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Abstract— Fractional calculus is an increasingly recognized
important tool for modeling complicated dynamics in modern
engineering systems. While, in some ways, fractional derivatives
are a straight-forward generalization of integer-order deriva-
tives that are ubiquitous in engineering modeling, in other ways
the use of them requires quite a bit of mathematical expertise
and familiarity with some mathematical concepts that are not
in everyday use across the broad spectrum of engineering
disciplines. In more colloquial terms, the learning curve is
steep. While the authors recognize the need for fundamental
competence in tools used in engineering, a computational tool
that can provide an alternative means to compute fractional
derivatives does have a useful role in engineering modeling.
This paper presents the use of a symmetric neural network
that is trained entirely on integer-order derivatives to provide
a means to compute fractional derivatives. The training data
does not contain any fractional-order derivatives at all, and
is composed of only integer-order derivatives. The means by
which a fractional derivative can be obtained is by requiring the
neural network to be symmetric, that is, it is the composition of
two identical sets of layers trained on integer-order derivatives.
From that, the information contained in the nodes between the
two sets of layers contains half-order derivative information.

I. INTRODUCTION

Fractional calculus is increasingly being used to model

modern engineering systems and the literature is fairly ex-

tensive and only an overview can be provided here. There are

several books overviewing the topic from a mathematical per-

spective, including [10], [9], [11]. Some papers considering

large-scale and infinite order dynamics include, for example,

[4], [12], [8]. Modeling viscoelastic systems is also an ob-

vious application [2], [5]. The authors have used it to model

very large scale robotic systems [3], [6], [7]. Fractional-

order control is also a topical area such as in [14], [1]. An

excellent review article illustrating the very broad range of

applications of fractional calculus and control in science and

engineering is [13]. In Section II we provide an overview

of the basic concepts. While these are fairly straightforward,

for an engineer first dealing with a fractional-order system,

the learning curve is a bit steep and may prevent immediate

access to the utility of fractional-order modeling. In this

paper, we present a tool meant in practice as a sort of segue

for the uninitiated, which is a neural network trained on data

that is made up entirely of integer-order derivatives, i.e., the
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Fig. 1. A neural network that is symmetric if the parts in the red and blue
boxes are identical.

neural network is not trained on fractional-order derivatives,

but provides fractional-derivative information.

Fractional derivatives are generalizations of integer-order

derivatives, and, as is the case with generalizations, there is

not necessarily a unique one. The use of fractional calculus

in engineering and applied science is such that there is not

yet a clear consensus as to which derivative is “best” in the

sense of being the most useful. In fact, as of the date of this

article, the English Wikipedia Fractional Calculus page lists

approximately 20 different fractional derivative definitions.

In this paper we will take a simple approach in that a half

derivative is an operation that, if applied twice, will result in

the usual first derivative of a function. We will also focus,

for this preliminary study, on a class of functions containing

polynomials only, for which many of the various types of

definitions of fractional derivatives yield identical results.

Our approach is fairly simple. In the usual case for a neural

network, the relationship between a set of input nodes and

output nodes is “learned” by determining a set of weights

for edges connecting the nodes, including possibly some

“hidden” or intermediate layers of nodes, that best fit some

training data. So, the usual scenario is illustrated in Figure 1.

For example, if we wanted to use the network to compute an

approximate derivative, we train the network on many pairs

of functions and their derivatives, and the network essentially

learns the derivative operator.

If we want to compute a half derivative, then one option

would be to train the network on a data set of functions and
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their half derivatives. That would be potentially useful to use

the network to compute half derivatives of some functions

for which the user does not have half derivative information.

A more useful scenario is, though, that the user does not

have access to any half derivative information. In that case,

if we place two identical networks in series and train the

combination on first-order derivatives, then, by definition,

what one of the two networks making up the system would

compute is the operation that, if done twice, is the first

derivative, i.e., it is the half derivative. In Figure 1, this would

require that the networks contained in the left and right boxes

(blue and red, respectively), be identical.

The next section outlines some of the basics of fractional

calculus and feed-forward neural networks. Furthermore, it

describes in detail the tools we used to construct and train our

neural network. Section III presents the initial results which

exhibit undesirable attributes due to the non-uniqueness of

the half derivative. Section IV presents the results of training

with a merit function that includes a term to “regularize” the

middle layer, which yields fairly satisfactory results. Finally,

Section V presents our conclusions and outlines possible

avenues of future work.

II. BRIEF FRACTIONAL CALCULUS AND NEURAL

NETWORK BACKGROUND

This section presents the necessary background on frac-

tional calculus needed to interpret the results of this work,

the details of the neural network we implemented and the

tools used to do so.

