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Abstract— Fractional-order differential equations are in-
creasingly being used to model systems in engineering for
purposes such as control and health-monitoring. Because of
the nature of a fractional derivative, mechanistically fractional
order dynamics will most naturally arise when there are non-
local features or processes in the dynamics. Even if there are no
non-local effects, however, when searching for an approximate
model for a very high order system, it is worth asking
whether a fractional-order model is better than an integer-order
model. This work is motivated by the challenges presented by
very large scale systems, which will be increasingly common
as integration of the control of formerly decoupled systems
occurs such as in cyber-physical systems. Because fractional-
order differential equations are more difficult to numerically
compute, justifying the use of a fractional-order model is a
balance between accuracy of the approximation and ease of
computation. This paper constructs large, random networks
and compares the accuracy of integer-order and fractional-
order models for their dynamics. The main result is that,
over the range of parameter values for the system considered,
fractional-order models generally provide a more accurate
approximation to the response of the system than integer order
models. To ensure a fair comparison, both the fractional-order
and integer-order models considered had two parameters.

I. INTRODUCTION

In [1] the author constructed a random scale-free network

of masses interconnected with springs and dampers and

observed that, when compared to exponential solutions, the

step response relationship between randomly selected nodes

sometimes had characteristics suggestive of fractional-order

systems. This paper extends those results by systematically

applying optimization techniques to identify the degree to

which integer-order or fractional-order models better approx-

imate the step response of systems of a similar nature. To

ensure a fair comparison, the optimization problem is over

two decision variables in each case.

While the networks constructed in this paper are made

up of springs and dampers, these are not necessarily only

mechanical elements. Specifically, for a control system, if

the distance between two agents is governed by a PD control

law, the dynamic relationship between the masses will be

equivalent to the mechanical components. As such, in this

paper while we nominally consider a mechanical system,

the results are motivated by, and apply to, a large class of

control systems as well.

Fractional calculus has a long history in mathematics and

a much shorter one in engineering. Of course the idea is that,
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Fig. 1. Example network.

given a function f (t) with integer-order derivatives

d f

dt
(t),

d2 f

dt2
(t),

d3 f

dt3
(t), etc.,

are there derivatives “in between” with real-valued orders,

e.g.,
d1/2 f

dt1/2
(t),

d1.2 f

dt1.2
(t), etc.?

There are, in fact, many different definitions of the frac-

tional derivative, many of which fundamentally are built

upon replacing factorial functions appearing in many integer-

order representations of the derivative with gamma functions.

Examples include the Riemann–Liouville, Caputo and the

Grünwald–Letnikov definitions and the interested reader is

referred to the references [2]–[5], for descriptions of each.

In this paper we avoid having to choose a particular defi-

nition of the fractional derivative because we focus directly

on the solution. The two-parameter Mittag-Leffler function

is a generalization of the exponential function and is defined

as [6]

Eα ,β (t) =
∞

∑
k=0

tk

Γ(αk+β )
, α,β > 0

and it is well known that

x(t) = tα Eα ,α+1 (atα)

is a solution to

dα x

dtα
(t)+ax(t) = 1, x(0) = 0.



We will see subsequently that the step response relationship

between randomly selected nodes in the network can look

like this function, thus motivating searching for the best α
and a values to approximate the step response.

The literature on fractional calculus is vast. The interested

reader is referred to several books overviewing the topic from

a mathematical perspective, such as [7]–[9]. Papers using

fractional calculus to model large-scale and infinite order

dynamics include, among others, [10]–[12]. Viscoelasticity

is an obvious application, and some references include [13],

[14], and some prior work by the authors using it in robotics

include [15]–[17]. Fractional-order control is one of the

more popular areas and two recommended references include

[18], [19]. Finally, an excellent review article illustrating the

extremely broad range of applications is [20].

The literature on integrated, large-scale and cyber-physical

systems is similarly extensive. Formation control and multi-

agent control of cyber-physical systems, of course, has a

vast literature and representative references include [21]–[37]

An important result from this work is that fractional-order

dynamics seem to be commonplace in large-scale systems,

and as integrated systems become larger and larger, such

models may become increasingly useful.

