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In this talk we present a controllability test for systems which may have inputs which
are constrained to be non–negative. This problem has not been fully investigated, but
nonetheless is of great practical importance. Our result is based on a general result by
Sussmann [3], but is formulated in simpler terms and is easy to apply to engineering type
problems.
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Motivating Examples
Many control systems have inputs which must be positive.

Unilateral inputs are problematic for most controllability tests.

Previous results: Sussmann† and Lynch and Mason‡.
†Hector J. Sussmann. A general theorem on local controllability. Siam J.

Control and Optimization, 25(1):158–194, 1987.
‡K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability

and planning. International Journal of Robotics Research, to appear.
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In both the linear as well as the nonlinear context, controllability tests assume that
control inputs can be both positive and negative. This is usually implicitly assumed because
the test ultimately relies upon a set of vectors spanning a linear space. Unfortunately, in
the nonlinear context, the spanning requirement can not simply be changed to a positive
spanning or convex hull type requirement because Lie brackets can not simply reformulated
in such a manner.

As illustrated, at a minimum there are two important classes of examples where control
inputs are constrained to be non–negative: “thruster” type problems, and manipulation via
physical contact.
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Unilateral inputs may arise frequently in problems where there is
intermittent contact, such as robotic grasping or pushing problems.

Consider a simple two finger grasping problem:
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The authors have done previous work regarding controllability and trajectory generation
for so–called stratified systems. Such systems are characterized by their configuration space
containing submanifolds upon which the system is subjected to constraints which are not
present off of the submanifold.
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Problem formulation

• We consider problems of the form

ẋ = f(x) + hi(x)vi + gj(x)uj . (1)

• f(x) is the drift term.

• The vi are the unilateral inputs, i.e., vi ∈ [0, 1).

• The uj are regular inputs, i.e., uj ∈ (−1, 1).
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This slide mainly establishes notation. Also it illustrates the fact that we consider a very
general class of problems. We consider control systems vector fields with no inputs (the drift
term), vector fields with inputs restricted to be non–negative (the unilateral inputs) and
vector fields with regular inputs that can be both positive and negative.
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Our result is based upon a general result due to Sussmann.†

Vector Fields

{f, g1, . . . , gi}
ẋ = f(x) + gi(x)ui


Indeterminates {X0, X1, . . . , Xi}
Ṡ = S(X0 +Xiu

i)
-

?

“Lie group” Ŝ(X) ⊂ Ĝ(X)

?

“Input symmetries”
“Dilations”

?

Controllability�
Ev(·)Controllability

†Hector J. Sussmann. A general theorem on local controllability. Siam J.

Control and Optimization, 25(1):158–194, 1987.
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The general result in [3] is based upon associating with the vector fields in the original
expression for the control system to indeterminates. One would like to think of the control
system as a sort of “group action” on its state space. In order to make this rigorous, we
work with the free Lie algebra in the indeterminates. Along with the free Lie algebra, we
have, among other things,

• the free associative algebra generated by the indeterminates,

• formal power series in the indeterminates,

• the exponential map and its inverse, log,

• formal brackets,

• Lie series in the indeterminates,

• the group of exponential Lie series,

• the evaluation map,

• input symmetries, and

• dilations.

The main results in [3] are formulated in terms of tools from the left–hand (“Indeter-
minates”) column. The main result in this talk is formulated in terms of the vector fields
in the right–hand column, and this can be applied without knowledge of all the algebraic
machinery from the left–hand column.
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Good and Bad brackets

• Let δf , δhi and δgj denote the number of times that f , hi and
gj appear in a given bracket.

• We designate brackets as “good” or “bad” as follows:

– A bracket is “bad” if δgj is even for each j,
∑m
i=1 δ

hi 6= 1
and, in total, has an odd number of terms

– Otherwise a bracket is “good.”

• Examples:

f bad hi good

[·, ·] good [gk, [gj , hi]] good

[gj , [gj , f ]] bad [gj , [gj, gk]] good
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Anyone familiar with the “good” and “bad” bracket formulation for normal systems
with drift should find our definitions of good and bad brackets familiar. Essentially, we are
treating unilateral input like drift terms, except when there is only one unilateral input in a
bracket.
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The main result

Consider the control system described by Equation 1. As-
sume that the system satisfies the LARC and that there exist
coefficients λi and αj such that∑

i

λihi(x0) +
∑
j

αjgj(x0) = 0, (2)

where λi ∈ (0, 1) and αj ∈ R. Assume further that any bad
bracket can be written as a linear combination of brackets of
lower total degree.
Then the system is STLC at x0.
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An important point here is that we do not require that the unilateral inputs be spanned
by the normal inputs. What we require is that only one particular positive combination of
them can be expressed as a combination of the ordinary vector fields. Then, if all the bad
brackets can be expressed by lower order good brackets, then we have controllability.
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Idea of proof

• In the indeterminate formulation, the “bad” brackets are the
brackets that are fixed under the action of a group of input
symmetries. In our case, this group is generated by

– σi : {g1, . . . , gi, . . . , gm} 7→ {g1, . . . ,−gi, . . . , gm},

– πm ∈ Sn : gj 7→ gπn(j), and

– πn ∈ Sn : hj 7→ hπn(j).

• There is some flexibility in the notion of degree. In this case,
we use the dilation defined by

∆(ρ) : (X0, . . . , Xm+n) 7→ (3)

(ρX0, ρ
θX1, . . . , ρ

θXm, ρXm+1, . . . , ρXm+n).

Slide 7

The proof of the proposition is far too long to present in detail. Here we just highlight
two features of the proof, input symmetries and dilations.

