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Abstract: The paper addresses dynamic and control issues related to a
dynamical model called the classical shimmying wheel. The classical shim-
mying wheel models the rolling dynamics of many physical rolling systems
such as aircraft nose wheels, motorcycles, automotive systems and tractor{
trailer systems. Such system can exhibit undesirable unstable rolling motion,
i.e. shimmying, which can often lead to disastrous results.

Prior work with this particular model has focused on the stability of
the system as well as an analysis of the qualitative nature of its dynamics,
including numerical observation of possible chaotic behavior. Such behavior
is observed when the rolling element is allowed to slip under certain condi-
tions, which is intended to realistically model real physical rolling systems.
In cases where the rolling dynamics of the system are unstable, the dynam-
ics are characterized by the presenece of an attractor wherein the system
repeatedly switches back and forth between rolling and slipping. We present
a slightly di�erent, but more realistic, condition for the rolling element to
switch from pure rolling to a slipping state and observe similar behavior.

Additionally, we present a controller for the system designed using the
method of feedback linearization. This controller stabilizes the purely rolling
system but fails to always stabilize the system which is allowed to slip. We
investigate the conditions under which the controller stabilizes the slipping
system and propose an e�ective alternative control strategy for the slipping
system for the case when the original controller fails to stabilize the system
and where the uncontrolled rolling system is unstable. Finally, we investigate
the stability of the system about operating points which are not equilibrium
points, which models a physical system executing a turn.

Keywords: nonlinear control, nonholonomic systems, shimmy, hybrid
systems.



1 INTRODUCTION

Mechanical systems which contain rolling elements are naturally modeled
as nonholonomic mechanical systems. However, the \rolling without slip-
ping" assumption is clearly an approximation and is not valid, for example,
for elastic rolling contact above a certain speed (see e.g., (Pacejka, 1988)).
Additionally, for real physical rolling systems, the rolling without slipping
constraint is imposed by friction. However, since a friction force has a lim-
ited magnitude, if the nonholonomic constraint force exceeds that limit, the
real rolling system will transition from a rolling state to a skidding state.
We will refer to this more realistic situation as the \skidding system," but
we emphasize that such a system can also exhibit pure rolling behavior, i.e.,
the system may alternatively transition from rolling to skidding, and vice{
versa. It will skid only if the nonholonomic constraint force exceeds that
which can be supplied by friction. We will refer to the system that can not
skid as the purely rolling system or the nonholonomic system. Throughout
this paper we will use the terms \slip" and \skid" interchangeably. In both
cases, to slip or skid means that the relative velocity between the point of
contact of the wheel and the surface on which it is rolling is not zero. We
use the term \slip" because of its use in the common phrase \rolling without
slipping" in the nonholonomic literature, and the term \skid" because of its
common use in vehicle dynamics.

One particular model, we will refer to as the classical shimmying wheel,
is the focus of this paper. Unstable rolling is obviously a very important
phenomenon in vehicle dynamics, a�ecting many system from aircraft nose
wheels, truck trailers and motorcycle front wheels to the ubiquitous shim-
mying shopping cart wheel. Although, for pneumatic tires in particular,
more sophisticated models now exist, see, e.g., (N�imark and Fufaiv, 1972)
and (B�ohm and Kollatz, 1989), the simpler model we consider still describes
the complicated dynamics of a shimmying system, and gives a tractable
topological and geometric structure of the dynamics. In the case where the
system is allowed to skid, (St�ep�an, 1991) observed numerical experimental
evidence of chaotic behavior and presented an approximate one dimensional
map explaining the chaotic and transient chaotic motions. As we will illus-
trate, certainly the complicated qualitative nature of the dynamics is not
lost by restricting our attention to the simpli�ed wheel model.

