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Abstract—Differential equations with fractional-order deriva-
tives, e.g., the “one-half” derivative, have a long history in
mathematics, but have not yet attained mainstream use in
engineering and applied science. While applications do exist in
modeling specific phenomena such as visco-elasticity and other
types of difficult-to-model phenomena, and extensions to control
such as in fractional-order PID do exist, everyday use of fractional
order modeling is uncommon. A subset of complex systems called
Cyber-Physical Systems (CPS) is receiving much emphasis in
the research community. In this paper we show examples of
networked system models which exhibit fractional-order dynamic
responses. This suggests that fractional-order dynamics may be
prevalent in CPS and hence may be an important and useful
modeling tool in that area. We particularly focus on a scale free
networked system.

I. INTRODUCTION

This paper investigates fractional-order modeling for net-

worked Cyber-Physical Systems (CPS). We show that for

distinct types of linear systems with integer-order component

dynamics, the interaction among the components or network

effects lead to fractional-order dynamics. While it is the

subject of continued investigation, we believe that fractional-

order dynamics may be very common in formation control

of systems of mobile robots and other complex and cyber-

physical systems. The examples in this paper make it evident

that such effects may be commonplace, and hence if tractable-

sized models and accurate descriptions of system dynamics are

necessary, then fractional-order models and system identifica-

tion may be necessary in CPS.

Recognizing this fractional-order nature of the dynamics is

important for several reasons. First, it leads to a deeper under-

standing of the system and broadens the “toolbox” of control

possibilities for multi-robot systems. Second, it provides for

substantial model reduction and computational savings for

modeling and controlling the system. Third, when considering

loop shaping, large frequency ranges characterized by non-

integer order dynamics (non-integer magnitude slopes and

non-multiple of 90◦ phases) may need to be addressed by

fractional-order control methods.

Control of multi-robot systems is a well-studied area

in robotics and control with many significant contributions.

For example, see [16] (decentralized nearest-neighbor rules),

[27] (consensus problems), [12] (graph theory), [17] (poten-

tial functions and virtual leaders), [1] (behavior-based), [10]

(vision-based formation control) and survey papers [8], [24].

Some of the author’s prior work is directed toward exact model

reduction for symmetric systems [14], [21], [22].

Fractional calculus has a much longer history. As a math-

ematical subject, it naturally dates back to near the founda-

tions of calculus, and it has been used in engineering and

robotic applications for at least several decades. Books on

the mathematics and engineering applications include [2], [25]

and there are a number of review articles as well [18], [26].

One closely related study is [6], [7] which studied formation

control of fractional systems. While involving fractional-order

systems and formation control, that paper considered a differ-

ent problem in that the individual components are fractional in

nature; whereas, in this present paper, the fractional dynamics

arise from the structure of the interaction among the agents.

Other related studies include [28] (walking robots), [11], [29]

(flexible manipulators), [9] (time delays) and control using

fractional-order PID control [23], [29]. Studies in other areas

such as visco-elastic phenomena can be found in [15], [20].

The type of system considered in this paper is a scale-

free network of agents. Scale-free networks have the feature

that a relatively small number of nodes have a very high

degree (degree of connectivity to other notes) while most nodes

have a relatively small degree. Self-similarity is a common

characteristic of scale-free networks, and we will make use of

that fact in the subsequent analysis. The literature on scale-free

networks is vast, but notable papers include [3], [4] and the

book [5].

The rest of this paper is organized as follows. Section II

presents the network of agents used in this study and the

dynamics response of the system. Section III presents some

background material on fractional-order dynamics and shows

that our system is characterized by a fractional-order response.

Section IV presents another, non-random, network that can

formally be shown to have fractional-order dynamics, and

postulates that self-similarity may be the common element

present in fractional-order networked systems. Finally, Sec-

tion V presents conclusions and future work.

II. DYNAMICS OF A SCALE-FREE NETWORK EXAMPLE

In this section we present an example of a scale-free

network and study its dynamic response. We will show that

the response can be modeled by a fractional-order differential

equation and give a partial justification of why it may be

expected.



We consider a network of agents. Each agent is connected

to some of the other agents and the network is configured

initially with few agents all connected. As additional agents

are added, they preferentially connect to agents with a large

number of connect agents. Specifically we consider 200 agents.

Initially four agents are created and all four of the agents are

connected to the other three. Then 195 agents are added one

at a time. Each of these 195 agents are connected to three

other agents when they are added to the network, and they

are preferentially connected to agents with a large degree.

