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Abstract

This paper studies bifurcations in the solution structure of an optimal control problem for mobile
robotic formation control. In particular, this paper studies a group of mobile robots operating in a two-
dimensional environment. Each robot has a predefined initial state and final state and we compute an
optimal path between the two states for every robot. The path is optimized with respect to two factors,
the control effort and the deviation from a desired “formation”, and a bifurcation parameter gives the
relative weight given to each factor. Using an asymptotic analysis, we show that for small values of the
bifurcation parameter (corresponding to heavily weighting the control effort) a single unique solution
is expected, and that as the bifurcation parameter becomes large (corresponding to heavily weighting
maintaining the formation) a large number of solutions is expected. Between the asymptotic extremes, a
numerical investigation indicates a solution bifurcation structure with a cascade of increasing numbers of
solutions, reminiscent, but not the same as, period-doubling bifurcations leading to chaos in dynamical
systems. Furthermore, we show that if the system is symmetric, the bifurcation structure possesses
symmetries, and also present a symmetry-breaking example of a nonholonomic system. Knowledge and
understanding of the existence and structure of bifurcations in the solutions of this type of formation
control problem are important for robotics engineers because common optimization approaches based
on gradient-descent are only likely to converge to the single nearest solution, and a more global study
provides a deeper and more comprehensive understanding of the nature of this important problem in
robotics.

1 Introduction

Distributed and decentralized control has been an important area of research in recent years with a vast
spectrum of applications ranging from, for example, robotic underwater vehicles, [48] satellite clustering, [36]
electric power system [46] to search and rescue operations. [24] An important subset of of these problems is
formation control for a system with multiple mobile robots. The approaches to the multi-robotic formation
control problem are varied, but can be basically categorized into three groups: leader-follower methods,
[15, 16, 28] behavior-based methods, [7, 8, 50] and virtual structure methods. [9, 29, 51] An excellent survey
providing a comprehensive overview is by Murray. [40]

In this paper, the problem addressed is to determine the optimal trajectory for a formation of robots
moving between specified initial and final configurations. The solution is optimized with respect to a combi-
nation of the control effort and the deviation from a desired formation. Therefore, the context of the problem
we are considering would generally be offline path planning for the system prior to it executing its motion.
Using standard methods from optimization, since each robot has its own predefined initial state and final
state, the procedure to find the optimal path is to solve a two-point boundary value problem for a set of
second-order ordinary differential equations. Obviously not all formation control problems are best solved
in this manner, but it is important because optimality is clearly a desired objective in the performance of
any engineering system, including the area of formation control in mobile robotics.
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The motivation for this work is to demonstrate some of the fundamental mathematical structure present
in solutions to problems of this type. For many practical robotics problems, optimization methods are often
a basic tool used. Because nonlinear optimization methods can only guarantee a local optimum, a more
global investigation of the relationship among the various extrema is informative. In this case, we isolate
the relationship among the solutions to a single parameter which is natural in the problem and facilitates a
systematic investigation. Some of the development of this work has been presented in a series of conference
papers which developed the numerical bifurcation analysis, [13] a numerical homotopy solution method, [14]
symmetry-breaking nonholonomic results [45] and some generalizations of the asymptotic analyses. [21]

As indicated, this paper particularly focuses on the relationship among multiple solutions for such systems.
The existence of multiple nontrivial solutions of boundary value problems for nonlinear second-order ordinary
differential equations has been investigated by others. For example, for

ẍ+ a(t)f(x) = 0, x(0) = 0, x(1) = 0,

the properties of the solutions depend on the limiting behavior of the function f(u). Erbe and Wang [18]
studied the existence of positive solutions of the equation with linear boundary conditions. Specifically, for

f0 = lim
s→+0

f(s)

s
, f∞ = lim

s→+∞

f(s)

s
,

they showed the existence of at least one positive solution in two cases: superlinearity (f0 = 0, f∞ = ∞)
or sublinearity (f0 = ∞, f∞ = 0). Erbe, Hu and Wang [17] showed that there were at least two positive
solutions in the case of superlinearity at one end (zero or infinity) and sublinearity at the other end. Naito
and Tanaka [42] and Ma and Thompson [33] determined conditions based on the ratio f(s)/s for the existence
(or nonexistence) of solutions. Their main result indicates that at least k solutions exist if the ratio f(s)/s
crosses the k eigenvalues of the associated eigenvalue problem. In other related work, Marcos do Ó, Lorca
and Ubilla [34] use the fixed-point theorem of cone expansion/compression type, the upper-lower solutions
method and degree arguments to study the existence. nonexistence, and multiplicity of positive solutions
of the boundary value problem. Unfortunately, this prior work does not apply to the problem in this paper
because of the structure of the equations and the relatively high dimensionality of robotic formation control
problems, and hence the more fundamental investigation in this paper is needed.

There are other papers along similar lines. [2–6,10,11,23,27,30–32,35,52–55] Again unfortunately, none
of these can be used for the problem at hand. All these papers are limited in one of the following three ways:
consideration of positive solutions only, scalar equations or particular forms of nonlinearity such as sub- or
suber-linearity. As will be shown subsequently, there is an interesting and rich structure to the nature of the
relationship among solutions for our problem, which is indicative of the fact that a theory of bifurcations for
boundary value problems of this type would be a useful mathematical development for engineers.

The organization of the rest of this paper is as follows. Section 2 presents the problem statement.
Section 3 presents the solution bifurcation results and Section 4 presents the asymptotic analysis relating
to the nature of the solutions for extreme cases. Section 5 presents the symmetry results and Section 6
presents a non-symmetric example wherein the symmetry is broken. Finally, Section 7 presents conclusions
and outlines areas of potential future work.