One conclusion of this paper is a negative answer to the following ques-
tion: if a nonholonomic system is in some sense \stable," (possibly stabilized
by a controller) is the same also true for the more realistic system which is
allowed also to slip or skid? This question is particularly important in the



context of control theory, since if it is true, then one can design a stabilizing
controller for the nonholonomic system (which may be an easier task than
for a skidding system involving kinetic Coulomb friction since it has a lower
dimensional state space), and be assured that it also stabilizes the skidding
system. In this paper we present an example of one system for which this
is not true. We design a controller for the nonholonomic system and then
demonstrate that it is not stabilizing for the more realistic model where the
constraints are imposed by Coulomb friction.

Since the controller designed for the nonholonomic system does not al-
ways stabilize the skidding system, it is necessary to resort to alternative
means to stabilize the skidding system. One possible means of stabilizing the
system would be to utilize the existence of the attractor observed in (St�ep�an,
1991). A strategy which does this would be to allow the controller to at-
tempt to stabilize the system only when it is rolling. When the system is
skidding, the dissipative nature of the skidding will drive the system to the
attractor, which is characterized by frequent switching between rolling and
skidding, and vice{versa. We will demonstrate that this approach is very
e�ective.

Finally, since the controller designed renders the pure rolling system
fully controllable, we investigate the stability of the system about operating
points which are not equilibrium points. Such situations are intended to
model a real physical system, such as a motorcycle, executing a turn, rather
than rolling along a straight line. We simulate the system transitioning
between the equilibrium operating point (rolling straight ahead) and a non{
equilibrium operating point (turning), and compare the performance of our
controller with that of a linear controller.

In Section 2, we present the model under consideration, the equations
of motion, and present and review the qualitative nature of the dynamics.
In Section 3, we review the notion of feedback linearization and construct
a controller for this system using that technique. In Section 4 we present
simulation results for the system with the controller for both the nonholo-
nomic system as well as the skidding system. Finally, in Section 5 we present
simulations results for the turning system.

2 THE DYNAMICS OF THE CLASSICAL SHIM-

MYING WHEEL

In this section, we describe the model and its dynamics. A schematic draw-
ing of the model is shown in Figure 1. The rotational angle of the wheel



with radius r is given by �. The caster length, or the o�set of the axis of
the wheel with respect to the vertical center of rotation of the wheel (the
kingpin) is l, and the angle of rotation of the wheel assembly with respect
to the \straight" position is given by �. We will consider the kingpin to be
massless. Call the mass of the connecting assembly mc and the mass of the
wheel mw. For the control problem, we will consider the control input to be
a torque, u, about the vertical center of rotation of the wheel assembly.

In this study, the simplest possible mechanical model is considered, with
the lowest number of degrees of freedom which still exhibits the shimmying
instability. This goal of simplicity perhaps makes the model less similar to
a particular example, e.g., less like an automobile suspension. On the other
hand, reducing the problem to the simplest possible model serves a two{fold
purpose. First, the problem becomes tractable, allowing the geometry of
the dynamics to be explored. Second, by considering the simplest possible
model, we hope to reduce the rather general phenomena, present in many
di�erent applications, to its essential elements.

The main simpli�cation of this model is that the elastic nature of the
system is modeled by springs; whereas, the more sophisticated models men-
tioned previously directly attempt to model the in�nite dimensional elastic
nature of pneumatic tires, or possibly reduce the problem to a �nite dimen-
sional representation by only considering the lower order modes (Sharp and
Jones, 1980). However, there are some cases where our simpli�ed model
may be a more accurate model than the more complicated ones. For exam-
ple, on an aircraft with a relatively tall landing gear structure, the elastic
e�ect of the tire may be small relative to the lateral elastic properties of
the landing gear strut. Another case is whenever there is a small contact
region, or if the wheel is rigid (as in a shopping cart). Regardless, here we
model the elastic element by two springs, each with spring constant k

2 . The
kingpin is constrained to deect laterally (so it can not deect \forwards
and backwards", but only \side to side"), and the amount of deection is
represented by the variable y.