A. Fractional Calculus

The basic idea of fractional calculus is simple: what are

the operators “in between” integer-order derivatives? The

prototypical example would be the half derivative. In the

case of polynomials, determining a candidate half derivative

is straight-forward.

Consider the monomial

f(t) = tn

with the usual sequence of (integer-order) derivatives

df

dt
(t) = ntn−1

d2f

dt2
(t) = n (n− 1) tn−2

...

dkf

dtk
(t) =

n!

(n− k)!
tn−k.

(1)

The exponent on the t can take on fractional values, so the

hindrance to generalizing this to fractional values of k is the

factorial function. Fortunately, as is well-known, that is easily

generalized to non-integer values with the gamma function,

Γ(k) =

∫ ∞

0

xk−1e−xdx

0
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Fig. 2. Gamma function as generalization of the factorial.
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Fig. 3. Example fractional-order derivatives using Equation 2.

which is illustrated in Figure 2, from which it is clear that

for integer values

k! = Γ(k + 1),

that is, the gamma function generalizes the factorial, but is

shifted by one.

Hence, we can replace the factorials in the pattern for the

derivatives in Equation 1 with the gamma function

dαf

dtα
(t) =

Γ (n+ 1)

Γ (n− α+ 1)
tn−α, (2)

where 0 < α < n. We will use this definition to check

the results from our symmetric neural network. Figure 3

illustrates f(t) = t3− 4.7t2+4.5t+1.8 and its 0.1, 0.5, 0.9

and 1st derivatives. As expected the fractional orders near

0 and 1 are close to the corresponding integer-order values,

and the half derivative is “in between” in a very intuitively

expected manner.

Unfortunately, beyond simple monomials, computing half

derivatives becomes increasingly complicated. The three

most common fractional derivatives are as follows. In each

case, the notation ⌈α⌉ is notation for the ceiling operator

which gives the smallest integer greater than α.

1) The Riemann-Liouville Fractional Derivative is given
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by

DRL α

0 t f(t) =

d⌈α⌉

dt⌈α⌉

(

1

Γ (⌈α⌉ − α)
×

∫ t

0

(t− z)
⌈α⌉−α−1

f(z) dz

)

.

2) The Caputo Fractional Derivative is given by

DC α

0 t f(t) =

1

Γ (⌈α⌉ − α)

∫ t

0

(t− z)
⌈α⌉−α−1 d⌈α⌉f

dz⌈α⌉
(z) dz.

3) The Grünwald-Letnikov fractional derivative is given

by

dαf

dtα
(t) = lim

∆t→0

∑∞
k=0

(−1)k
(

α

k

)

f(t− k∆t)

(∆t)
α ,

where the binomial coefficient is generalized to non-

integer values by
(

α

β

)

=
Γ (α+ 1)

Γ (β + 1)Γ (α− β + 1)
.

While utilizing these definitions is certainly possible for most

working engineers, this work is meant to provide a simpler

computation approach when warranted.

B. Feed-forward Neural Network

Neural networks are a very standard tool in modern engi-

neering, and only a brief description is provided here to set

the relevant context for the novel adaptation we implemented

for our results.

We utilize a standard feed-forward neural network com-

posed of an input layer, a first hidden layer, a middle layer, a

second hidden layer and then an output layer. Each layer is

composed of a set of nodes, which contain numerical values,

and each node may be connected with an edge to nodes in the

subsequent layer. The input layer nodes receive their values

as inputs. If a node in the subsequent layer is connected to

a node in a previous layer, then the values in each of the

node in the previous layers is multiplied by the value of the

edge connecting the two nodes, and then all those values are

summed in the node. Typically, and activation function is

applied to this sum, which then is the value for that node.

In our network, we either use no activation function (for

the input, middle and output layers) or the rectified linear

activation function (typically denoted by ReLU), which in

our case simply sets a negative value to zero and leaves any

positive value unchanged.

A neural network typically has random values assigned to

the edges initially, and training is accomplished by taking

known input/output pairs, applying the input and computing

the output, comparing the computed output to the correct

output to determine an error, and then changing the edge

weights to reduce the error. By repeatedly applying the

input/output pairs and changing the weights to reduce the

error, the network can converge to represent the relationship

between the input and output.

Our implementation has an input layer with 200 nodes,

a hidden layer with 400 nodes, a middle layer with 200

nodes, a second hidden layer with 400 nodes and then an

output layer. If we require that the weights for the edges

connecting the input to middle layer be identical to the edge

weights connecting the corresponding middle layer nodes to

the second hidden layer nodes, and similarly for the hidden

layer to the middle layer and the second hidden layer to the

output layers, then we have an overall neural network that

is made up of two networks in series where we require both

networks to be identical.

