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Abstract

Many interesting and important control systems evolve on stratified configuration

spaces. Roughly speaking, a configuration manifold is called ”stratified” if it con-

tains subspaces (submanifolds) upon which the system had different equations of

motion. Robotic systems, in particular, are of this nature. For example, a legged

robot has discontinuous equations of motion near points in the configuration space

where each of its “feet” comes into contact with the ground. In such a case, when

the system moves from one submanifold to another, the equations of motion change

in a non-smooth, or even discontinuous manner. In such cases, traditional nonlinear

control methodologies are inapplicable because they generally rely upon some form

of differentiation. Yet, it is precisely the discontinuous nature of such systems that

is often their most important characteristic.

This dissertation presents methods which consider the intrinsic physical geo-

metric structure present in such problems to address nonlinear controllability and

motion planning for stratified systems. For both problems, by exploiting this ge-

ometric structure of stratified systems, we can extend standard nonlinear control

results and methodologies to the stratified case. A related problem addressed by this

dissertation is that of controllability of systems where some control inputs are con-

strained to be non–negative. This problem arises in stratified systems which arise

by way of physical contact because the normal force between contacting systems

must be nonnegative. For all the results, a basic goal is to generate results which

are general. For example, for robotics applications, these results are independent of

a particular robot’s number of legs, fingers or morphology.
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Chapter 1

Introduction

Many interesting and important control systems are characterized by the fact that

the equations of motion describing the system are discontinuous. Such discontin-

uous equations of motion may arise in several ways. An important subset of such

problems arises when constraints on the system are intermittent. Robotic systems

are a common example of such systems, and, in fact, were the original motivation for

this work. When a legged robot walks about, its “feet” cyclically make and break

contact with the ground. While foot is in contact with the ground, the robot’s mo-

tion will be constrained in some manner. Such constraints may be holonomic, for a

point–like foot, or nonholonomic for possible rolling type contact of a more extensive

foot. Regardless of the appropriate characterization of the type of constraint, the

intermittent nature of the constraints are manifested primarily by way of a discon-

tinuous change in the equations describing the motion of the robot. Another closely

related example is that of a robot hand grasping an object where the “fingers” of

the hand make and break contact while the robot manipulates the object.

As a concrete example, consider the miniature six–legged hexapod robot illus-

trated in Figure 1.1 (perhaps a future robot fabricated using MEMS fabrication

techniques). A schematic drawing of the hexapod is illustrated in the right figure

to illustrate the kinematics of the model. This model will be fully explored as a

recurring example throughout this dissertation. At this point, note that each leg

has only two degrees of freedom. In particular, the robot can only lift its legs up and



2

φh
1 1

2

4

6

5

3

2

3

4

6

1

5

φ

φ

φ

φ

2

1

1

1

(x, y) θ..
..

..

Figure 1.1. Simple hexapod robot.

down and move them forward and backward. Such limited control authority may be

desirable in practical situations because it decreases the mechanical complexity of

the robot; however, such decreased complexity comes at the cost of requiring more

sophisticated control theory. Note that for this model, it is not immediately clear

whether the robot can move “sideways,” and if it cannot move sideways, then it

is not controllable because it cannot move in an arbitrary direction. In this, and

other stratified cases, traditional nonlinear controllability analyses are inapplicable

because they rely upon differentiation in one form or another. Yet it is the dis-

continuous nature of such systems that is often their most important characteristic

because the system must cyclically move its feet in and out of contact with the

ground to be effectively controlled.

The fundamental approach of dissertation is to exploit the geometric structure

inherent in such systems. Roughly speaking, we will call a configuration manifold

stratified if it contains submanifolds upon which the system is subjected to addi-

tional constraints (in the legged robot example, these submanifolds correspond to

different feet contacting the ground). The two main topics addressed in this thesis

are controllability and motion planning.