We consider the system to be moving with a constant velocity, v. This
assumption further reduces the dimension of the phase space, thus helping
to further simplify the problem. Such an assumption is justi�ed in cases
where the body is massive relative to the mass of the wheel and the asso-
ciated structure (as in an airplane), or where some external control keeps
the overall structure moving with constant velocity (such as a truck trailer
or shopping cart). Finally, we note that many structures such as an aircraft
landing gear system or automobile suspension also include signi�cant ver-
tical elastic elements, e.g., the shock absorbers. Clearly, a model including



these elements would be more realistic and could possibly alter the dynam-
ics of the system. However, since the simpler, planar model we consider
exhibits the phenomenon we wish to control, we will restrict our attention
to the simpler model for the reasons set forth above.

2.1 Dynamics of the Pure Rolling System

The equations of motion for this system with the ideal nonholonomic con-
straining forces and control input u are given by:
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A complete study of the dynamics of this system is presented by (St�ep�an,
1991). In particular, it was shown that the linearized stability of the system
about the � = 0 and y = 0 position was governed by the following condition:

l

r
>

r
3mw

2mc

(2)

If the above condition is satis�ed, the equilibrium point is asymptotically
stable, and the equilibrium point is unstable otherwise. Additionally, it was
shown, that when the above local stability condition is satis�ed, an unsta-
ble limit cycle exists around the stable stationary motion. This stability
condition does not contain the velocity term, which may seem to contra-
dict intuition because in vehicle dynamics, the notion of a \critical speed"
is often utilized. However, in the case presented here, equation 2 does not
contain a velocity term because we have not included viscous damping in
the equations of motion.

If we set the control input to zero, we can numerically verify and observe
the above results. For mc = 1:5kg, mw = 2:75kg, l = 0:2m, r = 0:1m, k =
75N=m and v = 1m=s, the value of the critical caster length is lcr � 0:1658m,



so the length of the caster is greater than the critical length, and so the
equilibrium solution is stable. Figures 2 and 3 show this stabile equilibrium
solution. For a decreased caster length, l = 0:152m < lcr, Figures 4 and 5
show the local instability of the equilibrium solution. This unstable solution
appears to be growing unbounded in all variables except �, which is bounded
by ��

2 .
The previous simulations verify that with certain parameter values, the

equilibrium point can be locally unstable. Next, we numerically verify that
even if the equilibrium point is locally stable, there exists an unstable limit
cycle around it. Figure 6 shows two solutions, with initial conditions which
are \close" together, one of which is stable, the other of which is unstable.
The �rst solution has initial conditions leading inside the limit cycle, and
the second solution has initial conditions leading outside the limit cycle.
In this simulation, we use the same physical parameters for the system
as for the simulation demonstrating the local stability of the equilibrium
solution, except l = 0:171m > lcr, which still satis�es the local stability
condition expressed by equation 2. In both cases, the initial conditions are
all zero, except for the solution leading inside the limit cycle, the initial
angle is �0 = �0:24 and the initial angular velocity is _�0 = 0:4s�1. For the
solution leading outside the limit cycle, �0 = �0:24 and _�0 = 0s�1. See the
bifurcation analysis in (St�ep�an, 1991) for more details.

2.2 Dynamics of the Skidding System

In order to properly model a skidding system, we must �rst address the
manner in which we model frictional e�ects. This is a di�cult issue because
a general theory for frictional phenomena does not exist. See, for exam-
ple, (Bidwell, 1962), (Stanton, 1923), (Blau, 1996) and (Gemant, 1950).
Although not explicitly recognized, for the rolling system in the previous
section, we have made the simplifying assumption of choosing not to in-
corporate rolling resistance into the model. For the skidding system, we
similarly simplify the complicated frictional e�ects. The previous references
provide empirical evidence that the coe�cient of friction for skidding systems
is dependent upon the skidding velocity. Indeed, as the skidding velocity
increases, the coe�cient of friction decreases. In our case, however, we will
choose to model the coe�cient of skidding friction as a constant by adopting
the standard Coulomb friction model.

We will assume that the dynamics of the system switch from a pure
rolling system to a skidding system if the magnitude of the constraining



force exceeds that which can be applied by friction, i.e.,

kfck >

�
1

2
mc +mw

�
g�s; (3)

where �s is the coe�cient of static friction and fc is the nonholonomic
constraint force.