In our implementation, the 200 input nodes received values

of the function we want to differentiate evaluated at 200 time

steps. In training, the output layer will represent the first

derivative at the same 200 time steps. The 200 nodes in the

hidden layer should represent the value of the half derivative

if we force the two halves of the network to have an identical

structure with identical edge weights.

C. Tools

We used the pytorch python library to implement our
symmetric neural network. It is fairly straight-forward to
make a neural network with two identical halves. Specifi-
cally,

class SymmetricNet(torch.nn.Module):

def __init__(self, D_in, H, D_out):

super(SymmetricNet, self).__init__()

self.hidden = torch.nn.Linear(D_in, H)

self.output = torch.nn.Linear(H, D_out)

def forward(self, x):

h_relu = self.hidden(x)

h_relu = h_relu.clamp(min=0)

h_relu = self.output(h_relu)

h_middle = h_relu

h_relu = self.hidden(h_relu)

h_relu = h_relu.clamp(min=0)

y_pred = self.output(h_relu)

return y_pred, h_middle

model = SymmetricNet(200, 400, 200)

Remark 1: Note that we only define one hidden and one

output layer. In the forward function we use them both twice,

which is the mechanism by which we create the network

that is the sequential concatenation of two identical neural

networks.

The loss function we use is MSELoss, which seeks

to minimize the mean squared error. Specifically, the loss

function is

error =
200
∑

n=0

(prediction(n)− exact(n))
2

(3)

where prediction(n) is the value of the nth node of the out-

put layer and exact(n) is the exact value of the first deriva-

tive at time t = n∆t. The optimizer is torch.nn.SGD,

which is a stochastic gradient descent method. Note that the

ubiquitous back-propagation method can not be used, at least
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Fig. 4. Initial training results after 2,000 epochs. Blue – input function,
orange – predicted half derivative, green – exact half derivative, red –
predicted derivative, purple – exact derivative.

directly, because of our constraint that the two halves of our

network be identical.1

III. INITAL RESULTS

For training data, we generated 10,000 random polynomi-

als. Specifically, the polynomials contained six terms, where

each term has a random integer coefficient with values in the

range [−2, 2] and random integer powers with values in the

range [0, 4]. The first-order derivatives were computed and

the pairs of polynomials and derivatives were used in train-

ing. The half derivative computed by Equation 2 was also

computed for validation, but was not used in training. In our

training, the 10,000 polynomials are divided into the training

dataset (9,000 polynomials) and the validation dataset (1,000

polynomials). In the training process, one batch includes the

entire training dataset. One epoch means that each sample

in the training dataset has had an opportunity to update the

internal model parameters.

After training so that the mean square error converged to a

small value, and validating against a polynomial not used in

training, all results were qualitatively of the nature illustrated

in Figure 4. The input function is the blue curve. The exact

first derivative is the purple curve, and the first derivative

computed by the neural network is illustrated by the red

curve, which is a close match to the exact first derivative. The

half derivative computed using Equation 2 is the green curve,

and the output of the middle layer in the orange, “noisy”

curve, which is clearly not at all a prediction of the half

derivative.

An explanation for the bad half derivative prediction is

related to the non-uniqueness of our definition. All our neural

network requires is that the operation carried out by the two

halves of the network produce the full derivative. Thus any

permutation of data points in the middle layer of the network

that has a period of 2 will be a possible solution to the

middle layer. In other words, while time is imposed on the

input and output layers by the training data, there is nothing

1All our source files are available at the github repository:
https://github.com/chentan/fractional.
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Fig. 5. Typical training result after 1,800 epochs from error function
imposing smoothing on middle layer.

preventing the network from rearranging time in the middle

layer as long as the second network returns time to the right

order for the output. As will be shown in the next section, if

we regularize the middle layer by penalizing large differences

between adjacent middle node values, we obtain much better

predictions with only a time reversal symmetry (reflection)

left.

IV. RESULTS WITH REGULARIZED MIDDLE

LAYER

In order to eliminate the the possible period 2 permuta-

tions of the nodes, we add to the mean squared error loss

function a penalty term that minimizes the square of the

difference in values between adjacent nodes in the middle

layer. Specifically, the error function is now

error =

200
∑

n=0

(prediction(n)− exact(n))
2

+

199
∑

n=0

(middle(n)−middle(n+ 1))
2

(4)

where middle(n) is the value in the nth node in the middle

layer (the layer attempting to compute the half derivative).