Specifically, we construct an adjacency matrix, A with a 1 in

the (n,m) position if agents n and m are connected. Because

we will model the interconnections as mechanical components,

we consider an undirected graph representation and hence A
is symmetric. Specifically, the following algorithm constructs

the adjacency matrix (octave syntax):

N = 200;

micon = 3;

A = zeros(N,N);

A(1:mincon+1,1:mincon+1) =...

ones(mincon+1,mincon+1)-eye(mincon+1);

for n=5:N

adj = sum(A’);

for i=1:mincon

flag = 0;

while(flag<1)

target = floor(rand()*(n-1))+1;

if(adj(target) > rand()*(n+mincon)...

&& target != n && A(target,n) != 1)

A(target,n) = 1;

A(n,target) = 1;

flag = 1;

end

end

end

end

A system created by this algorithm in one run is illustrated

in Figure 1.1 Note that the lower-numbered agents are near the

center and have a relatively large number of edges connected

to other agents. Because they were in the network during its

entire construction, they were more likely to be selected when

an added agent was connecting to the network. Obviously we

represent the system with a graph, where the nodes represent

individual agents and an edge between nodes represents con-

nectedness. This network is, at least approximately, scale-free.

Figure 2 is the plot of the degree of a node versus the number

of agents. A small number of agents have a very large degree

and many agents have a small degree and the relationship

between the number of agents and degree is approximately a

power law, indicated by the nearly straight line on the log-log

plot.

Now we consider the dynamics of the system. Motivated by

formation control, we will consider each agent to have a unit

1The illustrated graph was created using the gephi visualization package,
http://gephi.org.
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Fig. 2. Scale free network.

mass and one degree of freedom. Each edge in the network

will be randomly assigned either a spring or viscous dashpot

with equal probability (this assignment is not illustrated in the

graph in Figure 1). The equation of motion for agent i is

mẍi =
∑

j∈N

fi,j(xj , ẋj) (1)

where N represents the sets of neighbors of agent i,

fi,j(xj , ẋj) =

{

kxj , edge (i, j) is a spring

bẋj , edge (i, j) is a dashpot

where k = 1, b = 10 and m = 1. We assign zero initial

conditions to all agents except one agent (selected randomly),

where the one agent has an initial value of one and zero initial

velocity.

For the specific network in this example, agent 27 (colored

in blue in Figure 1) was randomly selected, so the dynamics

of the system are described by the set of 200 second-order

differential equations given in Equation 1 with xi = ẋi = 0
for all i except x27 = 1 and ẋ27 = 0. Thus, this is a type

of step response where agent 27 is the input. The response of

the system is illustrated in Figure 3. All 200 agent responses

are plotted with the thin lines. The thicker red and blue

lines are exponential and fractional-order solutions described

subsequently.

We emphasize that while the point of this paper is that

fractional-order dynamics are present in this problem and

therefore important to understand, it is not the case that the step

response with other nodes selected are necessarily fractional-

order in nature. The contribution of this paper is that fractional-

order dynamics are at least present in the problem and hence

important to bring forth as a design and analysis tool for such

problems, not that integer-order dynamics are not present or

should be disregarded. Indeed, integer-order dynamics may

even be predominant, but a full understanding of the problem

probably requires consideration of both fractional-order and

integer-order dynamics.



Fig. 1. Scale-free network.

III. DYNAMICS OF FRACTIONAL-ORDER SYSTEMS

In this section we show that the dynamic response of the

network is described well by a fractional-order differential

equation and put forth a plausible argument for why it makes

sense. First we need to review fractional-order calculus and

differential equations.

It is natural to ask, given a function, f(t) with a first

derivative, f (1)(t) and second derivative, f (2)(t), etc., whether

there are operators “in between” the integer order derivatives

such as

d
1

2

dt
1

2

f = f(
1

2 )

which generalizes the notion of an integer-order derivative. To

begin, consider f(t) = tk, and observe that

dn

dtn
tk =

k!

(k − n)!
tk−n (2)

when n is an integer. The most common generalization of the

factorial function is the gamma function defined by

Γ(α) =

∫ ∞

0

e−ttα−1dt,

and illustrated in Figure 4. Note that in the case where α
is an integer, this can be integrated by parts multiple times

to eliminate the t-term in the integrand and it is clear that

Γ(n) = (n− 1)! which are indicated by the × marks in

Figure 4. Replacing the factorials in Equation 2 with gamma
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Fig. 4. Gamma function (line) and the first several values of (n− 1)! (×).

functions gives

dα

dtα
tk =

Γ(k + 1)

Γ(k + 1− α)
tk−α,

and is illustrated in Figure 5 for several α ∈ [0, 1] for f(t) =
t2. The intermediate-order derivatives between 0 and 1 are

such that they provide an intuitively acceptable interpolation

between the two integer-order derivatives.