II. NETWORK MODEL AND NUMERICAL

EXPERIMENTS

In this paper we consider many networks of masses inter-

connected by springs and dampers and study their dynamic

response. We selected mass-spring-damper networks because

they are prototypical and often can be used for models of

swarms of robots, complicated mechanical structures, etc.

Specifically, they can model the proportional and derivative

terms in a PD control law controlling spacing between agents

in a formation control problem.

To construct a single network, we randomly1 construct

a networks with a size between 50 and 2050 masses. Each

mass is connected to some of the other masses with dampers

or springs. Which other masses they are connected to is

randomly selected with a bias toward connecting to masses

already connected to a large number of other masses. Also

whether the connecting element is a spring or damper is

randomly selected.

In detail, a single instance of the network was constructed

as follows.

1) Set the spring constant value, k.

2) Randomly select the number of masses, N (between

50 and 2050).

3) Randomly select the damping coefficient, b (between

2 and 5).

4) Randomly select the minimum connectivity, mincon,

for the masses in the system (between 1 and 3).

1All random selections in this paper are made using the Matlab rand()
function, meaning that the random variable is selected from a probability
distribution that is an approximately uniform distribution between the
minimum and maximum values.

5) Create a network with mincon masses, each of which

is connected to each of the other masses with both a

spring and damper.

6) Add N −mincon more masses one at a time by con-

necting it to mincon other masses as follows:

a) Randomly select an existing mass as a potential

target mass to connect.

b) Compute a threshold value equal to a random

number between 0 and 1 times the number of cur-

rently existing masses. If the potential target mass

is connected to more masses than the threshold,

then connect to it.

c) If the threshold connectivity is not met, then ran-

domly select another potential target and repeat.

d) The connecting element is randomly selected as

either a spring or damper.

An example network with N = 100 and mincon = 3 is

illustrated in Figure 1.

The dynamics of each node are such that each mass i has a

position, xi(t) and velocity ẋi(t), and its dynamics are given

by Newton’s law. For simplicity in this paper, we constrain

the dynamics to be one-dimensional, so that the equation of

motion for mass i is

ẍi(t) = ∑
m∈Ki

k (xm(t)− xi(t))+ ∑
m∈Bi

b(ẋm(t)− ẋi(t))

where Ki is the set of neighbors of mass i connected to

it with springs and Bi is the set of neighbors of mass i

connected to it with dampers and the value of the mass is 1.

The network is illustrated in the plane in Figure 1 for clarity

of presentation, but in fact the network dynamics are actually

one dimensional.

This results in a network that is approximately scale free

because a few of the masses are very highly connected to

many other masses; whereas, many of the masses are only

connected to a few other masses. In other words, the degree

distribution for the network is approximately described by a

power law: if P(k) is the fraction of masses connected to k

other masses, then P(k)∼ k−γ . We choose an approximately

scale free network because they are relatively common in

nature with some desirable attributes [38]. Whether there is a

specific connection to that feature of the network, as opposed

to simply being large-scale, is the subject of future research

efforts. The fact that the network illustrated in Figure 1 is

approximately scale free is illustrated in Figure 2.

Having constructed a network, a single experiment con-

sisted of:

1) Create the network according to the recipe previously

described.

2) Randomly select the input node. If the input node is

only connected to the rest of the network by dampers

and no springs, randomly select a different one.

3) Randomly select an output node that is different from

the input node.

4) Set all the initial conditions equal to zero, except for

the input node, i, where we set xi(0) = 1 and ẋi(0) = 0.

Keep the input node fixed throughout the experiment,
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Fig. 2. Number of agents versus degree of connectivity, illustrating that
the network is approximately scale free.

i.e., xi(t) = 1 and ẋi(t) = 0. The fact the input node

must be connected to the rest of the network with at

least one spring is because with this method of creating

the input, there is no force applied to the rest of the

network by the input without any springs.

5) Numerically solve the system of 2N differential differ-

ential equations. We used ode45() in Matlab with

RelTol = 1e-5 and AbsTol = 1e-8 for all cases in

this paper.

6) Use the optimization methods described in the next

section to determine the best fits to the solution of the

output node, xo(t), for a fractional-order model and for

an integer order model.