2 Problem Statement

We first consider a standard fully-actuated system of the form

ẋ = u1, ẏ = u2. (1)

This is a canonical form for a fully actuated two-degree of freedom system. It may be considered as the
equations of motion for a rolling sphere where the two inputs are the two angular velocities. While this is
taken as a relatively simple starting point and we will refer to a collection of such systems in the rest of
this section as a “fleet” of robots, these also can represent more complicated problems such as the kinematic
equations governing spherical fingertips rolling on a flat surface, [41] in which case the formation control
problem we consider is related to optimal grasping and dexterous manipulation in robotics.
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We consider a fleet of n of such robots with states (xi, yi), i ∈ {1, . . . , n}. The problem is to find the
control inputs ui1(t), ui2(t) for each robot i, which steer a formation of robots of this type from a start
configuration to a goal configuration, while maintaining, to some degree, the formation throughout the
execution of the motion. This is achieved by minimizing the functional

J =

∫ tf

0

n
∑

i=1

(

(ui1)
2
+ (ui2)

2
)

+

n−1
∑

i=1

k
(

di − d
)2

dt

subject to the robotic kinematic constraints in Equation 1, where n > 2 is the number of robots, di =
√

(xi − xi+1)2 + (yi − yi+1)2 is the distance between the ith and (i + 1)th robots, d is the desired distance
between two adjacent robots, and k is a weighting factor (ultimately to become a bifurcation parameter).
The first term in the sum in the functional is the control effort and the second is a penalty for deviations
from the desired formation, which in this case is simply attempting to maintain a desired distance between
neighboring robots. If the weighting constant k is small, then minimizing the control effort is more important
than maintaining the formation, and conversely if k is large, maintaining the formation is more important
than minimizing the control effort.

We note that because the cost functional includes control effort terms, which depend on the specific
robots’ kinematics or dynamics, different types of robots will have different solutions to this problem. This
particular type of formation, maintaining distance, is important in robotics because control of formations
of networked robots is only enabled by effective communication, [47] which can be maintained by ensuring
line-of-site and range constraints. Furthermore, it is relatively simple so that our analysis can be more
transparently focused on the trade-off between control effort and maintaining distance between the robots.

Either Pontryagin’s maximum principle or calculus of variations may be used to determine the differential
equations which have solutions which are extrema of the cost functional. Specifically, this results in

ui1 =
1

2
pi1 , ui2 =

1

2
pi2 ,

and equations of motion

ẋi =
1

2
pi1

ẏi =
1

2
pi2

ṗi1 =
2k (xi − xi−1)

(

di−1 − d
)

di−1

+
2k (xi − xi+1)

(

di − d
)

di

ṗi2 =
2k (yi − yi−1)

(

di−1 − d
)

di−1

+
2k (yi − yi+1)

(

di − d
)

di
.

(2)

Because they correspond to the robots at the two ends of the formation, the last two equations in Equation 2
only have the second term in the sum when i = 1 and they only have the first term in the sum when i = n.
This is because there is no 0 robot or n + 1 robot, but we do not write a separate set of equations for the
end robots for simplicity.

In this paper, the following specific boundary conditions are considered:

xi(0) = c+ (i− 1)d,

xi(1) = 0,

yi(0) = 0,

yi(1) = c+ (i− 1)d,

(3)

where c is a constant. These correspond to an initial formation with the robots arranged along the x-axis
starting with the first robot at x = c with a distance d between each robot and a final formation with
the robots arranged along the y-axis starting with the first robot at y = c with a distance of d between
each robot. Because the initial and final formations are not parallel, straight-line trajectories satisfying
the boundary conditions will not maintain the desired distance between the robots. Thus, a solution that

3



0
2
4
6
8
10
12
14
16

0 2 4 6 8 10 12 14 16

y

x

-2

0

2

4

6

8

10

12

-2 0 2 4 6 8 10 12

y

x

Figure 1: Optimal paths for a seven robot system with k = 23.

minimizes the control effort, which will be a straight line, will not maintain the desired formation, and the
relative weighting of the two terms in the cost function will be important and affect the solution.

We emphasize that this paper focuses on the nature of the solutions to this optimization problem,
determined from the two-point boundary value problems given in Equations 2 and 3. In interacting robotic
systems, a solution which must balance the relative positions among the robots with other considerations such
as path length is of great practical importance, and the focus of this paper is on the theoretical development
and complexities associated with such considerations. As will be shown subsequently, the nature of the
solution structure to these equations is complicated and can be characterized by bifurcation diagrams. Any
real implementation of these results will have to address the significant challenges posed by wheel slippage,
encoder resolution, sensor accuracy, etc. However, the qualitative nature of the solutions obtained is such
that they would be neither more nor less difficult to track than solutions obtained by other trajectory
generation methods.

3 Bifurcation Results

This section presents bifurcation diagrams which were obtained from numerical simulations. The next
sections present an analysis which predicts certain aspects of the structure of these bifurcation diagrams.
For a system containing n robots, when the weighting constant k is given, an optimal trajectory can be
obtained numerically by solving the equations of motion given by Equation 2 using various methods such
as the shooting method [49] or a finite-difference method. [1] In this paper we used both methods (the
numerical results in this section were obtained using the shooting method and the results in Section 6 were
obtained using the finite-difference method) and verified convergence of the methods to ensure accuracy of
the solutions. In this section we will present simulations for a five-robot system and seven-robot system.

