

dt1/2
(t)

that generalize the concept of a derivative beyond the typical

integer orders.

While there are closed-form solution techniques for

fractional-order differential equations, as overviewed in the

authors’ prior works and the literature, numerical approxima-

tions are often necessary. Consider the following definitions

of the first and second derivatives of a function:

d f

dt
(t) = lim

∆t→0

f (t)− f (t −∆t)

∆t

d2 f

dt2
(t) = lim

∆t→0

f (t)− 2 f (t −∆t)+ f (t− 2∆t)

(∆t)2
,

or for an integer value of n,

dn f

dtn
(t) = lim

∆t→0

∑0≤m≤n(−1)m

(

n

m

)

f (t +(n−m)∆t)

(∆t)n ,

with the binomial coefficient given by

(

n

m

)

=
n!

m!(n−m)!
.

This can be generalized to any real first argument by substi-

tuting the gamma function:

(

α
m

)

=
Γ(α + 1)

Γ(m+ 1)Γ(α −m+ 1)
, (1)

yielding the Grünwald-Letnikov derivative:

dα f

dtα
(t) = lim

∆t→0

1

(∆t)α

∞

∑
j=0

(−1) j

(

α
j

)

f (t +(α − j)∆t) . (2)

If ∆t ≪ 1 and t =m∆t, then the quantity α∆t in the argument

of f can be neglected, and assuming initial conditions of

zero, the approximation becomes

dα f

dtα
(t)≈ 1

(∆t)α

m

∑
j=0

(−1) j

(

α
j

)

f (t − j∆t) ,

which is an efficient way to formulate solutions of fractional-

order differential equations.

A notable difference between fractional- and integer-

order derivatives is that fractional-order derivatives cannot

be computed from local information only. The summation in

Equation 2 is evidence that all past values of a function are

part of the computation of its fractional derivative.

III. MATHEMATICAL ANALYSIS

This section summarizes the discussion from [2] concern-

ing the damaged and undamaged systems.



A. Undamaged System

The tree formation of Figure 1 is comprised of two

types of transfer functions at the component level. The

transfer function from the x11 node to the x21 node is

G1(s) = 1/k, and that from the x11 node to the x22 node

is G2(s) = 1/(bs). The formation is built on parallel and

series connections of these two relationships. To formulate

the transfer function of the formation as a whole, i.e.,

G(s) = (X11(s)−Xlast(s))/U(s) with u(t) the input force

generated by the formation structure, then the component

transfer functions are combined as specified by the system

to give

G(s) =
1

1

G1(s)+
1

1
G1(s)+···+

1
G2(s)+···

+ 1

G2(s)+
1

1
G1(s)+···+

1
G2(s)+···

.

In the limit of infinitely many generations, self-similarity

prescribes that the transfer function from any node to the

last generation is equal to that from the first node to the last

generation. This is denoted by G∞(s), leading to the equation

G∞(s) =
1

1
G1(s)+G∞(s)

+ 1
G2(s)+G∞(s)

,

which yields G∞(s) =
√

G1(s)G2(s). This is true regardless

of what G1(s) and G2(s) are; however, for this system, the

limiting transfer function is

G∞(s) =
1√
kbs

. (3)

Since s is the Laplace transform of the derivative operator,

the square root of s represents 1/2-order dynamics.

This order result can be confirmed with the identification

procedure developed in this research effort. The identified

transfer function is given by

F(s) =
3189

s13/6 + · · ·+ 4289s1/2+ 102s1/3+ · · ·+ 22
. (4)

The coefficient of the term of order 1/2 is an order of

magnitude higher than that of any other; this means that

order 1/2 is dominant, so the theoretical expectation is met.

The details of how this result is obtained are given in the

following sections.

As discussed in [1] and [2], Equation 2 can be used to

generate a time-domain response of the last generation in

the system, xlast, under some displacement of x11 from zero.

In particular,

ẋ11 =











t, 0 ≤ t < 1

2− t, 1 ≤ t < 2

0, t ≥ 2

,

and an expression of Newton’s second law on the last

generation using Equation 3 gives

ms2Xlast(s) =
√

kbs(X11(s)−Xlast(s)) ,

or in the time domain,

m
d2xlast

dt2
(t)+

√
kb

d1/2xlast

dt1/2
(t) =

√
kb

d1/2x11

dt1/2
(t).
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Fig. 4. Response of fractional system of order 0.66 (blue) and response
of full system with damage to spring (red).

Equation 2 can be manipulated to determine xlast at t = n∆t.

This expression is

xlast(n∆t)≈





1

m

(∆t)2 +
√

kb√
∆t





×
[

m

(∆t)2
(2xlast((n− 1)∆t)− xlast((n− 2)∆t))

−
√

kb√
∆t

n

∑
j=1

(−1) j

(

1/2

j

)

xlast((n− j)∆t)

+

√
kb√
∆t

n

∑
j=0

(−1) j

(

1/2

j

)

x11((n− j)∆t)

]

,

(5)

and it can be evaluated iteratively to compute the response.

