
Fractional-Order Approximations to Implicitly-Defined Operators for

Modeling and Control of Networked Mechanical Systems

Bill Goodwine

Abstract— This paper considers interconnected mechanical
systems intended to be simplified prototypical Cyber-Physical
Systems. In many modern engineered systems, there are many
interacting components with coupled dynamics. Some of our
prior work has shown that such systems exhibit fractional-order
dynamics, which may serve as a concise model for such very
high-order systems. This paper extends that prior work to a
more general class of systems in which the operator describing
the dynamics of the system can only be determined implicitly.
A system-identification procedure indicates that these systems
are also predominantly fractional-order as well, and hence
it is likely that many large-scale CPS may be best modeled
by fractional-order differential equations. In such cases, then,
given the central role of system models in control theory,
development and awareness of such fractional-order dynamics
in CPS are essential for controls engineers.

I. INTRODUCTION AND MOTIVATION

Consider the system illustrated in Figure 1, which rep-

resents a tree of masses, springs and dampers, or can be

considered a type of formation of robots wherein each robot

controls its position relative to its neighbors in accordance

with a potential or viscous-like relationship, as the case may

be. In a prior publication [1] we showed that in the limit of an

infinite number of generations the transfer function relating

the position of the last generation to the position of the first

generation is governed by a 1/2-order differential relationship

and furthermore, that 1/2-order system is accurate for a finite

and relatively small number of generation.

In this paper we consider what initially seems to be a

simple modification of this system, but in fact, results in

the surprising instance that the operator representing the

force relationship between the first and last generations is

only implicitly defined [2]. The main result in this paper

is that this implicitly-defined operator seems to be also

best approximated by a fractional-order system. Specifically,

consider the system in Figure 2, where at each generation

instead of there being one spring and one damper, there

are two springs and one damper. This paper will investigate

the nature of the dynamics as the number of springs and/or

dampers in each generation is changed. Interestingly, the case

of one spring and one damper, which generated 1/2-order

dynamics, is the only one that can apparently be expressed

explicitly in operator form. Hence, the nature of different

types of approximations for such systems arises, and is the

contribution of this paper.

Now we determine the nature of the operator that relates

the relative displacement of the first and last generations to

the force generated by the network between the generations.

In the limit as the number of generations goes to infinity,
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Fig. 1. Structure of 1/2-order system.

the system is characterized by a self-similarity. Specifically,

with an infinite number of generations, the transfer function

from x11 to xlast is equal to the transfer function from any

other xi j to xlast .

If we let

G1(s) =
1

k
G2(s) =

1

bs

and using usual parallel and series rules for interconnected

mechanical components and denote the transfer function

from any node to the last node by G∞(s), the self-similarity

in the system is represented by

G∞(s) =
X11(s)−Xlast(s)

F(s)
=

1
1

G1(s)+G∞(s)
+ 1

G2(s)+G∞(s)

,

where F(s) is the force needed to displace the two ends of

the network by X11(s)−Xlast(s). Solving for G∞(s) explic-

itly (because the actual algebraic manipulations will matter

subsequently):

G∞(s) =
1

(G2(s)+G∞(s))+(G1(s)+G∞(s))
(G1(s)+G∞(s))(G2(s)+G∞(s))

=
G2

∞(s)+ (G1(s)+G2(s))G∞(s)+G1(s)G2(s)

G1(s)+G2(s)+ 2G∞(s)

which clearing the denominator and moving all the terms to

one side simplifies to

G2
∞(s)−G1(s)G2(s) = 0

or

G∞(s) =
√

G1(s)G2(s) =
1√
kbs

. (1)

The square root of s indicates 1/2-order dynamics and our

work in [1] validates this. Only the positive solution is

kept if the spring and damper constants represent physical

components where they must be positive. In the next section

which reviews fractional calculus, we show that the operator

s1/2 can be explicitly represented in the time domain.
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Fig. 2. Structure of modified system.

In contrast, now consider the system in Figure 2. In this

case the parallel and series composition gives

G∞(s) =
X11(s)−Xlast(s)

F(s)
=

1
2

G1(s)+G∞(s)
+ 1

G2(s)+G∞(s)

.