This paper considers how the solutions for the system bifurcate as the parameter k varies. It is emphasized
that such bifurcations have important distinctions from standard bifurcations from dynamical systems theory
which considers bifurcations of fixed points of a dynamical system. For the systems considered in this paper,
we are considering solutions to boundary value problems, in contrast to initial value problems. Of course,
solutions to the boundary value problem are fixed points of variations of the cost function; however, the
entire solution is the fixed point and we want to quantify the bifurcations in a physically-meaningful way.
Hence, it is necessary from the beginning to define the manner in which we are quantifying the bifurcations.

To start, consider the solutions for a seven-robot system illustrated in Figure 1. The robots are initially
arranged evenly spaced along the horizontal axis, and the final configuration is for them to be evenly spaced
along the vertical axis. In the case illustrated k = 23, c = 4 and d = 2 and a total of ten different solutions
satisfying both the differential equations and boundary conditions were found. The right figure in Figure 1
illustrates the trajectories for the fifth robot with the deviation from the nominal trajectory magnified to
more clearly illustrate the relationship among the solutions. The goal of the rest of this section is to start
to investigate the relationship among these multiple solutions and how they come about. To do this we first
consider a simpler five-robot system, and then return to this seven-robot system.
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Figure 2: Bifurcation diagrams for a five robot system: robot one (left) and robot two (right).

3.1 Bifurcations of solutions for a five-robot system

Because k is a parameter in differential equations, it will clearly affect the solutions. In fact, as k is varied,
the nature and number of solutions changes. In order to present the relationship between the number of
solutions and k, we construct bifurcation diagrams. Because a straight line connecting the end points is the
optimal solution when k = 0, we will designate that as a nominal trajectory and the measure of the difference
between solutions we use is the signed distance from the solution to the straight line nominal solution at some
specified time. Solutions above the nominal trajectory have a positive distance and those below a negative
distance. As long as different solutions are not intersecting at that time, this would provide a measure of
difference between different solutions. For the rest of this paper in all the bifurcation diagrams, t = 0.25 is
used as the time to measure the differences between solutions (recall t ∈ [0, 1]).

Remark 1 What measure best represents the difference between solutions in a boundary value problem is not
a straight-forward question. Recall that in standard dynamical systems theory, bifurcation diagrams usually
represent the value and stability of fixed points or equilibria of a dynamical system. While an entire solution
in the boundary value problems we consider is a type of fixed point of a variational problem, differences along
the entire trajectory may be important. Some sort of norm is appealing; however, solutions that in a sense
are “opposite” such as the solutions crossing each other near the point (6, 6) on the right in Figure 1 would be
hard to distinguish due to the fact a norm is positive semi-definite. The results in this paper are adequately
communicated using a simple “difference at t = 0.25” measure and we leave as an open research question
what the best measure would be for specific problems or specific applications.

The plots in Figures 2-4 illustrate this measure of the difference between solutions for each robot in the
five robot system as k is varied from 0 to 25. In these bifurcation diagrams, the first robot is the one with the
shortest trajectory, the fifth robot is the one with the longest trajectory and they are ordered sequentially.
Observe that the bifurcation diagrams for robots 1 and 5 are symmetric reflections to each other about the
d = 0 axis and the bifurcation diagrams for robots 2 and 4 are similarly symmetric (even though each follows
a trajectory with a different length). Finally, the bifurcation diagram for robot 3 is symmetric to itself about
d = 0 axis. We will prove this feature must be present in this system subsequently in Section 5.

3.2 Bifurcations of solutions for a seven robot system

Figures 5-8 illustrate the bifurcation diagrams for the solutions versus k constructed in a manner identical
to that of the system of five robots. Observe that, similar to the five robot case, the bifurcation diagrams
for robots 1 and 7 are symmetric to each other about d = 0 axis as are the bifurcation diagrams for robots
2 and 6 and robots 3 and 5, and the bifurcation diagram for robot 4 is symmetric to itself about d = 0 axis.

In the seven-robot bifurcation diagrams, some of the solution branches do not have upper and lower
branches, i.e., they are neither diffeomorphic to a pitchfork nor “sideways parabolas.” Instead, there is a
single branch with an isolated starting point. One appears near the top of the bifurcation diagram on the
right for robot one in Figure 5, for example. One would expect a second connected branch to that, but
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Figure 3: Bifurcation diagrams for a five robot system: robot three (left) and robot four (right).
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Figure 4: Bifurcation diagrams for a five robot system: robot five.
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Figure 5: Bifurcation diagrams for a seven robot system:robot one (left) and robot two (right).

6



-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

d

k

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

d

k

Figure 6: Bifurcation diagrams for a seven robot system: robot three (left) and robot four (right).
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Figure 7: Bifurcation diagrams for a seven robot system: robot five (left) and robot six (right).
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Figure 8: Bifurcation diagrams for a seven robot system: robot seven.
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extensive numerical searching did not find one. Perhaps the branch is unstable in a sense that a numerical
method will not converge to it, or perhaps there is not a second branch. Regardless, the nature of the single
branch solutions on the bifurcation diagrams is an open research question.

Subsequently we show that the bifurcation diagrams must be symmetric. Given the current state of the
art, this is useful because we are limited to a numerical search for solutions. Having found one solution, it
would be nice to automatically have another solution associated with it. From a very practical perspective,
one aspect of this problem is that global nonlinear optimization problems may (usually!) have multiple local
extrema, and searching for them in order to find the best of the ones that were found can be expensive.
Also, a close inspection reveals that while the bifurcation diagrams are symmetric, the solutions themselves
are not. Hence, we can not simply “flip” some solutions around.