We will assume that the dynamics of the system switch from skidding
to pure rolling if the absolute value of the relative velocity of the point of
contact of the wheel and the surface is less than some small, speci�ed value.
In all the simulation results presented, we take this value to be 0:02 m/s.
This assumption furthers two purposes. First, since the coe�cient of friction
increases as relative velocity decreases, then modeling the switch to rolling
when the relative velocity becomes \small" rather than zero may capture
some of this e�ect in the model. Secondly, since the relative skidding velocity
determines the direction in which the frictional force acts, as the relative
velocity becomes very small, it will be numerically di�cult to accurately
resolve the direction in which the force acts. For a more complete exposition,
see the treatment for the so{called \stick slip" phenomena in (Gemant,
1950).

We have given the equations of motion for the purely rolling system in
equation 1. The equations of motion for the skidding system are:
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where vpx and vpy represent the two components of the velocity of the point
of contact of the wheel relative to the surface and are functions of the vari-
ables �; _�; _y and _�, and �d is the coe�cient of dynamic (skidding) friction.

Clearly, for this system, the phase space is six{dimensional, and the
dynamics of the system when it is allowed to switch between rolling and
skidding will switch back and forth between a four{dimensional phase space
(the rolling, nonholonomic system) and the six{dimensional system given in



equation 4. Given the strong nonlinearities present in the system, which are,
in fact, discontinuous when the system switches between the four and six{
dimensional dynamics, highly nonlinear and possibly even chaotic behavior
is not unexpected.

The topology of the phase space of this system is fully discussed by
(St�ep�an, 1991). Briey, in the case of pure rolling, in the (�; _�; y) phase
plane, there is a strongly attractive stable two{dimensional center manifold.
This center manifold is readily observed in the simulations presented in
Figures 3 and 6.

The rolling without slipping requirement, given by the nonholonomic
constraint, de�nes a four{dimensional submanifold of the six{dimensional
phase space upon which the system is purely rolling. The fact that the
constraints de�ne a submanifold of the phase space is easily veri�ed using
the preimage theorem. In this four{dimensional submanifold, equation 3 de-
termines the regions where the constraint forces exceed in magnitude that
which can be supplied by friction. For the system to switch from skidding to
rolling, the solution must intersect the four{dimensional \rolling" submani-
fold of the six{dimensional phase space in a region where the nonholonomic
constraint for is less than the maximum friction force. The system will then
evolve on the four{dimensional \rolling" submanifold until the solution en-
ters a \skidding" region de�ned by equation 3.

In the following simulations, fc in equation 3 is evaluated using the
Lagrange multipliers which were the by{product of the original derivation
of the equations of motion and is a function of the physical parameters and
the coordinates (�; _�; y). This may lead to results which are slightly di�erent
than in (St�ep�an, 1991), which used an approximation of equation 3. If we
denote the Lagrange multipliers by �1 and �2, then the level set

fc =
q
�21 + �22 =

�
1

2
mc +mw

�
g�s

describes the set of points in the phase space where the nonholonomic con-
straint force equals the maximum friction force. Figure 7 shows the top
and bottom \halves" of this level set for the physical parameter values
mc = 1:5kg, mw = 2:75kg, l = 0:2m, r = 0:1m, k = 75N=m; v = 1m=s
and �s = 0:05.

We note that typically in of our simulations, jyj < 0:01, so the level
surface is approximated well by its geometry at y = 0. This level curve is
illustrated in Figure 8. In (St�ep�an, 1991), this level curve was approximated
by two planes. It is evident from the �gure and the similarity of our results
with (St�ep�an, 1991) approximation is valid for the cases we are considering



in this paper. A more global investigation, including possible ways to exploit
the geometry of the system illustrated in Figure 7 for control purposes will
be the subject of a future publication.

A simulation with the same parameter values as in the �rst simulation
where the equilibrium point is locally stable, and with a coe�cient of static
(pure rolling) friction, �s = 0:18 and a coe�cient of dynamic (sliding or
skidding) friction of �d = 0:09 is shown in Figure 9. Figure 10 shows an
enlarged portion of the trajectory. In this simulation, all the physical param-
eters are the same as in the previous simulations, except l = 0:171m > lcr.
However, the initial conditions for this simulation were taken to be outside
the unstable limit cycle.