In this case, simplifying leads to

2G2
∞(s)+G2(s)G∞(s)−G1(s)G2(s) = 0. (2)

This is quadratic in the unknown, G∞(s) with known operator

coefficients, G1(s) and G2(s). We can formally use the

quadratic equation to obtain an expression for G∞(s), but

it can not be expressed in the time domain by a fractional

time derivative. As such, we must resort to approximations.

The usual approach in controls would be a Padé approx-

imation or something similar for nonrational transfer func-

tions. However, in this paper we will show that combinations

of fractional operators appear to provide a good alternative

representation warranting further investigation.

II. FRACTIONAL-ORDER CALCULUS AND

FRACTIONAL-ORDER SELF-SIMILAR SYSTEMS

The system in Figure 1, which was inspired by a vis-

coelastic model from [3], [4], was accurately modeled in

[1] by a fractional-order differential equation with a term of

order 1/2. Concise models with few terms are advantageous

in controls and robotics, and thus fractional-order dynamics

can be exploited for efficient and concise models of high-

order systems such as interacting, multi-agent networks.

Research in control of multi-robot systems has many prob-

lems of great interest (see, for example, [5]–[9]). Some of

the prior work by the author considers exact model reduction

for systems with symmetries [10]–[13]. Fractional calculus

dates back to near the beginning of calculus. Books on

the mathematical fundamentals and engineering applications

include [14]–[16], and review articles include [17], [18].

One study along a similar line of inquiry to that in this

work is [19], [20], concerning formation control of fractional

systems. In those references, however, the individual com-

ponents within the system are fractional. In contrast in this

paper, the fractional dynamics arise from the structure of

the agents’ interactions. Other papers from the authors on

fractional calculus in engineering are [21], [22].

Given a function f (t) with first derivative f (1)(t) and

second derivative f (2)(t), it is natural to ask whether there

are operators “in between” these such as

f (1/2)(t) =
d1/2 f

dt1/2
(t)

that generalize the concept of a derivative beyond the typical

integer orders.

While there are closed-form solution techniques for

fractional-order differential equations, as overviewed in the

authors’ prior works and the literature, numerical approxima-

tions are often necessary. Consider the following definitions

of the first and second derivatives of a function

d f

dt
(t) = lim

∆t→0

f (t)− f (t −∆t)

∆t

d2 f

dt2
(t) = lim

∆t→0

f (t)− 2 f (t −∆t)+ f (t− 2∆t)

(∆t)2
,

or for an integer value of n,

dn f

dtn
(t) = lim

∆t→0

∑0≤m≤n(−1)m

(

n

m

)

f (t +(n−m)∆t)

(∆t)n ,

with the binomial coefficient given by
(

n

m

)

=
n!

m!(n−m)!
.

Recall that the gamma function is a generalization of the

factoria, and hence we can perform the substituiton
(

α
m

)

=
Γ(α + 1)

Γ(m+ 1)Γ(α −m+ 1)
, (3)

which yields the Grünwald-Letnikov derivative:

dα f

dtα
(t) = lim

∆t→0

1

(∆t)α

∞

∑
j=0

(−1) j

(

α
j

)

f (t +(α − j)∆t) . (4)

If ∆t ≪ 1 and t =m∆t, then the quantity α∆t in the argument

of f can be neglected, and, as is typical in controls, assuming

initial conditions of zero, the approximation becomes

dα f

dtα
(t)≈ 1

(∆t)α

m

∑
j=0

(−1) j

(

α
j

)

f (t − j∆t) , (5)

which is an efficient way to formulate solutions of fractional-

order differential equations.

Remark 1: An important contrast between fractional- and

integer-order derivatives is that fractional-order derivatives

cannot be computed from local information only. The sum-

mation in Equation 4 is evidence that all past values of

a function are part of the computation of its fractional

derivative

Referring to the system in Figure 1 with the transfer

fuction in Equation 1, if we take the position of mass x11

as the input and the location of the last generation, xlast



as the output, then we have the equivalent time-domain

representation of

mlast

d2

dt2
xlast(t) =

√
kb

d1/2

dt1/2
(x11(t)− xlast(t))

or

mlast

d2xlast

dt2
(t)+

√
kb

d1/2xlast

dt1/2
(t) =

√
kb

d1/2x11

dt1/2
(t).