In both the five-robot and seven-robot systems, the bifurcation diagrams indicated one solution for small
values of k with bifurcations leading to an increasing number of solutions for increasing k. This structure
makes sense. When k is zero, there is no coupling among the robots and the trajectory minimizing the
control effort is a straight line connecting the boundary conditions. In the limit as k → ∞, maintaining the
formation is more important than the control effort. In the limit, any trajectory that maintains the formation
regardless of the length of the trajectory will be a solution. Hence, the structure exhibited in the bifurcation
diagrams has an appealing intuitive basis. The analysis in the next section shows this interpretation conforms
to the mathematical structure of the problem.

4 Asymptotic Analysis

Because the governing equations are nonlinear, global results are, of course, difficult to obtain. The bifur-
cation diagrams we present were all obtained via exhaustive numerical searches. Such a method, however,
clearly does not preclude the existence of solutions we did not find. This section validates the qualitative
dependence of the number of solutions on the bifurcation parameter. In the cases of very small k and very
large k, we may use an asymptotic expansion to investigate the effect of k on the number of solutions to the
optimization problem. As will be shown, this analysis is consistent with the existence of a unique solution
for small values of k and many solutions for very large values of k, which is the pattern indicated in the
numerical results.

4.1 Small k

We use a standard perturbation method [25,26] to determine a series expansion for solutions to Equations 2
for k ≪ 1. If we let

xi = xi,0 + kxi,1 + k2xi,2 + k3xi,3 + · · ·+ kjxi,j + · · · ,

yi = yi,0 + kyi,1 + k2yi,2 + k3yi,3 + · · ·+ kjyi,j + · · · ,

pi1 = pi1,0 + kpi1,1 + k2pi1,2 + k3pi1,3 + · · ·+ kjpi1,j + · · · ,

pi2 = pi2,0 + kpi2,1 + k2pi2,2 + k3pi2,3 + · · ·+ kjpi2,j + · · · ,

and substitute into the equations of motion (Equation 2), a set of linear differential equations is obtained for
each power of the expansion parameter k. A reader interested in further details on the nature and structure
of the asymptotic expansion for all orders of this system is referred to Deng. [12]

Specifically, the leading-order equation corresponding to k0 terms gives the set of linear equations for
the ith robot of the form

ẋi,0 =
1

2
pi1,0, ẏi,0 =

1

2
pi2,0, ṗi1,0 = 0, ṗi2,0 = 0,

with boundary conditions

xi,0(0) = x1,0(0) + (i− 1)d, yi,0(0) = 0, xi,0(1) = 0, yi,0(1) = y1,0(1) + (i− 1)d.

These are easy to solve by direct integration and have solutions of the form

xi,0 = −xi,0(0)t+ xi,0(0), yi,0 = yi,0(1)t, pi1,0 = −2xi,0(0), pi2,0 = 2yi,0(1).
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Naturally, these are straight line, constant velocity solutions, which is expected when the only component
of the cost function is the control effort and the 0th order solution does not contain k.

The k1th order equations are of the form

ẋi,1 =
pi1,1
2

ẏi,1 =
pi2,1
2

ṗi1,1 = 2

(

(xi,0 − xi−1,0)
(

di−1,0 − d
)

di−1,0

+
(xi,0 − xi+1,0)

(

di,0 − d
)

di,0

)

ṗi2,1 = 2

(

(yi,0 − yi−1,0)
(

di−1,0 − d
)

di−1,0

+
(yi,0 − yi+1,0)

(

di,0 − d
)

di,0

)

,

(4)

where di,0 is the distance term as a function of the zeroth-order solutions. Because the boundary conditions
do not depend on k, only the zeroth-order equations have non-zero boundary conditions. That is, the zeroth-
order equations have the actual boundary conditions and all the higher-order equations have homogeneous
boundary conditions.

The equations corresponding to higher orders of k are obtained similarly, but naturally grow in complexity.
Observe, as is the usual case for an asymptotic analysis, that the differential equations for k1 depend only
on xi,1, yi,1, pi1,1 and pi2,1 and the lower order solutions. Hence, the solutions for the zeroth-order equations
appear as inhomogenous terms in the first-order equations, and so on recursively.

Because the first-order costate equations only depend on the lower-order solutions they may be solved
by direct integration. Once the first-order costates are determined, xi,1 and yi,1 may be obtained by direct
integration. There will be four constants of integration which may be used to satisfy the four boundary
conditions. Also, because the zeroth-order solutions are continuous and bounded, a unique solution for each
integral exits. This is consistent with the solution in the neighborhood of the straight-line k = 0 zeroth-
order solution being unique, which is furthermore consistent with the physical interpretation that when the
formation weighting is zero, the only optimal solution is the one that minimizes the path length, i.e., a
straight line.

Because the zeroth-order solutions are straight lines, only the first and nth equations will have non-zero
solutions for the first-order equations. This is due to the fact that straight lines are of the nature that the
(i − 1)th and (i + 1)th robots’ effect on the ith robot cancel. This is evident from Equation 4 because the
right-hand side of the costate equations depend only on the 0th order solutions, and hence the difference in
the distances will be the same and the difference in the x or y components of the two neighbors will be the
same magnitude with opposite sign. Hence, the costate equations will have constant solutions. Therefore,
because the end robots do not have a neighbor on each side, they are the only robots that will have a
first-order effect from k. Space limitations prevent including the higher-order equations, but the second
from the end robots have a zero first-order solution, but non-zero second-order solution, and so on. Hence,
the deviation from the straight-line solution is of increasingly higher order in k toward the middle of the
formation. This is consistent with an intuitive idea that robots near the outside of the formation have greater
flexibility in their path to move away from the straight line; whereas, robots in the middle are “squeezed”
by the formation.