We note that if we carefully observe Figure 10, there appears to be a com-
plicated periodic orbit involving multiple switches between the rolling and
skidding dynamics. As mentioned previously, prior investigation in (St�ep�an,
1991) suggests that this system is chaotic. Our investigation suggests the
possibility that chaotic motion may result from repeated \bifurcations" in
the number of switches between rolling and skidding. While this issue is cer-
tainly intriguing, we defer a full investigation of a complete investigation of
the dynamics since the primary focus of this paper is controlling this compli-
cated dynamic phenomenon. What we emphasize, however, is the existence
of attractive dynamics. In (St�ep�an, 1991), numerical evidence of a chaotic
attractor was presented. Similarly, here we observe that the dynamics of
the system are attracted to an alternative rolling and slipping regime. The
reason for this is intuitively obvious: the skidding dynamics are dissipative,
which is inherent in the Coulomb friction model, which naturally drives the
system to the rolling dynamics. Alternatively, unstable rolling dynamics
will cause the system to eventually switch to skidding since the constraint
forces will eventually exceed the Coulomb static friction limit. This will
result in the system alternatively switching back and forth between rolling
and skidding, as illustrated in Figures 9 and 10.

3 FEEDBACK LINEARIZATION OF THE CLAS-

SIC SHIMMYING WHEEL MODEL

In this section we review the subject of control via feedback linearization
and apply the technique to the shimmying wheel model.



3.1 Review of Feedback Linearization

Here we briey summarize the concept of feedback linearization. A complete
description can be found in (Isidori, 1989), (Nijmeijer and der Schaft, 1990)
and (Hauser et al., 1992) and related work in di�erential atness can be
found in (Fliess et al., 1992) and (van Nieuwstadt et al., 1998). Although
these two concepts are related, and in some cases essentially equivalent,
they are in some sense philosophically di�erent. The basic idea in feedback
linearization is to �nd a (generally non{linear) change of coordinates which
transforms the system into one which is linear and controllable. On the
other hand, in atness the focus is more on generating feasible trajectories.
For a complete comparison, see (van Nieuwstadt and Murray, 1996). Since
we are primarily concerned with stabilizing the the shimmying, we adopt
the feedback linearization framework.

Consider the single input, u, single output, y, control system:

�0 =

�
_x = f(x) + g(x)u
y = h(x);

where h is called the output function, u is the control input and dim(x) = n.
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If the relative degree of the control system is equal to its dimension,
i.e., r = n, at all points x, then the system is said to be full state feedback

linearizable, and we can employ the following change of coordinates:
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f h 6= 0 8x, we can de�ne
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1
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so that _�n = �.
In this manner, the nonlinear control system �0 has been transformed

into a linear system (a chain of integrators), which is in controllable canonical
form. Then, we simply use standard linear theory to design the transformed
control, �.

Since this system is linear and controllable, it is also stabilizable. We
can also specify an arbitrary trajectory by specifying the value of h along
it. If hd(x(t)) is the desired \trajectory," we can choose

� = h
(n)
d + �n�1(h

(n�1)
d � �n) + � � �+ �0(hd � �1);

where the �i are chosen so that sn + �n�1s
n�1 + � � � + �1s+ �0 is a stable

Hurwitz polynomial. Arbitrary trajectories may or may not be possible,
depending upon the form of the output function, h(x) because the feasible
trajectories must be compatible with that function.

We note that there are alternative formulations to the feedback lineariza-
tion problem and refer the reader to (Nijmeijer and der Schaft, 1990) for
more details. Clearly, the most di�cult aspect of the problem as we have
presented it is determining the output function h(x) which satis�es the re-
quirements of the partial di�erential equations appearing in the de�nition
of relative degree.