To extend this notion beyond simple polynomials, we use

Cauchy’s formula for repeated integration, which is given by

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

f (τn) dτndτn−1 · · · dτ1 =

1

(n− 1)!

∫ t

0

(t− τ)
n−1

f(τ)dτ, (3)

and is easily proven by induction. One interpretation of this

formula is that “integrating the function, f , n times” is given

by the single integral on the right-hand side of Equation 3. In

that expression, the number of integrations, n, only appears

in the factorial function and in the exponent in the integrand.
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Fig. 5. Fractional-order derivatives for f(t) = t2 for various orders between
0 and 1. Note that the zeroth derivative is the parabola, the first derivative the
expected straight line and the fractional derivatives between these two vary in
a reasonably expected manner.

Of these two, only the factorial function requires n to be an

integer. Hence, if we denote n such integrations by f−n(t),
we can write

f−α(t) =
1

Γ(α)

∫ t

0

(t− τ)
α
f(τ)dτ, (4)

which provides a means for fractional-order integration, from

which fractional-order derivatives immediately follow because

if we want, for example, the 3/4 derivative, we can integrate

1/4 times and then differentiate once.

It is worth emphasizing that, unlike integer-order deriva-

tives, fractional-order derivatives require more than local infor-

mation. In fact, it is apparent from the integral in the definition

in Equation 4, that all past values of a function enter into the

computation for the fractional derivative. This imposes some

significant computational cost on evaluating fractional-order

derivatives. It is worth noting, however, that for differential

equations most contexts implicitly assume analytic solutions,

which also effectively incorporate non-local information by

way of all the derivatives of the function under consideration.

Here we will take a standard linear control-theoretic ap-

proach and assume that all initial conditions are zero and

also that all the history for all signals for negative times are

zero as well. While closed-form solutions for fractional-order

differential equations do exist, we also must resort to numerical

approximations. To that end, if we consider the first and second

derivatives of a function to be defined as

df

dt
(t) = lim

∆t→0

f(t)− f(t−∆t)

∆t
d2f

dt2
(t) = lim

∆t→0

f(t)− 2f(t−∆t) + f(t− 2∆t)

(∆t)
2

or in general for an integer n

dnf

dtn
(t) = lim

∆t→0

∑

0≤m≤n(−1)m
(

n
m

)

f (t+ (n−m)∆t)

(∆t)
n ,



where the usual binomial coefficient is given by
(

n
m

)

=
n!

m! (n−m)!
,

which, consistent with what we have done so far is easily

generalized to non-integers by gamma functions
(

α
m

)

=
Γ(α+ 1)

Γ(m+ 1)Γ (α−m+ 1)
.

Using this we arrive at the Grünwald - Letnikov derivative:

dαf

dtα
(t) = lim

∆t→0

1

(∆t)α

∞
∑

j=0

(−1)
j

(

α
j

)

f (t+ (α− j)∆t) ,

which, similar to Equation 4 includes all past values of f(t).
If ∆t ≪ 1 and t = m∆t, then the time shift by α is small

and if all the initial conditions are zero, then we have

dαf

dtα
(t) ≈ 1

(∆t)
α

m
∑

j=0

(−1)
j

(

α
j

)

f (t− j∆t) ,

which is a useful approximation to solve fractional-order

differential equations.

For example, for

dαx

dtα
(t) + 2x(t) = 1 (5)

substituting the finite-difference approximation from the

Grünwald - Letnikov definition and letting t = m∆t, then

dαx

dtα
(m∆t) + 2x(m∆t) = 1

is approximated by

1

(∆t)
α

m
∑

j=0

(−1)
j

(

α
j

)

x ((m− j)∆t) + 2x(m∆t) = 1.

Solving for x(m∆t) gives

x(m∆t) ≈
1− 1

(∆t)α
∑m

j=1 (−1)
j

(

α
j

)

x ((m− j)∆t)

2 + 1
(∆t)α

. (6)

Solutions for various α ∈ [0.25, 2.0] are illustrated in Figure 6.

When α = 1 and 2 we observe the expected exponential and

harmonic solutions, respectively. Intermediate values for the

order of the derivative produce reasonably intuitive intermedi-

ate responses.

Octave code computing these solutions is:

for alpha = [1/3 2/3 1 4/3 5/3 2]

x = 0;

coefs = 0;

coefs(1) = -bincoeff(alpha,1);

for i = 2:length(t)

sum = dot(fliplr(x),coefs);

x(i) = (1 - sum/(dtˆalpha))/...

(2 + 1/dtˆalpha);

coefs(i) = (-1)ˆi*bincoeff(alpha,i);

end
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Fig. 6. Solution to Equation 5 using Equation 6.

end

Observe that the step response for fractional-order systems

with orders between zero and one initially increase faster

than first order, but then qualitatively turn more sharply and

have a slower tail of convergence to the steady-state solution.