In [1] and [2], the fractional-order response just described

is compared to the response of the unapproximated full

system with eight generations, both having the constants

k = 2, b = 1, and m = 1. The solution of the fractional

equation is shown to be a strong approximation for that of

the full system, which requires 255 second-order differential

equations to simulate.

B. Damaged System

Consider the version of the system with the leftmost

spring being damaged, or having a stiffness different from

its nominal value; kd = 0.2 instead of 2. This system shifts

in phase from −45◦ to approximately −60◦ at ω ≈ 1 rad/s,

illustrated in Figure 2, suggesting approximately 2/3-order

dynamics. The magnitude at that frequency is shifted from

the undamaged case by about 7 dB, which means that the

force produced by the network is reduced by a factor of 0.45.

The interpretation that the order of the system has changed

can be affirmed by comparing the time-domain responses of a

seven-generation system with the same damaged spring and

a fractional-order system with order 0.66, as in Figure 4.

The full system is as in the other case, except that kd = 0.2.
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Fig. 5. Frequency responses for undamaged system (blue) and damaged
system with bd = 0.1 (red).

The response of the fractional-order system is given by

Equation 5, except with order 0.66 (so all instances of

1/2, including exponents and binomial coefficient arguments,

become 0.66) and multiplying the force by a factor of

M =−7 dB to match the magnitude shift.

Following from Figure 4, it is evident that the change k →
kd produces a corresponding change in the system’s order,

from 1/2 to 2/3. This implies that monitoring of the order

may reveal changes to the operational status of the system.

The final example from [2] is the tree system with damage

to the leftmost damper; its constant is reduced from b = 1 to

b = 0.1. Figure 5 shows this system’s frequency response in

red. Opposite to the case of the damaged spring, this response

shows a decrease in order, from 1/2 to approximately 1/3.

As in the damaged spring case, the magnitude at 1 rad/s is

decreased, in this case by about 10−4/20. The time-domain

response is found by Equation 5 with order 0.33 and M =
10−4/20. This fractional-order response is given in Figure 6;

as in the other examples, agreement with the full tree system

is achieved.

IV. IDENTIFICATION PROCEDURE

This section explains the system identification method of

[10] and modifications for generality that were made in this

research effort. In the reference, the frequency response given

in the data is G(s). The model to be found is of the form

F(s) =
K0

sd0

B(s)

A(s)
=

K0

n

∑
k=0

bksβk

sd0

d

∑
k=0

aksαk

where a0 = b0 = 1, α0 = β0 = 0, and αk,βk ∈ R. This is

restrictive in the sense that the resulting transfer function

must take the form

F(s) =
K0

sd0

bnsβn + · · ·+ b1sβ1 + 1

adsαd + · · ·+ a1sα1 + 1
, (6)
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Fig. 6. Response of fractional system of order 0.33 (blue) and response
of full system with damage to damper (red).

so there is always a constant term in the numerator. The

constants K0 and d0 establish a gain and a pole at the origin,

allowing for some flexibility. However, these constants must

be set before the optimization takes place, so they cannot be

considered part of the identification.

This approach is suitable for solution by the simplex

method, so the answer is a state vector:

w =
[

b1 · · · bn a1 · · · ad wn+d+1

]T
,

where w ≥ 0. The last entry, wn+d+1, is included in the state

vector for the purposes of the linear constraints, which set a

bound on the error metric

R( jω) =
( jω)d0

K0

A( jω)(F( jω)−G( jω)),

specifically its L∞-norm,

‖R( jωi)‖= max(|Re(R( jωi))|, |Im(R( jωi))|).

Given data at m frequencies, there is a list of 2m real and

imaginary parts (m each) of R( jω), and the method of [10]

minimizes the largest absolute value of the numbers in this

list. This iterative problem is cast as the minimization of one

variable, so the objective function is linear, lending itself to

the simplex method.

In contrast, the procedure in this work minimizes an

objective function J equal to

m

∑
i=1

∣

∣

∣

∣

∣

(

n

∑
k=0

bk( jωi)
βk

)

− ( jωi)
d0

K0

(

d

∑
k=0

ak( jωi)
αk

)

G( jωi)

∣

∣

∣

∣

∣

,

which is equivalent to

J =
m

∑
i=1

∣

∣

∣

∣

B( jωi)−
( jωi)

d0

K0
A( jωi)G( jωi)

∣

∣

∣

∣

and, in turn,

J =
m

∑
i=1

∣

∣

∣

∣

( jωi)
d0

K0

A( jωi)(F( jωi)−G( jωi))

∣

∣

∣

∣

.



Therefore, instead of considering only the largest real or

imaginary part of error between the data and the identified

model, this procedure minimizes

J =
m

∑
i=1

√

(Re(R( jωi)))2 +(Im(R( jωi)))2.

The coefficients

v =
[

b1 · · · bn a1 · · · ad

]T

are determined by the MATLAB function fmincon with

the corresponding interior-point algorithm. As a result of this

choice of optimization, none of the coefficients terminate at

zero, so the resulting transfer functions have terms for every

order in α and β . This shows the degree of dominance of

each order relative to the others.