3.2 Full State Feedback Linearization of the ShimmyingWheel

The main di�culty in applying the feedback linearization method to a given
problem is determining the output function. In the case of the classical
shimmying wheel (the purely rolling case), we have

x = (�; _�; y)T

f(x) + g(x)u = ( _�; ��; _y)T

where _y; _� and �� are given by equation 1. The control input vector �eld,
g(x) is simply the terms in �� which contain the control input term, u and
the drift vector �eld f(x) is the remaining terms. Both of these vector �elds
can easily be identi�ed from equation 1:
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Rather than attempt to solve the partial di�erential equations de�ned
in the de�nition of relative degree, in this case, we can adopt a more ad hoc

approach. In order to determine an output function, note that if we take
h1(x) = y,

Lgh1 = 0

Lfh1 = l _� cos � + (v + l _� sin �) tan �

LgLfh1 6= 0:

Since LgLfh1 6= 0, h1 is not an output function which renders the system
feedback linearizable. Note, however, that if another output function, h2(x)
were purely a function of �, we would have

Lfh2 =
dh2
d�

_�

since the � component of f is simply _�. Since Lfh1 is linear in _�, and
otherwise only a function of �, we can di�erentiate it with respect to _�,
integrate it with respect to �, and subtract the result from h1. If we denote
the resulting function by h, we have

h(�; _�; y) = �y + log
cos( �2 ) + sin( �2 )

cos( �2 )� sin( �2 )
: (5)

In this manner, we have e�ectively cancelled all the terms in Lfh which
would lead to non{zero terms in LgLfh, because the only non{zero compo-
nent of g is the _� component, and we have cancelled the _� functionality of
Lfh by our construction.



Also note that

LgL
2
fh =

24v

l2 (16mc + 18mw) + 3mwr2 + (�2l2 (4mc + 9mw) + 3mwr2) cos(2�)

which is clearly globally non{zero for non{zero v. Whether such a construc-
tion is possible for general nonholonimc systems is certainly an intriguing
question, but one which we will defer until a later investigation.

4 CONTROLLER SIMULATIONS

In this section, we numerically implement the controller designed in Section 3
on both the purely rolling system as well as the system which is allowed to
slip or skid.

4.1 The Purely Rolling System

Here we implement the controller on the purely rolling system. In the �rst
simulation we take the physical parameters to be the same as for the sim-
ulation shown in Figure 6 and the initial conditions to be \outside" the
unstable limit cycle, so that without the controller the system would be
unstable. These are the same initial conditions which lead to the unstable
solution illustrated in Figure 6. Figure 11 illustrate the expected asymptotic
stability.

Next, we verify that the controller stabilizes the system when the physical
parameters do not satisfy the stability criterion for local stability of the
equilibrium solution. In this case, we take l = 0:152 < lcr and the initial
conditions (�; _�; y) = (�0:75; 0; 0). The result appears in Figure 12.

4.2 The Skidding System

In this section, we attempt to use our controller to control the more realistic
system which will skid if the nonholonomic constraint force exceeds the
maximum friction force. Recall that in the uncontrolled case the dynamics
of this system were characterized by (repeated) switches between rolling and
skidding.

4.2.1 The Obvious Approach

The obvious �rst attempt would be simply to use the same controller on
the skidding system, ignoring the fact that the skidding system is actually



di�erent. Figures 13 show the results from when we test the controller on the
system when it is allowed to skid. In this simulation the physical parameters
are mc = 1:5kg, mw = 5:75kg, l = 0:2m, r = 0:1m k = 75:0kg=m (which
makes the equilibrium solution locally unstable) and �s = 0:4 and �d = 0:2.
We take the initial conditions to be \way out" into the skidding regime:

(�; y; �; _�; _y; _�) = (�0:5; 0; 0; 0; 0; 0):

Note, however, for the same initial conditions, but for a smaller coe�-
cient of friction, �s = 0:1, and �d = 0:2, the controller fails to stabilize the
system. See Figure 14. Note that as � approaches �

2 , the controller becomes
unbounded.

These, and other, numerical experiments indicate that the controller is
stabilizing for a region of the phase space that gets larger as the coe�cient
of friction increases. The intuitive reason for this is obvious: the larger the
coe�cient of friction is, the \closer" the system is to that for which the
controller is actually designed.