This can be solved using the numerical approximation given

by Equation 5 and our results in [1] showed that the fractional

solution was a good approximation even for the system with

a relatively small number of generations.

In this paper, considering systems like in Figure 2, how-

ever, we can not directly take this approach because we can

not explicitly solve Equation 2 for a fractional derivative

term. The rest of this paper shows that using a fractional-

order system identification procedure, systems like the one

in Figure 2 are still predominantly fractional, and we can use

fractional-order models for them.

III. FREQUENCY RESPONSE OF SELF-SIMILAR SYSTEMS

In this section we construct frequency-response diagrams

for self-similar systems like the one illustrated in Figure 2.

We generalize the type of system we consider by considering

a system where there are n springs and m dampers on each

generation, where Figure 2 illustrates the specific case where

n = 2 and m = 1. In this case we have

G∞(s) =
X11(s)−Xlast(s)

F(s)
=

1
n

G1(s)+G∞(s)
+ m

G2(s)+G∞(s)

.

In this case, simplifying leads to

(n+m− 1)G2
∞(s)+ [(m− 1)G1(s)+ (n− 1)G2(s)]G∞(s)

−G1(s)G2(s) = 0. (6)

As before, G∞(s) is the transfer function relating the relative

displacement of the two ends of the network to the force

required for the displacement. This equation for G∞(s) has

operator coefficients, which can be formally solved using the

quadratic equation to give

G∞(s) =
1

2(n+m− 1)

[

(1−m)G1(s)+ (1− n)G2(s)

±
(

[(m− 1)G1(s)+ (n− 1)G2(s)]
2

(7)

+ 4(n+m− 1)G1(s)G2(s)
)1/2]

.

In the special case where n = m = 1, this reduces to the

1/2-order system. Figure 3 compares the frequency response

for the case where n = m = 1 for a finite system with 50

generations (blue) with the self-similar, infinite-generation

case (green). In all the cases in this section k = b = 1.

In the case from Figure 2 where n = 2 and m = 1, this

reduces to

G∞(s) =
1

4

[

−G2(s)±
√

G2
2(s)+ 8G1(s)G2(s)

]
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Fig. 3. Comparison of 50-generation system (blue) with self-similar system
(green) when n = m = 1.
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Fig. 4. Comparison of 50-generation system (blue) with self-similar system
(green) when n = 2 and m = 1.

and in the specific case where G1(s) = 1/k and G2(s) =
1/(bs) this is

G∞(s) =
−k±

√
k2 + 8bks

4bks
.

Figure 4 compares the frequency response for the case where

n = 2 and m = 1 for a finite system with 50 generations

(blue) with the self-similar, infinite-generation case (green).

We emphasize that an important distinction between this case

and the one-spring, one-damper case is that the latter may

be expressed as a linear operator, but this has no apparently

analogous solution. We must resort to approximate methods,

which are explored in the next section.

Now we consider cases with increasing numbers of springs

and dampers. Figure 5 shows a numerically computed fre-

quency response for 50 generations with one damper and

various numbers of springs, ranging from one spring to

10 springs. Figure 6 shows a numerically computed fre-

quency response for 50 generations with one spring and

various numbers of dampers, ranging from one damper to 10

dampers. As with the case of two springs and one damper,
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dampers in each generation. The top magnitude curve is for one spring
and one damper, and each lower curve in magnitude is for a system with
an additional damper in each generation. The top phase curve is for one
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the operator describing the relationship between the relative

displacement of the first and last generations and the force

is only implicitly defined by Equation 2.

IV. FRACTIONAL-ORDER SYSTEM IDENTIFICATION

We adopt a simple system identification approach.

Fractional-order system identification has been studied pre-

viously [23]–[28].

A. System Identification Procedure

In order to model and control systems such as in Figure 4,

5 and 6 we have to approximate the implicitly-defined

transfer function. The approach is to assume an approximate

transfer function, AN,α (s) of the form

AN,α(s) =
1

∑N
j=0 a js jα

where α is the increment in order, which we typically take

to be fractional. For example if N = 13 and α = 1/6 then

A13,1/6(s) =
1

a13s13/6 + a12s2 + a11s11/6 + · · ·+ a1s1/6 + a0

.