4.2 Large k

Now we consider the other extreme, a very large formation weighting parameter. For large k (1/k ≪ 1), a
similar asymptotic expansion is used to solve Equations 2 but instead of k, ǫ = 1/k is used as the expansion
parameter. Similar to before, let

xi = xi,0 + ǫxi,1 + ǫ2xi,2 + ǫ3xi,3 + · · ·+ ǫjxi,j + · · · ,

yi = yi,0 + ǫyi,1 + ǫ2yi,2 + ǫ3yi,3 + · · ·+ ǫjyi,j + · · · ,

pi1 = pi1,0 + ǫpi1,1 + ǫ2pi1,2 + ǫ3pi1,3 + · · ·+ ǫjpi1,j + · · · ,

pi2 = pi2,0 + ǫpi2,1 + ǫ2pi2,2 + ǫ3pi2,3 + · · ·+ ǫjpi2,j + · · · .
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We obtain the following equation for leading order of ǫ,

ẋi,0 =
1

2
pi1,0

ẏi,0 =
1

2
pi2,0

0 =
2k (xi,0 − xi−1,0)

(

di−1,0 − d
)

di−1,0

+
2k (xi,0 − xi+1,0)

(

di,0 − d
)

di,0

0 =
2k (yi,0 − yi−1,0)

(

di−1,0 − d
)

di−1,0

+
2k (yi,0 − yi+1,0)

(

di,0 − d
)

di0
.

The last two equations may be simplified to

(xi,0 − xi−1,0)
2 + (yi,0 − yi−1,0)

2 = d
2
, (5)

which transparently shows that the limit for large k requires that the distance constraint be exactly main-
tained.

Since the third and fourth equations are algebraic (as is Equation 5), then the costates, p are unconstrained
and hence any path that maintains the desired distance between the robots and satisfies the boundary
conditions is a solution to these equations. This makes physical sense because in the limit as k → ∞, the
control effort becomes negligible relative to the formation constraint. Hence, in the limit of very large k,
the asymptotic analysis indicates that there is an infinite number of solutions. As long as the separation
distance is maintained and the boundary conditions are satisfied, any path is optimal.

4.3 Generalization of Asymptotic Results

Up to this point, the results in this section are for the specific example in this paper. Now we consider a
more general class of systems to which similar results will apply. To do this, we consider a more general cost
functional, which will naturally lead to a more general class of differential equations governing the dynamics
of the system. It is natural and commonplace to minimize the control effort, so we generalize the formation
function component of the functional. Specifically, let

J =

∫ tf

0

n
∑

i=1

(

(ui1)
2
+ (ui2)

2
)

+

n−1
∑

i=1

kf(x1, x2, . . . , xn, y1, y2, . . . , yn)dt

where the function, f , is a differentiable function of the relative configuration of the robots that is minimized
when the robots are in the desired formation. Calculus of variations yields

ẋi =
1

2
pi1 , ẏi =

1

2
pi2 , ṗi1 = 2k

∂f

∂xi

, ṗi2 = 2k
∂f

∂yi
.

Following the same asymptotic analysis as above, it is clear that for k ≪ 1, we have

ẋi =
1

2
pi1 , ẏi =

1

2
pi2 , ṗi1 = 0, ṗi2 = 0,

again, yielding straight-line solutions, and when k ≫ 1, we have

ẋi =
1

2
pi1 , ẏi =

1

2
pi2 , 0 = 2k

∂f

∂xi

, 0 = 2k
∂f

∂yi
,

which is satisfied by any trajectory when the formation function is minimized. Hence, as was the case for the
very specific system we considered, the same results hold for any formation function which is differentiable
and minimized when the formation is satisfied. Specifically, there is a unique solution for small k and
infinitely many solutions in the limit as k → ∞, suggesting a cascade of bifurcations qualitatively the same
as we found for the specific system considered in this paper.
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5 Symmetries in the Bifurcation Diagrams

This section proves that the symmetries found in the numerically-constructed bifurcation diagrams must
be present. This is of practical value because it reduces the computation time necessary in a search over
multiple solutions since a second solution can always be found from any solution that is obtained that is not
symmetric with itself. This is related to some of our prior work focusing on model reduction for symmetric
systems [19,20,22,37,38,43,44].

Suppose (x1, x2, · · · , xn, y1, y2, · · · , yn) is a solution of Equation 2 with the boundary conditions in Equa-
tion 3, and let

xi = (xs)i + (xd)i, yi = (ys)i + (yd)i,

where
(xs)i = (c+ (i− 1)d)(1− t), (ys)i = (c+ (i− 1)d)t.

The subscripts s indicate a “straight-line” solution and the subscripts d indicate the component of the
solution that is a “deviation” from the straight line. If v(t) = ((xd)1, (yd)1, · · · , (xd)n, (yd)n), then (xd)i, (yd)i,
i = 1, 2, · · · , n, satisfy the following equations with homogeneous boundary conditions:

−(ẍd)i(t) = fi(v(t)), −(ÿd)i(t) = gi(v(t)), (6)

where f1 = h1, g1 = l1, fn = −hn−1, gn = −ln−1, and for i = (2, 3, · · · , n− 1)

fi = hi − hi−1, gi = li − li−1,

where, for all i = (1, 2, · · · , n)

hi =

(

d

di
− 1

)

(

−d+ dt+ (xd)i − (xd)i+1

)

,

li =

(

d

di
− 1

)

(

−dt+ (yd)i − (yd)i+1

)

,

di =

√

(

−d+ dt+ (xd)i − (xd)i+1

)2
+
(

−dt+ (yd)i − (yd)i+1

)2
.