4.2.2 An Alternative Approach

If we adopt a slightly di�erent approach, however, better results are ob-
tained. If the initial conditions for the system are in the slipping regime
and the parameter values for the system are such that an attractor exists,
the solution will approach the attractor. If we set the control input to zero
until the solution is near this attractor, indicated by a switch from slipping
to rolling, better results are obtained. Figure 15 shows the solution for a
system with the same physical parameters and same initial conditions as the
preceding (unstable) simulation.

At least with regard to numerical experimentation, this control strategy
seems globally (with respect to initial conditions in �) stabilizing. Figures 16
and 17 show the results when the initial conditions are

(�; y; �; _�; _y; _�) = (3:0; 0; 0; 0; 0; 0):

which is virtually completely backwards. Indeed, in over 5000 numerical
experiments, this control strategy stabilized the system every time, except
in the case where �s = �d, which, fortunately, is a physically unrealistic
situation.

4.3 Comparison with Simple Linear Controller

Here we briey compare the performance of the controller designed us-
ing feedback linearization with a simple controller based upon linearization



about an equilibrium point, i.e., standard linear controller design. Lineariz-
ing the system about the relative equilibrium � = y = 0 we obtain
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Using the standard pole placement technique, with poles at �2, �1:414�
1:414i, and mc = 1:5kg, mw = 2:75kg, l = 0:2m, r = 0:1m, v = 1:0m=s and
k = 75:0N=m, we obtain the control input

u = �0:156� � 0:025 _� + 1:59y:

While this controller, as expected, can stabilize the rolling motion for small
deviations from the relative equilibrium, it fails to do so su�ciently far
from the equilibrium. Figures 18 and 19 show the results for a system with
the same physical parameters and initial conditions as the simulation in
Figure 12, but where the linearized controller is used instead of the feedback
linearizing controller.

5 STABILIZATIONABOUTANON{ZERO EQUI-

LIBRIUM POINT

In this section we present simulation results which are intended to model
an attempt to stabilize the system about a point other than the equilibrium
point of the non-controlled system. Such a situation would occur, for exam-
ple, when a real rolling system makes a turn from a state in which it has
forward velocity. In order to retain the simplicity of the model, however,
we do not modify the model to directly model a turn. However, we recog-
nize that stabilizing the system about a non{zero equilibrium point roughly
corresponds to such a physical turning state because, in both cases if the
system is stabilized, there will be a non{zero lateral constraint force acting
on the wheel.

Note that when the system is turning (in the sense described above)
the desired equiliburim point is closer to the rolling/slipping boundary than
when operating in the equiliburim state � = 0 and y = 0. This is because,
in contrast to the � = 0 and y = 0 equilibrium state, there will be non{
zero constraint forces acting on the wheel. Thus, the turning problem is
distinct because the controller may have to switch on and o� many more
times, and, if the desired equilibrium point is outside the rolling regime, may



\chatter" on and o� while maintaining the maximum possible deection of
the y variable.

In the �rst simulation, the physical parameters mc = 1:5kg, mw =
2:75kg, l = 0:2m, r = 0:1m, k = 75:0N=m, �s = 0:2, �d = 0:1 and
v = 1:0m=s. The desired non{equilibrium point is (�; y) = (0; 0:25). If
the coe�cient of friction is reduced to �s = 0:1 and �d = 0:05, then the
desried equilibrium point is outside the rolling regime. Figure 21 shows the
chattering controller (the solid regions are the controller quickly switching
between zero and the value for the rolling system). Note that the controller
does not achieve the desired y = 0:25 since it is outside the rolling regime,
but maintains the system at the rolling/slipping margin.

6 CONCLUSIONS

In this paper, we have presented and illustrated a particular controller design
for the classical shimmying wheel. The controller is guaranteed to be globally
stabilizing for the wheel when it rolls without slipping, but sometimes fails
to stabilize the system when the wheel is allowed to slip. However, based
upon numerical simulations, the alternative control strategy seems e�ective
in stabilizing the slipping system. We also demonstrated the e�cacy of the
controller in stabilizing the system about nonequilibrium operating points.