To determine the coefficients, a j we select a set of fre-

quencies, Ω = {ω0,ω1, . . . ,ωM} and the objective functions

φ1(a) =
M

∑
k=0

‖G(iωk)−AN,α(iωk)‖

φ2(a) =
M

∑
k=0

‖G(iωk)−AN,α(iωk)‖
‖G(iωk)‖

where the difference between the two is that the second is

simply normalized by the magnitude of G. The optimization

formulation is then

min
a

φ(a) subject to ai > 0 for i ∈ {0,N}

B. Identification of Various Systems

Taking k = b = 1, 50 generations, the bifurcating tree

structure from Figure 1 (n= m = 1), N = 13, α = 1/6, using

φ1(a) as the objective function, and taking 20 frequencies

to be evenly logarithmically spaced1 from ω0 = 10−2 to

ω = 102 we obtain to three digits of precision the coefficient

values listed in the second column (n= 1) in Table I.2 When

the tree has one spring and one damper in each generation,

the system is very predominantly 1/2-order. However, when

there is one damper and multiple springs (n> 1) , the system

changes order and is of the form

AN,α(s) =
1

a4s2/3 + a0

.

The transition from a purely 1/2-order system to 2/3-order

is illustrated graphically in Figure 7.

Now we compare the frequency response of the 50-

generation system, the frequency response of the self-similar,

infinite-generation system and the identified system. Figure 8

illustrates all three transfer functions. Clearly, the identified

system (red) matches the 50-generation system (blue) well

over the range of frequencies considered in the identification

(ω ∈
[

10−2,102
]

), but deviates for higher frequencies. This is

somewhat exaggerated by the logarithmic nature of the plot;

however, if the order of the system is of primary interest,

then an objective function normalized by the magnitude of

the transfer function to give a percentage error is desirable.

1That is logspace(-2,2,13).
2The results in this paper we obtained using the Octave sqp() function

with random initial values for ai ∈ (0,1). Space limitations prevent including
all cases, but for this one and all the others presented in this paper, we also
studied the system identified for various order steps (α), frequency ranges,
number of terms, etc., and they were all qualitatively the same. Hence,
none of the results depend on the exact parameters chosen for the system
identification.



TABLE I

IDENTIFIED FRACTIONAL-ORDER TRANSFER FUNCTION COEFFICIENTS

WITH A VARIABLE NUMBER OF SPRINGS.

P
P
P
P
PP

coef
n

1 2 3 4 5 6 7

a0 0.00 0.98 1.97 2.96 3.95 4.93 5.92
a1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a3 1.00 0.00 0.00 0.00 0.00 0.00 0.00
a4 0.00 1.01 1.05 1.11 1.17 1.23 1.28
a5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a7 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8
7
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1
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6
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a
k

Fig. 7. Identified fractional-order transfer function coefficients with one
damper and various numbers of springs. For one spring the system is purely
1/2-order (a3 6= 0) and for more springs it is 2/3-order plus a constant.
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Fig. 8. Comparison of 50-generation transfer function (blue) with infinite-
generation self-similar limit (green) with identified system (red). This is for
five springs and one damper. Other combinations are qualitatively similar
with respect to how well the identified transfer function matches the actual.

TABLE II

IDENTIFIED FRACTIONAL-ORDER TRANSFER FUNCTION COEFFICIENTS

WITH VARIABLE NUMBER OF DAMPERS.

P
P
P
P
PP

coef
m

1 2 3 4 5 6 7

a0 0.00 0.02 0.02 0.02 0.02 0.02 0.02
a1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a3 1.00 0.00 0.00 0.00 0.00 0.00 0.00
a4 0.00 0.15 0.24 0.38 0.56 0.77 1.01
a5 0.00 8.43 11.7 14.6 17.2 19.5 21.6
a6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a7 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a13 0.00 0.00 0.005 0.13 0.29 0.56 0.95

8
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Fig. 9. Identified fractional-order transfer function coefficients with one
spring and various numbers of dampers. For one spring the system is purely
1/2-order (a3 6= 0) and for more springs it is 5/6-order.

Now consider the case where there is one spring and a

varying number of dampers. Table II and Figures 9 and 10

present the results. Similar to the case with a varying number

of springs, there is a significant order shift from the n =m =
1 case to the cases where there are more dampers in each

generation. However, in this case the shift is to 5/6 order

rather than 2/3 order.