This second term seeks to minimize the difference between

adjacent middle node values which will smooth the result.

Note that this does not require any knowledge of the half

derivative and does not use any such knowledge in the

training.

With the modified error function given by Equation 4,

the network predicts either the half derivative, or a simple

reflected symmetry of it. Typical validation result are illus-

trated in Figures 5 and 6. In both figures, the blue curve

is the original function, the purple curve is the exact first

derivative. The green curve is the half derivative computed

using Equation 2 and the orange curve represents the values

of the nodes along the hidden layer of the network. As is

clear, now the hidden layer produces a very good estimate

of the actual half derivative.

The plots presented are validation results, meaning that

the inputs and outputs were not part of the training data set.
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Fig. 6. Typical training result after 2,000 epochs from error function
imposing smoothing on middle layer.
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Fig. 7. After 2,000 epochs, convergence of middle layer to -1 times the
half derivative.

Also, we emphasize that the training data only included the

function and first derivatives (so for training data, only what

would correspond to the blue and purple curves), and not the

exact half derivative, the green curve.

Regularizing the middle layer by penalizing large value

changes between adjacent middle nodes eliminated many

of the permutation-type symmetries in the network; how-

ever, one still remained, which is multiplication of the half

derivative by -1. If half of the network computes -1 times the

half derivative, then the whole network will compute the full

derivative. So the network will often converge to -1 times the

half derivative, as is illustrated in Figure 7. In that figure the

predicted half derivative, the orange curve, is the negative of

the computed half derivative, which is the green curve.

Because we can compute the exact half derivative, we

can compare convergence of the predicted derivative to the

full derivative (what the model was trained on) as well

as how the middle layer converges to the half derivative.

Figure 8 illustrates how the accuracy of the half derivative

converges (left figure) and how the input/output training data

converges, meaning the full derivative versus the predicted

full derivative (right figure).

In the figure, the y-axis is the magnitude of the loss

function discussed above. The x-axis are the number of
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Fig. 8. Convergence of the half derivative (left) and full derivative
(right). The blue curves are for the training data, and the orange curves
are validation, i.e., untrained, pairs.
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Fig. 9. The x-axis is prediction error of half derivative after full training
(5,000 epochs) and the y-axis is the full derivative prediction error at
initialization of the training. If the inverse solutions are considered “good”
predictions, then the overall number of times a prediction is good is between
80-90%.

training epochs. Note that one epoch means an update of

the model with the use of the entire training data set.

Approximately 85-90% of training produces acceptable

results, so there is still a significant number of times where

the predicted half derivative is not very good. This is not too

surprising in some sense because we are obtaining answers

that are not directly trained. Figure 9 illustrates the final

error for the half derivative prediction versus initial error

computations for the full derivative, which can be obtained

during training. There are 100 data points, and the x-axis is

the final error for the half derivative, and the y-axis is the full

derivative prediction error at the initialization of the training.

For the half derivative, about 90% of the points are either

with 0 error or a very large error. The vertical set of large

error data points corresponds to the inverse solution, so

are considered good predictions. The data points in the

middle are bad predictions because they seem to bear no

resemblance to the half derivative. There are between 10

and 15 points in the middle zone, indicating an overall

prediction effectiveness of approximately 85-90%. A typical
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Fig. 10. Example of bad prediction. The prediction is still rather smooth and
looks like a function, but has almost no relationship with the half derivative.

“bad” prediction is illustrated in Figure 10.

For training expense, it would typically take approximately

100 minutes to reach 20,000 epochs on a MacBook Pro

(2017), 2.3GHz Dual-Core Intel Core i5, memory: 8GB 2133

MHz LPDDR3.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a novel use of a neural network

to train a network on easily computed data (first order

derivatives) to obtain a much more difficult to compute result

(the half derivative). The approach was to force a neural

network to have two identical halves. If the full network

is trained on the first derivative, then the information in

the layer between the identical halves should be the half

derivative.

The results are about 80-90% accuracy in producing good

half derivative predictions if we include the negative of the

half derivative as a good prediction. We emphasize that no

half derivative information is used in training.

This paper focuses only on a rather limited set of polyno-

mial inputs, which limits its generalizability. Future work

will focus on two areas. The first is training on a more

feature-rich set of input functions such as polynomials with

many zeros in the domain. This should ensure enough

richness in the training data to be able to allow the network to

predict half derivatives for a much broader set of functions.

The other focus point is on identifying if there is some

commonality among the bad predictions to possibly identify

if there is a feature of those functions that led to the bad

prediction.
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