One lesson of the investigation in this paper is that for controlled rolling
systems the assumption that the system is purely nonholonomic is a danger-
ous one. Indeed, we have demonstrated that a globally stabilizing controller
for a nonholonomic system can be destabilizing for the more realistic skidding
system. Thus, in cases where friction imposes the nonholonomic constraint,
claims of controlled stability for such systems are only valid to the extent
that the assumption regarding the nonholonomic constraint is accurate.

Of course, there are many more avenues available for further investi-
gation. Obviously, more work is required to determine the nature of the
attractor and its relationship to the purely rolling regimes where the con-
troller is guaranteed to stabilize the system. Another avenue of study would
be to study the e�cacy of the controller designed here on a more realistic
model of an elastic tire. Also, investigating the geometric nature of a more
realistic tire model, such as presented in (Barta and St�ep�an, 1995) may yield
insights into controller design for practical implementation. Finally, in this
paper we assumed that the system transitioned from skidding to rolling when
the relative velocity of the point of contact between the wheel and surface
became small, which is a rather crude approximation of reality. Unfortu-



nately, due to the inherent di�culty in modeling frictional phenomenon, a
more sophisticated model would have unnecessarily complicated the model
for purposes of this paper. However it would be interesting and useful, in
and of itself, to completely investigate this transition.

Finally, an extremely interesting problem is whether we can prove that
the alternative control strategy presented previously stabilizes the skidding
system. Recall that the alternative control strategy was to allow the system
to evolve in an uncontrolled manner until it switched once from skidding to
rolling, at which point the controller designed for the rolling system would
turned on.

If we were ablt to prove the existence of a attractor for given parameter
values and also prove that the intersection of the attractor and the four{
dimensional \rolling" submanifold of the phase space contains at least one
point which is on or in a level surface of a Lyapunov function, such as the one
presented earlier, and that the particular level set of the Lyapunov function
is completely within the rolling regime, so that it would be impossible for
the system to switch back to skidding, then stability for the slipping would
be proven.

Other related and interesting control issues could involve attempting to
directly control the attractor. This could involve controlling the rate of
convergence of a solution to the attractor as well as controlling the pos-
sible chaotic behavior of the system within the attractor (which may be
accomplished using the so{called OGY method (Ott et al., 1990)). Con-
trolling the chaotic behavior within the attractor would be useful if only
a small portion of the intersection of the chaotic attractor with the four{
dimensional \rolling" submanifold led to stable results. Directly attempting
to control the skidding system, and switching controllers between the rolling
and skidding systems depending upon in which regime the system is would
be another fruitful avenue of investigation. In this paper we have relied
on the dissipative nature of the skidding system to drive it to the attractor
wherein it will switch between rolling and skidding. Eliminating the reliance
on friction and directly controlling the skidding system would likely improve
the performance of the controller.
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Figure 2. Locally stable rolling system.
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Figure 3. Locally stable rolling system.
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Figure 4. Locally unstable rolling system.
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Figure 5. Locally unstable rolling system.
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Figure 6. Unstable limit cycle.
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Figure 9. Rolling and skidding system.
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Figure 10. Rolling and skidding system.



0 2 4 6 8 10

−0.2

−0.1

0

t [s]

y [m]

[rad]θ

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

t [s]

u
[N m].

Figure 11. Controlled rolling system.
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Figure 12. Controlled rolling system (l = 0:152 < lcr, un-
stable case).
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Figure 13. Controlled skidding system.
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Figure 14. Controlled skidding system.
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Figure 15. Controlled skidding system: Alternative control
strategy.
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Figure 16. Controlled skidding system: Alternative control
strategy.
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Figure 17. Controlled skidding system: Alternative control
strategy.
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Figure 18. Simple pole placement controller.
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Figure 20. Controlled turning system: Feedback lineariza-
tion controller.
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Figure 21. Controlled turning system: Small coe�cient of
friction.