The system in Equation 6, is equivalent to the system of integral equations

(xd)i =

∫ 1

0

G(t, s)fi(v(s))ds, (yd)i =

∫ 1

0

G(t, s)gi(v(s))ds, (7)

where G(t, s) is the Green’s function of the differential operator −ü = 0 with homogeneous boundary
conditions, where u = xdi

or u = ydi
, and

G(t, s) =

{

t(1− s), t ≤ s

s(1− t), t > s
.

If Ai, Bi and F are maps such that

Aiv(t) = k

∫ 1

0

G(t, s)fi(v(s))ds,

Biv(t) = k

∫ 1

0

G(t, s)gi(v(s))ds,

Fv(t) = (A1(v)(t), B1(v)(t), · · · , An(v)(t), Bn(v)(t)) ,

then determining a solution to Equation (7) is equivalent to finding a fixed point to equation

Fv(t) = v(t). (8)

The following proposition proves that if a solution is known, then the “opposite” deviation from the
straight-line solution is also a solution for the robot on the other side of the formation.
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Proposition 1 Suppose v(t) is a fixed point of Equation 8. Let

(x̂d)n+1−i = −(xd)i, (ŷd)n+1−i = −(yd)i (9)

and v̂(t) = ((x̂d)1, (ŷd)1, · · · , (x̂d)n, (ŷd)n), then v̂(t) is also a fixed point of Equation 8

Proof: Substituting for the definition of the hat terms for each gives:

di =

√

(

−d+ dt+ (xd)i − (xd)i+1

)2
+
(

−dt+ (yd)i − (yd)i+1

)2

=

√

(

−d+ dt− (x̂d)n+1−i + (x̂d)n−i

)2
+
(

−dt− (ŷd)n+1−i + (ŷd)n−i

)2

=

√

(

−d+ dt+ (x̂d)n−i − (x̂d)n−i+1

)2
+
(

−dt+ (ŷd)n−i − (ŷd)n−i+1

)2

= d̂n−i

hi =

(

d

di
− 1

)

(

−d+ dt+ (xd)i − (xd)i+1

)

=

(

d

d̂n−i

− 1

)

(

−d+ dt− (x̂d)n+1−i + (x̂d)n−i

)

=

(

d

d̂n−i

− 1

)

(

−d+ dt+ (x̂d)n−i − (x̂d)n−i+1

)

= ĥn−i

li =

(

d

di
− 1

)

(

−dt+ (yd)i − (yd)i+1

)

=

(

d

d̂n−i

− 1

)

(

−dt− (ŷd)n+1−i + (ŷd)n−i

)

=

(

d

d̂n−i

− 1

)

(

−dt+ (ŷd)n−i − (ŷd)n−i+1

)

= l̂n−i

and

f1 = h1 = ĥn−1 = −f̂n

g1 = l1 = l̂n−1 = −ĝn

fi = hi − hi−1 = ĥn−i − ĥn+1−i = −f̂n+1−i

gi = li − li−1 = l̂n−i − ĥn+1−i = −ĝn+1−i

fn = −hn−1 = −ĥ1 = −f̂1

gn = −ln−1 = −l̂1 = −ĝ1

which gives
fi = −f̂n+1−i, gi = −ĝn+1−i,

for all i from 0 to n. Then

(x̂d)i = −(xd)n+1−i = −

∫ 1

0

G(t, s)fn+1−ids =

∫ 1

0

G(t, s)f̂ids

(ŷd)i = −(yd)n+1−i = −

∫ 1

0

G(t, s)gn+1−ids =

∫ 1

0

G(t, s)ĝids.

Hence v̂(t) = ((x̂d)1, (ŷd)1, · · · , (x̂d)n, (ŷd)n) is a solution of Equation 8. �
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Figure 9: Kinematic model.

Equation 9 gives an algebraic expression for the symmetric solutions, which is useful because the theorem
proves they satisfy the boundary value problems and hence reduces the computational burden of determining
additional solutions via computationally-intensive methods such as the shooting method or finite-difference
method. Note that the relationship is not simply the opposite deviation from the straight line solution, but
is the opposite deviation from the straight line for a different robot.

6 Symmetry-Breaking Example

This section presents a mobile robot formation control problem that is superficially similar to the one already
considered, but where the symmetry of the bifurcations is broken. While the boundary conditions for the
problem are similarly “symmetric”, it is the robot itself, perhaps surprisingly, that breaks the symmetry,
illustrating that while the cascade of bifurcations may be a relatively common feature in formation control,
the symmetric nature of the bifurcations is more limited. Furthermore, as indicated previously, while we
verified convergence of all of our numerical solutions, we include this section because we use a different
numerical approach than in the previous sections. Because the symmetry-breaking in this section is slight,
it is important to ensure it is not an artifact of the numerical method.

The model considered is a standard two-wheeled nonholonomic mobile robot, such as presented in [39]
and illustrated in Figure 9. Kinematically, it resembles a wheelchair, having three degrees of freedom and
two control inputs. Hence, it is underactuated by one degree of freedom. The state variables are x, y, and θ,
which correspond to the three degrees of freedom and the control inputs are u and v, the angular velocities
of the wheels. For all the simulations in this paper, we adopt more physically realistic, non-normalized
parameter values. Specifically, the model parameters are taken to be r = 0.02 and b = 0.05 with overall
trajectory lengths of O(1), corresponding to the robot traversing a trajectory that is large relative to its size.