Referring back to the scale-free networks response in Figure 3,

we can observe a similar phenomena. A first-order exponential

solution that, by eye, matches the general response of the

system fairly well has the same relationship to the system

response: initially the system response rises faster, and then

crosses the first-order solution and converges to the steady-

state solution more slowly. This suggests that a fractional-order

model may provide a good reduced-order representation.

Indeed, if we numerically compute the solution to

d0.8x

dt
4

5

(t) + 0.075x = 0.075

with all initial conditions zero for t ≤ 0, we obtain the blue

step response plotted in Figure 3. Clearly, this matches the

dynamic response of the system better than the first-order

exponential response. We emphasis that for neither case, the

first-order exponential nor the fractional-order solution, did

we utilize an optimized system identification procedure, but

rather did the matching “by hand”, so better matches may

exist. However, in the case of the first-order response, because

the system solutions cross the exponential (twice in fact), it is

not possible to match the curve with any solution of the form

1 − exp(−αt) regardless of the system identification method

used.

IV. DYNAMICS OF A SELF-SIMILAR NETWORK

In this section we summarize some prior work which

indicates that fractional-order dynamics must be present in a

type of self-similar network, and because such self-similarity

is present in scale-free networks, the presence of fractional-

order dynamics is not surprising. Much of this is a summary

from [13] which was motivated by [19], [20].

Consider the system illustrated in Figure 7, which is a fleet

of robots arranged in a tree network where in each generation

every robot is connected with three other robots, one from
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Fig. 7. Structure of robotic formation.

the previous generation and two in the subsequent generation.

Going to the subsequent generation, one of the robots is

connected via a spring and the other by a damper.

In the case where there is an infinite number of generations,

this system is self-similar. Consider the transfer function from

the input robot, x1 to the last generation, xlast and consider

also the transfer function from any other robot, say one in

the second generation, to the last robot. In the limit of an

infinite number of generations, these transfer functions are

equal, which leads to a recursive definition of the transfer

function, which leads to a repeated fraction representation,

which ultimately leads to the transfer function relating the

spacing between the first and last generations to the difference

in force applied to the first and last robots:

X1(s)−Xlast(s)

F (s)
=

(

1√
kb

)

1√
s
.

The
√
s term in the denominator of the transfer function

obviously corresponds to a 1/2-order derivative in the time

domain, which is robustly present in the actual system. Even

for a relatively small number of generations, such as 6 or 7, the

Bode plot for the system is characterized by a wide frequency

band with a magnitude plot with slope −10 db/decade and a

phase of −45◦, corresponding to such a half-order derivative.

Also numerically the step response almost exactly matches a

half-order step response.

The reason to expect fractional-order dynamics in a generic

scale-free network follows similar reasoning. Scale invariance

is a generic property of self-similar networks. For example,

if we select two nodes in the network at random, they will

likely be connected nodes with a higher degree and nodes

with a lower degree. Because the distribution of degree in a

scale-free network follows a power law distribution, at least

statistically, the relative degree of the neighbors of randomly

selected nodes will be characterized by that power law. As

such, at least relatively, the recursive structure of the transfer

function between elements in our fixed network in Figure 7

will likely also be present in the randomly-generated scale-

free network, and hence similar fractional-order dynamics are

not unexpected.

V. CONCLUSIONS AND FUTURE WORK

This paper constructed a scale-free network of mechanical

agents and studied the dynamic response of the system. By

choosing an agent at random, the dynamic response of the

rest of the network was computed and it was observed that

the nature of the solutions were such that fractional-order

dynamics were present. Specifically, by tuning a fractional-

order step response by hand, it was determined that the order of

the response was approximately, 4/5, i.e., the dynamics were

a solution to a differential equation that had a derivative of

4/5 order. This was not unexpected, because prior work had

indicated that self-similarity was at the core of the analysis

indicating that another system was characterized by fractional-

order dynamics, and scale-free networks are similarly charac-

terized by self-similarity.

Future work involves several related lines of work. First,

using formal system identification methods we may say pre-

cisely in what manner the first-order exponential solution is

the best fit we can find and thus characterize in a quantifiable

way the degree to which is does not model the system well.

Correspondingly, using a fractional-order identification method

we can also find the best fractional-order model for the system.

Also, the big open question is the second line of inquiry:

to what degree can it be stated with certainty that scale-free

networks exhibit fractional-order dynamics and we can be be

guaranteed to observe them, and importantly the converse,

when will the dynamics be guaranteed to be integer order. The

latter question is particularly important with respect to being

able to designing controllers for networked systems of agents.
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