A typical response is illustrated in Figure 3 for a network

with N = 1235 masses, k = 5, b = 3.957, input node, i = 628

and output node, o= 1012. The range of the parameter values

described above (for N, b, t, etc.) were selected so that the

reciprocal of the natural frequency was approximately one

half of the time range considered. As described in the next

section, we then used two different optimization methods to

determine the best fit to this solution for an second-order

(integer) model and a fractional-order model.

III. OPTIMIZATION METHODS

For each experiment, we attempt to match solutions to

both the integer-order system, xn(t)

d2xn

dt2
(t)+2ζ ωn

dxn

dt
(t)+ω2

n xn(t) = 1

and the fractional-order system, x f (t)

dα x f

dtα
(t)+ax f (t) = 1

with zero initial conditions to the computed xo(t). Each

system has two parameters, (ζ ,ωn) for the integer-order

system and (α,a) for the fractional order system. Both of
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Fig. 3. Step response of selected output mass.

these have closed form solutions, which were used in the

optimization, specifically

xn(t) = 1− e−ζ ωnt
(

cos
(

ωn

√

1−ζ 2t
)

+ ζ/
√

1−ζ 2 sin
(

ωn

√

1−ζ 2t
))

if ζ < 1 and

xn(t)−1−
p2

p2 − p1
ep1t +

p1

p2 − p1
ep2t

when ζ ≥ 1 and p1 and p2 are the two real roots of p2 +
2ζ ωn p+ω2

n . For the fractional equation, the solution is given

by the Mittag-Leffler function

x f (t) = tα Eα ,α+1 (atα)

as described previously.

The solution for xo(t) is sampled at 100 points evenly

spaced in time, and the integer-order, xn(t), and fractional-

order, x f (t), solutions are evaluated at those same times. The

error in each case is the sum of the squares of the difference

between xo and the two models at the 100 points:

errorn =
100

∑
k=1

(xo(k∆t)− xn(k∆t))2

error f =
100

∑
k=1

(

xo(k∆t)− x f (k∆t)
)2
,

where ∆t = 1.5152.2

In order to ensure that our results are not an artifact of

any specific optimization method, we used two different

global nonlinear optimization methods to search for the best

matches for the fractional- and integer-order models. Both

methods balance local refinement with global searching by

maintaining a set of candidate solutions. The particle swam

2Note that this ∆t is NOT the time step used to compute the numerical
solution to the differential equations. That time step is adaptive and handled
automatically by ode45().
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Fig. 4. Dividing rectangles division of the search space.

method is easily implemented using a standard Matlab tool-

box and contains stochastic elements to the search; whereas,

dividing rectangles is a fully deterministic search method.

A. Particle Swam Method

We implement the standard Matlab particle swarm opti-

mization method with all parameter values set to the default

except the swarm size is set to 100. The method works

by generating initial values and velocities to each candidate

solution (“particle”). The error is computed for each particle

and the velocity for each particle is updated based upon

a combination of its previous velocity, the best solution

it has seen and the best solution a randomly selected set

of neighbors has seen. The position of each particle is

updated according to its velocity and the new errors are

computed. There are a variety of criteria to terminate the

algorithm including reaching a fixed number of iterations, the

relative change in the objective function over a set number

of iterations is no longer improving, etc.3

B. Dividing Rectangles

In contrast to the particle swarm method which includes

random elements in the velocity computation for each par-

ticle, the dividing rectangles method is completely deter-

ministic (see [39] for a comprehensive description). In the

method, the search space is divided into rectangles and the

error is computed at the center of each rectangle. At each

step, some of the rectangles are subdivided, and the error is

computed at the center of the smaller rectangles. The balance

between locally refining good solutions and maintaining a

global search is struck by plotting the error at the center

of each existing rectangle versus the size of each rectangle.

The rectangles that are subdivided are those along the lower

convex hull of this plot.

As a schematic example, Figure 4 shows the search space

divided into three different sized rectangles. The error is

computed at the center of each rectangle. A plot of the error

3https://www.mathworks.com/help/gads/particle-swarm-optimization-
algorithm.html
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Fig. 6. Dividing rectangles process: each blue dot is the center of a
rectangle.

versus rectangles size for six different sized rectangles is

illustrated in Figure 5. The lower convex hull is illustrated by

the red line. The rectangles corresponding to the points along

this convex hull are selected to be divided in the next step.

This provides a balance between refining the best solution

(on the lower left of the convex hull) with larger rectangles

containing a lot of unsearched space (upper right of convex

hull). This method continues for a fixed number of steps.