Assuming a rolling without slipping condition for each wheel, the kinematics are described by three
nonholonomic constraints:

ẋ =
r

2
cos θ(u+ v), ẏ =

r

2
sin θ(u+ v), θ̇ =

r

2b
(u− v).

Using a standard calculus of variations approach with the cost functional which minimizes the control effort

L∗ =
1

2
(u2 + v2) + λx

(

ẋ−
r

2
cos θ(u+ v)

)

+ λy

(

ẏ −
r

2
sin θ(u+ v)

)

+ λθ

(

θ̇ −
r

2b
(u− v)

)

,
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we obtain following ordinary differential equations for optimal solutions

ẋ =
r

2
cos θ(u+ v), λ̇x =0

ẏ =
r

2
sin θ(u+ v), λ̇y =0

θ̇ =
r

2b
(u− v), λ̇θ =

r

2
(u+ v)(λx sin θ − λy cos θ)

where

u =
r

2

(

λx cos θ + λy sin θ +
1

b
λθ

)

, v =
r

2

(

λx cos θ + λy sin θ −
1

b
λθ

)

.

For this system we use a finite difference method to determine numerical solutions with specified boundary
conditions for these equations. For a system of first-order ODEs, ~x′(t)− f(t, ~x) = 0 define

~Ek ≡ ~xk − ~xk−1 − hkf
(

1

2
(tk + tk−1),

1

2
(~xk + ~xk−1)

)

= 0, (10)

where k = 2, 3, ...,M , hk = tk − tk−1 and M is the number of mesh points. If n1 is the number of boundary
conditions at the first boundary and n2 is the number of boundary conditions at the second boundary, then
~E1 will have n1 nonzero entries and ~EM+1 will have n2 nonzero entries. Since the relaxation method is
iterative, incremental changes of each dependent variable, ∆xj,k, between iterations must be determined. A
Taylor series expansion of Equation 10 results in

~Ek(~xk +∆~xk, ~xk−1 +∆~xk−1) ≈ Ej,k(~xk, ~xk−1) +

N
∑

n=1

∂Ej,k

∂xn,k−1

∆xn,k−1 +

N
∑

n=1

∂Ej,k

∂xn,k

∆xn,k, (11)

where j = 1, 2, ..., N , which gives M ×N − (n1 +n2) equations representing the interior points. For the first
and second boundary conditions, respectively,

~E1(~x1 +∆~x1) ≈ Ej,1(~x1) +

N
∑

n=1

∂Ej,1

∂xn,1

∆xn,1, (12)

~EM+1(~xM +∆~xM ) ≈ Ej,M+1(~xM ) +

N
∑

n=1

∂Ej,M+1

∂xn,M

∆xn,M , (13)

where j = 1, 2, ..., n1 for Equation 12 and j = 1, 2, ..., n2 for Equation 13. For the solution to converge, the
left hand sides of Equations 11-13 obviously should approach zero. These equations are linear even if the
differential equation is nonlinear, and hence, ∆xj,k, can be solved for using standard methods from linear
algebra such as Gaussian elimination.

Now, considering a fleet of robots operating in a coordinated manner instead of a single robot, consider
a system with n robots where the desired distance between neighboring robots is specified. In that case, if
we consider the cost functional

J =

∫ tf

0

[

1

2

n
∑

i=1

u2
i + v2i +

n
∑

i=1

[

λxi

(

ẋi −
r

2
cos θi(ui + vi)

)

+ λyi

(

ẏi −
r

2
sin θi(ui + vi)

)

+ λθi

(

θ̇i −
r

2b
(ui − vi)

)]

+ k

n−1
∑

i=1

(di − d)2

]

dt

where di =
√

(xi − xi+1)2 + (yi − yi+1)2 and d is the desired distance between adjacent robots, as before.
Now, consider a system of five robots and a coordinate system where the robots are initially in a line

evenly spaced between x = 1.0 and x = 1.4 along the x-axis, each with an orientation of θi = π/2, and
assume the final formation is where the robots are evenly distributed between y = 1.0 and y = 1.4 along the
y-axis with an orientation of θi = π. With the formation weighting parameter, k, set to zero, the solutions
are as illustrated in Figure 10 and because k = 0, the desired distance between the robots is not maintained
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Figure 10: Optimal solution for five-robot system when k = 0.

other than at the boundaries. In the interior of the trajectories, because of the geometry of the problem, the
actual distance between neighboring robots is less than the desired distance of d = 0.1.

If the value of the bifurcation parameter is increased to k = 8×105, multiple solutions exist, five of which
are illustrated in Figures 11-13. The bifurcation parameter is large compared to the holonomic case because
of the non-normalized, physically-reasonable parameter values selected for the problem. The specific value
of k = 8× 105 was selected because it was near the middle of range of values where we found five solutions,
which is a large enough number to demonstrate the complexity of the problem, but small enough to clearly
communicate and understand. The black dotted line in each of those figures represents the k = 0 solution
and the green, red and blue lines are the solution for k = 8× 105. The crosses indicate each of the solutions
at the specific points in time t = 0.25, 0.50 and 0.75 and the dots indicated the k = 0 solutions at those same
points in time (recall t ∈ [0, 1]). It is clear from an analysis of the solutions in those figures that part of the
nature of the multiplicity of solutions is that neighboring robots can get “ahead” or “behind” its neighbors.
This allows each robot to track the k = 0 trajectory more closely, which minimizes the control effort, while
simultaneously more closely maintaining the formation distance constraint.