The function fmincon is for constrained optimization,

so it is necessary to establish constraints. A natural choice

would be to require that all entries in the solution vector v be

greater than or equal to zero. However, the set of constraints

in this procedure is slightly different: all entries of v ≥ 0,

except a1,b1 ≥−1. These two coefficients correspond to s0

terms (α1 = β1 = 0) to allow for cancellation of the built-

in 1’s in the numerator and denominator of Equation 6,

generalizing the form of the resulting transfer function.

V. RESULTS

The undamaged tree system has a theoretical transfer

function of s−1/2, while the cases of damage to the first

spring and first damper give rise to transfer functions of

s−2/3 and s−1/3, respectively. This is seen most clearly in

the Bode plots for these systems (Figures 2 and 5), which

feature prominent frequency bands of approximate phase

−45◦, −60◦, and −30◦. To verify the system identification

procedure, these transfer functions are sought from tree

system data sampled over these frequency bands only. In

the style of [10], αk (with k starting at 1) is chosen to be

0,1/6, . . . ,13/6 so as to make over two integer orders of

possible solutions available. However, βk is set to 0 only to

allow comparison between the expected and computationally

obtained results.

It is hypothesized that the system identification procedure

will return transfer functions matching theoretical expecta-

tion. Therefore, the starting points of the optimizations are

v0 =
[

b1 a1 a2 · · · a14

]

=
[

0 −1 0 · · · 0 1 0 · · · 0
]T

,

where the 1 is placed in a different entry for each starting

point: a3 for s−1/3, a4 for s−1/2, and a5 for s−2/3. In general,

if the 1 is placed in ak with k > 1, the corresponding transfer

function is s−(k−1)/6. A detailed formulation of the starting

point following from this choice of v0 is

F0(s) =
0s0 + 1

s(k−1)/6 − s0 + 1
=

1

s(k−1)/6
.

The following are the system identification results. The

transfer functions are scaled so that the leading-order co-

efficient in the denominator is 1. For the undamaged tree
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Fig. 7. Actual (blue) and identified (red) frequency responses for the
undamaged system.

with eight generations of robots and 19 frequencies (m =
19) logarithmically spaced from 10−0.5 to 101.3 rad/s, F(s)
is given in Equation 4. As stated previously, order 1/2

dominates; this corroborates the visual interpretation of the

frequency response from [2]. The comparison of F(s) to G(s)
is shown in Figure 7.

For the tree formation with damage to the first spring,

m = 29, and a frequency band from 10−0.8 to 102 rad/s,

F(s) =
17927

s13/6 + · · ·+ 9466s2/3+ 1658s1/2+ · · ·+ 470
.

Order 2/3 is prominent, but its coefficient is not an order

of magnitude above all of the others. Still, it is over five

times the next largest, so an integrator approximation for

this system would be of order 2/3, as expected. Despite the

wide frequency band, the identified transfer function yields

a frequency response that matches the data well, as shown

in Figure 8.

When the damage is instead to the first damper, and m= 19

with a frequency band from 10−0.8 to 101 rad/s,

F(s) =
1638

s13/6 + · · ·+ 124s1/2+ 1246s1/3+ · · ·+ 31
.

Here, the coefficient of order 1/3 is an order of magnitude

greater than the others, so that order is dominant. This

result’s frequency response is shown alongside the tree

formation’s in Figure 9. In all cases, the frequency bands are

chosen experimentally to capture the dynamics of interest.

As shown, the resulting transfer functions F( jω) match

the magnitudes of G( jω) almost exactly, but for some

frequencies, they have a few degrees’ error in phase. A

reason for this is that, because the numerator is required

to be constant so as to illustrate the dominant orders, F(s)
cannot have zeros. Nonminimum phase dynamics are never

present, so the phase trajectory of F( jω) can only decrease

as frequency increases.
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Fig. 8. Actual (blue) and identified (red) frequency responses for the tree
system with damage to the first spring.
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Fig. 9. Actual (blue) and identified (red) frequency responses for the tree
system with damage to the first damper.

VI. CONCLUDING REMARKS

This paper has introduced a new identification method for

fractional-order systems. The method shows which orders of

dynamics are most present in a system’s frequency response.

In the context of a robot formation undergoing damage, this

method has shown itself able to track a change in order.

As a monitoring tool for systems in general, this may be a

valuable indicator that the operational status has changed.

Future efforts should naturally include testing the method

on other damage cases and systems. At present, altering the

frequency window of interest in the identification can affect

the strength of the result. The best frequency window in

which to sample will not always be known, so perhaps an

outer optimization loop to narrow and translate the window

would strengthen the results and thus enhance the reliability

of the method. However, considering the variety of systems

to which mechanical models are applied, it is important to

preserve information from systems that may exhibit response

behavior of multiple orders simultaneously.

The neatness of the damage results in the robot formation

example suggests a mathematical framework relating physi-

cal damage to a system and effects on its governing equation.

The details of this framework largely remain unclear, but it is

likely that some insights may be found through perturbation

analysis. These insights and improvements to the method

will bring about a greater scope of application for extracting

system information from fractional-order behavior.
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