We used the algorithm implementation from [40]. For a

typical run, the process results searching for optimal values

as illustrated in Figure 6. Each blue dot is the center of a

rectangle. The search focusing on potential optimal values

is shown by the more densely spaced dots. In all the

experiments, for identifying the fractional-order parameters

the dividing rectangles was run for 200 iterations. For the

integer-order models it was run for 1000 iterations.

IV. RESULTS

For each of the spring constant values of k = 0.5,2,5,6,10

and 25 we constructed 50 networks using the method de-



fractional integer fractional
best best best

direct or swarm k (count) (count) (percent)

direct 0.5 9 33 21
swarm 0.5 16 26 38
direct 2.0 18 25 42
swarm 2.0 21 22 49
direct 5.0 26 16 62
swarm 5.0 31 11 74
direct 6.0 23 20 53
swarm 6.0 30 13 70
direct 10 27 12 69
swarm 10 29 10 74
direct 25 35 8 81
swarm 25 35 8 81

TABLE I

SUMMARY OF RESULTS.

scribed in Section II. Each of the 50 networks had a random

number of masses, a random damper constant b and a

random number of minimum connections. For each network,

a random input mass was selected and different random

output mass. The initial conditions for the input mass were

set to x(0) = 1 and ẋ(0) = 0, and the mass was held fixed

in that position. The 2N differential equations describing the

motion of the masses was solved for t = 0 to t = 150, which

was selected to give a couple of periods of oscillation for

the typical motions, or if there were no oscillations, for the

characteristic rise time of the system to be about half of that

time range. If the input mass that was selected happened to

be connected with the rest of the network with only dampers,

then no motion results, so in that case a different input mass

was randomly selected.

For each of the 50 networks, both the particle swarm

and the direct optimization methods were run to attempt

to identify the best pairs (ωn,ζ ) and (α,a) for the integer-

order and fractional-order cases, respectively. If any of the

identified parameter values was on the boundary of the search

region, the result was thrown out. Table I summarizes the

results. The last column shows the proportion of times the

fractional-order models provided a better model for each of

the various k values.

One conclusion that is evident from the table is the

fact that the proportion of cases where the fractional-order

model provides a better fit increases with k, as illustrated

in Figure 7. Why this is the case is not yet clear. A typical

response for k = 0.5 is illustrated in Figure 8 and for k = 25

is illustrated in Figure 9, so the fractional cases seems to

generally be better when the response is more oscillatory.

Over the range of parameter values studied, the fractional-

order model provided a more accurate model for the step

response than the integer-order model approximately 60%

of the time. Therefore, the attributes of the types of cases

for more general systems where a more accurate description

by using a fractional-order model rather than integer-order

is warranted.

Because the number of states was randomly set over a

fairly wide range, the time needed for the simulation and
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Fig. 7. Percentage of cases where the fractional-order model provides a
better fit as a function of k.
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optimizations varied quite a bit. Typically, it would take

approximately two minutes of wall clock time to construct

the network, solve the 2N differential equations, and identify

the optimal fractional-order parameters and integer-order

parameters using the particle swarm and dividing rectangles

methods. The platform was a 2020 Apple M1 (8 GHz

with 8 cores) and with 8GB RAM running Matlab R2022b.

Therefore, the entirety of the simulations reported in Table I

required approximately 9 hours of wall clock time to com-

plete.

V. CONCLUSIONS

This paper showed that fractional-order dynamics are

common in dynamic responses of the large scale systems

studied in this paper. The system was a network of masses

connected by springs and dampers, and the very high-order

response N ∼ 2000 appeared to be “normal” by cursory

visual inspection as a second-order step response, but was

often better matched with the solution to a fractional-order

system. The comparison was fair in the sense that both the

integer-order system and fractional-order system had two

variables over which the solutions were optimized.

In this paper the obviously conclusion, other than the

utility of fractional-order models, was that the fractional-

models were better for larger k values. Current research

efforts are directed towards a mechanistic explanation for

this as well as identifying other correlations between system

parameter values and fractional-order dynamics such as,

distance in the graph between the input and output nodes,

network size, connectivity as well as whether the scale free

nature of the network has any bearing on the existence of

fractional-order dynamics at all.
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