Figures 11-13 illustrate multiple solutions for a fixed value of the bifurcation parameter, k. Branches of
the same color in these plots correspond to the same solutions. Now, we construct bifurcation diagrams by
tracking the solutions as k is varied. The relaxation method is particularly efficient for this because solutions
that have already been determined may be used as the initial condition for the method. These diagrams
illustrate the difference between solutions and the k = 0 solution for a range of k-values. Figures 14-16
are the bifurcation diagrams for this fleet of nonholonomic robots. As before, it makes sense that as k is
increased the number of solutions to the boundary value problem will increase. The units for the y-axis
are centemeters and the x-axis values should be times 105. This is because in the limit as k → ∞, only
maintaining the formation matters compared to the control effort. Hence, in the limit, one would expect that
any trajectory which maintains distance between the robots is a solution, which is consistent with Figures 14
through 16.

These bifurcation results illustrate a subtle, but important distinction relative to our previous results.
Specifically, for the system in Section 3 we showed that the bifurcation diagrams must be symmetric in
that, for the five-robot formation problem like the one considered in this paper, the bifurcation diagrams for
robots one and five must be symmetric in that they are reflections of each other, the diagrams for robots
two and four must be similarly symmetric and the bifurcation diagram for robot three must be symmetric
with respect to itself.

For the current system, this result does not hold. This is most easily seen for robots two and four at the
right end (high k-values) of the bifurcation diagram where the branches cross for corresponding solutions as
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Figure 11: Solution one (left) and two (right), positions marked at t = 0.25, 0.50, and 0.75 s.
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Figure 12: Solution three (left) and four (right), positions marked at t = 0.25, 0.50, and 0.75 s.
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Figure 13: Solution five, positions marked at t = 0.25, 0.50, and 0.75 s.
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Figure 14: Bifurcations at t = 0.25 for robots one (left) and two (right).
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Figure 15: Bifurcations at t = 0.25 for robots three (left) and four (right).
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Figure 16: Bifurcations at t = 0.25 for robots five.

slightly different k-values (other differences are similarly evident). This is not a numerical artifact, because
the persistence of this difference was investigated by a grid resolution convergence study by increasingly
refining the finite difference meshes. In fact, the symmetry of the system is broken by the robot itself
because the left and right wheels travel different distances along most trajectories that are not straight lines.
The order of the differences between the bifurcation diagrams appears to be on the order of a couple percent,
which is also approximately the order of the spacing between the wheels on the robot relative to the overall
length of the trajectory. An interesting subject of current work is to determine whether the differences
between the bifurcated solutions may be bounded, and if so, what sorts of computational savings may be
obtained therefrom.

7 Conclusions and Future Work

This paper analyzed the nature and structure of multiple solutions to an optimal control problem for for-
mation control for multiple mobile robots and was developed over a series of previous conference papers by
some of the authors. This approach is important for robotics engineers because various forms of optimization
are common in path planning algorithms in robotics and an understanding of the global structure of the
solution space will lead to more efficient and optimal path planning methods and solutions.

When considering the trade-off between minimizing control effort and maintaining the desired formation,
a complicated and rich solution bifurcation structure is presented. Two types of problems were considered.
The first was a holonomic system in which both five and seven robot systems were considered. This holonomic
system has aspects related to the dexterous manipulation problem where the robotic fingertips have spherical
surfaces. The second system was the nonholonomic robot. In both cases, numerical simulation results show
a unique solution when a much greater weight was given to the control effort compared to the formation
cost; conversely, when the formation is given a much greater weight, many solutions are present.

In addition to the numerical investigations, there are two theoretical contributions to this paper. First,
in the case of symmetric systems, we show that the bifurcation diagrams must be symmetric. This is useful
because it is numerically expensive to search for solutions and the relationship between symmetric solutions
is algebraic. Hence, when a solution is determined for a symmetric system, the second is automatically
known. Second, an asymptotic analysis shows consistency with the intuitive interpretation that a greater
weighting on the control effort corresponds to a unique solution and a greater weighting on the formation
corresponds to multiple (many) solutions.

This investigation motivates several avenues for future research. First, a systematic means for charac-
terizing bifurcations for boundary value problems must be developed. This seems to be an open problem
without an obvious generalization for bifurcations of fixed points of dynamical systems because the entire
solution, as opposed to an isolated equilibrium, is what bifurcates. This fundamentally arises because of the
two-point boundary value problem nature of the optimization. Second, numerically efficient methods are
necessary for searching for solutions. The shooting method and finite difference methods are only somewhat
efficient for finding isolated solutions because they are iterative. Extending the methods to globally search
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for solutions is obviously problematic. Some initial results exist based on polynomial homotopy methods [14]
but due to the manner in which the number of roots of polynomial systems grow with the order of the poly-
nomial and dimension of the problem, such an approach does not seem to scale well. Finally, due to the
utility in practical implementations, connecting these results with receding-horizon methods would be useful.

Acknowledgments

The support of the US National Science Foundation under the CPS Large Grant No. CNS-1035655 is
gratefully acknowledged. The authors would also like to thank the reviewers for many helpful comments and
suggestions and especially thank Professor Mihir Sen for his thoughtful and insightful conversations related
to this work.

References

[1] Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, third edition, 2007.

[2] Ravi P Agarwal, Kanishka Perera, and Donal O’Regan. Multiple positive solutions of singular and
nonsingular discrete problems via variational methods. Nonlinear Analysis: Theory, Methods & Appli-
cations, 58(1):69–73, 2004.
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