The group of input symmetries act on the inputs in a manner that maps solutions to
solution. Examples of inputs given in [3] include: interchanging two inputs, multiplying an
input by −1 if its range of allowable values permits it, and time reversal. In our case, the
group of input symmetries is generated by the group of permutations acting on the set of
unilateral inputs, the group of permutations acting on the regular inputs, and the map that
takes a regular input to the same input with opposite sign. Time reversal is also an input
symmetry, but is implicitly incorporated into the result from [3] upon which we base our
proof.

We also are able to manipulate the notion of degree by using dilations. We consider the
dilation that assigns to each unilateral vector field a slightly higher degree than the drift
vector field and the normal inputs.

Finally, we note the requirement that a particular sum of the unilateral inputs can be
expressed as a sum of the regular inputs is equivalent to requiring that when a single unilat-
eral input appears in a bracket, then, under the action of the group of input symmetries, the
fixed element will contain the sum of the unilateral inputs. Since we assume that this sum
can be expressed by a sum of ordinary inputs, each of this type of bracket will automatically
be spanned by brackets of lower degree.

We note if there is more than one hi in a bracket, this will not hold because the action
of the symmetrization operator will not result in a sum of brackets that can be combined
together to contain one sum of all the unilateral inputs.
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Example

Consider a spherical rigid body with four “thrusters.”
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• Roll–Pitch–Yaw Euler angles
give:

ẋ = f(x) + hi(x)vi + gj(x)uj .

• Tedious calculations show

TxM = span {h1, h2, h3, g,

[g, h1], [g, h2], [h1, f ], [h2, f ],

[h3, f ], [g, h3], [[g, h1], f ],

[[g, h2], f ], [[g, h3], f ]} .
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Here we consider a simple example of a spherical rigid body with thrusters. If we
parameterize the configuration manifold with the x– y– and z–displacements of the center
of mass of the body as well as the “roll,” “pitch” and “yaw” Euler angles, we can write the
equations of motion in the form the we require.

It’s fairly straightforward to show that the collection of brackets listed span the phase
space for the system.
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• From the collection

{h1, h2, h3, g, [g, h1], [g, h2], [h1, f ], [h2, f ], [h3, f ],

[g, h3], [[g, h1], f ], [[g, h2], f ], [[g, h3], f ]} .

the highest order bracket has degree 3 + ε.

• Degree 1 “bad” brackets: f(x).

• Degree 2 brackets are automatically good.

• Degree 3 bad brackets: must have 0 or 2 g’s.

– If there are zero g’s, there must be one or more hi’s.

∗ One hi =⇒ not bad.
∗ Two or more hi’s, =⇒, degree ≥ 3 + ε.

– If there are two gi’s, there must be one hi or one f .

∗ One hi =⇒ not bad.
∗ One f : [g, f ](x) = 0 =⇒ annihilated.
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There are far too many details here to absorb in the talk, but it illustrates the type of
analysis necessary to determine controllability. Basically, we need to determine the maxi-
mum degree of brackets need to span the tangent space, and then make sure that all the
bad brackets of lower degree are killed off.
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Simulations/Intuition

• For the satellite,suppose we want a φ3 displacement.

φ̇3 =
1
5

([[g, h1], f ] + [[g, h2], f ]) = [[g, h1 + h2], f ].

• Expanding as flows:

g · (h1 + h2) · −g · −(h1 + h2) · f · (h1 + h2) · g · −(h1 + h2) · −g · −f.

• Problems: −(h1 + h2) and −f .

• But −(h1 + h2) = (h3 + h4).

• Also, [[g, h1 + h2], f ] = [−f, [g, (h1 + h2)]], so we have

g · (h1 + h2) · −g · (h3 + h4) · f · −f · g · (h1 + h2) · −g · (h3 + h4).
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This slide illustrates what is a fact for the satellite example, and what I suspect is possibly
a more general phenomenon. In fact, this may illustrate the original intuition behind the
Hermes conjecture [3].

In this, and the following slide, we will illustrate the controllability of the satellite ex-
ample by constructing control inputs which independently displace the satellite in each of
the 12 independent directions in its phase space. To do this, we utilize a simple adaptation
of the motion planning algorithm presented by Lafferriere and Sussmann in [1].

Since every bad bracket must be spanned by lower order good brackets, the only brackets
for which we need to construct inputs are the good brackets. A simplistic approach to the
motion planning problem would be to resolve a desired motion into a Lie bracket direction,
and then to “expand” the Lie bracket in terms of flows.

Now, if a Lie bracket containing either the drift term f or one or more of the unilateral
inputs hi is expanded in terms of its flows, there will be terms such as −f or −hi, which
are clearly problematic. It turns out, for the satellite example, that every good bracket can
be rearranged in a manner that eliminates this problem.

Such a rearrangement is accomplished via two primary mechanisms. One means is to
utilize the skew–symmetry of the Lie bracket to rearrange the flows so that the −f term is
first. Alternatively, a f and a −f flow can be arranged sequentially so that they effectively
cancel.
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Doing this for the satellite, we can generate motions in all 12 phase
space directions.
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This slide illustrates four of the 12 possible motions necessary to constructively show
controllability. In each case, the sequence of control inputs was determined in a manner
similar to that discussed on the previous slide.
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Conclusions and future work

• We have developed a controllability test for a fairly general
class of unilateral input control problems.

• Currently, the test is fairly restrictive. More work must be
done to generalize it.

• From an engineering standpoint, a more useful result would be
trajectory generation algorithms for such unilateral problems.
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