Figures 8 and 10 illustrate a deviation from the actual

system at higher frequencies. This is not surprising given that

the objective function is not normalized with respect to the

magnitude of G(s). Using φ2(s) instead of φ1(s) normalizes

the error and should have the identified system match the

order of the actual system better. Whether this is important is

problem-dependent, but because this investigation is primar-

ily considering the fractional-order nature of the implicitly

defined operator, these results are included as well.

Tables III and IV and Figures 11 - 14 illustrate the

normalized identifications for multiple springs and dampers,

respectively. As is apparent, a normalized objective function



-250
-200
-150
-100
-50

0
50

10−4 10−2 100 102 104

-200

-150

-100

-50

0

10−4 10−2 100 102 104

|G
(i

ω
)|

[d
B

]
∠

G
(i

ω
)

[d
eg

]

Frequency [rad/s]
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dampers and one spring.

TABLE III

IDENTIFIED FRACTIONAL-ORDER TRANSFER FUNCTION COEFFICIENTS

WITH A VARIABLE NUMBER OF SPRINGS.

P
P
P
P
PP

coef
n

1 2 3 4 5 6 7

a0 0.00 0.94 1.13 2.59 3.93 4.77 2.82
a1 0.00 0.00 1.25 0.09 0.00 0.00 3.31
a2 0.00 0.00 0.00 0.20 0.00 0.00 0.66
a3 0.71 0.82 0.51 1.07 1.25 1.27 0.57
a4 0.00 0.03 0.18 0.05 0.06 0.10 0.19
a5 0.00 0.00 0.00 0.00 0.00 0.00 0.01
a6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a7 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

results in a different order; namely, 1/2-order, and the Bode

plots comparing the frequency responses indicate a much

better match in the logarithmic sense of the Bode plots.

V. CONCLUSIONS AND FUTURE WORK

This paper considered the dynamics of various tree-like

configurations of interconnected mechanical systems. In par-

ticular, we studied systems that, in the limit of an infinite

number of generations, is characterized by self-similarity.

Only in one case, one spring and one damper added at each

generation, can the relationship between the displacement of

the network and its force be expressed in a form that has

a time domain linear operator expressions (a pure fractional

derivative). When we consider different combinations with

more springs or dampers, we can not determine a time

domain representation that is exactly a fractional derivative.

This paper presented a fractional-order system identification

procedure which shows that even though these cases do

not have an exact representation in terms of a fractional

derivative, they are still primarily fractional-order in nature.

TABLE IV

IDENTIFIED FRACTIONAL-ORDER TRANSFER FUNCTION COEFFICIENTS

WITH VARIABLE NUMBER OF DAMPERS.

P
P
P
P
PP

coef
m

1 2 3 4 5 6 7

a0 0.00 0.02 0.02 0.01 0.01 0.01 0.01
a1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a3 0.71 0.71 0.88 1.03 1.17 1.31 1.43
a4 0.00 0.20 0.23 0.23 0.22 0.20 0.18
a5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a6 0.00 0.35 0.76 1.19 1.63 2.07 2.51
a7 0.00 0.03 0.05 0.06 0.08 0.09 0.10
a8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Fig. 11. Identified fractional-order transfer function coefficients with
one damper and various numbers of springs with a normalized objective
function. Unlike the results using φ1, the system retains its 1/2-order nature,
but with the addition of several other order terms.
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Fig. 12. Identified fractional-order transfer function coefficients with one
spring and various numbers of dampers with normalized objective function.
Unlike the results using φ1, the system retains its 1/2-order nature, but with
the addition of several other order terms.
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Fig. 13. Comparison of 50-generation transfer function (blue) with infinite-
generation self-similar limit (green) with identified system (red) for five
springs and one damper.
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Fig. 14. Comparison of 50-generation transfer function (blue) with infinite-
generation self-similar limit (green) with identified system (red). This is
for five dampers and one spring. These plots illustrate a better system
identification when the logarithmic nature of the Bode plot is considered.

This is important to understand because good models for

systems are important in control analysis and design.

Future work includes comparing the fractional-order sys-

tem model with other approaches and also validating the

model with various time domain responses. Also work to

determine methods for computing solutions to the operator

quadratic equation, such as a generalized form of Newton’s

method and using homotopy methods, will be considered.
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