This dissertation extends standard controllability tests for smooth driftless non-

linear systems (in particular, Chow’s Theorem and various formulations thereof) to

the case where the configuration manifold is stratified. We provide three alternative
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stratified controllability tests. The first test is based upon the distributions arising

from the vector fields in the equations of motion for the system on the different

strata. The second controllability test uses methods from exterior differential sys-

tems. This approach focuses on the constraint equations, rather than the equations

of motion. The third controllability test uses the special geometric structure of a

configuration manifold which is a principle fiber bundle. Although this structure

is somewhat special, it is a rather generic feature present in many robotic systems.

In this case, the configuration manifold can naturally be decomposed into a shape

space, describing the shape of the mechanism, and the group space, describing the

mechanism’s position and orientation in space. By splitting the configuration man-

ifold in this natural manner, it is possible to reformulate the first test (based on

distributions) in terms of curvature of connections, where a connection maps shape

changes to group changes. Additionally, we consider the issue of nonlinear gait con-

trollability for legged robots; particularly, whether or not a specified gait can allow

the robot to move in any direction.

The issue of controllability is important for two reasons. First, such controlla-

bility is a necessary condition for motion planning algorithms. Clearly, if the robot

cannot move in all directions, it is then impossible to specify an arbitrary path

for the robot to follow. Secondly, controllability is a useful design tool. Generally

speaking, for autonomous robots, and legged robots in particular, there is a trade

off between the complexity of the robot and the associated sophistication of the

controller. In other words, if the robot has many degrees of freedom, it is relatively

simple to devise a control strategy for it; conversely, if the robot has relatively few

degrees of freedom, a control strategy which exploits the particular geometry or

other nonlinear features of the robot is necessary.

Another subject of this dissertation is motion planning for stratified systems. In

particular, for legged robots, the motion planning problem is the problem of deter-

mining control inputs (i.e., mechanism joint variable trajectories) which will steer

the robot from a starting configuration to a desired final configuration. We present a

general motion planning scheme for a class of kinematic legged robots. The method
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is independent of the number of legs and other aspects of a robot’s morphology.

One important feature of this method is that it is distinct from “traditional” legged

locomotion control methods in that it is not based on foot placement concepts.

The final main topic in this dissertation is controllability for systems with some

inputs constrained to be nonnegative. For a particular subclass of stratified prob-

lems, it may be beneficial to consider the contact forces or velocities as inputs

rather than consider the problem in the stratified framework. This appears particu-

larly relevant in the area of nonprehensile manipulation, or pushing (Lynch (1996)).

Not considering this problem as stratified is beneficial for two reasons. First, if

the ultimate interest is in manipulating the object, only considering the contact

forces or velocities reduces the dimensionality of the problem. Secondly, and more

importantly, the most general controllability test for such systems is actually too

restrictive if considered as a stratified system and scales poorly with an increasing

number of strata.

Although there is no work directly analogous to the content of this dissertation,

there is quite a bit of related work. Brockett (1984) illustrated some of the aspects of

the problem of discontinuous or impacting systems, and there is quite a bit written

concerning so–called “hybrid systems,” (e.g., Branicky (1993), Branicky (1994),

Brockett (1993) and Brockett (1994)). However, none of these has exploited the

particular geometry of these systems to develop a controllability test or a motion

planning algorithm.

Additionally, there is a vast literature on the particular problem of legged robotic

locomotion. It is nearly universally true, however, that most legged robotics research

has focused on a particular morphology. The following list is just a representative

sample:

• Hopping Monopods: Raibert (1986), Berkemeier and Fearing (1992), Berke-

meier and Fearing (1994), Ostrowski and Burdick (1993) and Gokan, Yamafuji,

and Yoshinada (1994);

• Bipeds: Kajita and Tani (1991), Mulder, Shaw, and Wagner (1990), McGeer

(1993), Hodgins and Raibert (1991) and Alexander (1992);
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• Quadrapeds: Lee and Song (1991), Todd (1991), Shin and Streit (1993) and

Collins and Richmond (1994); or

• Hexapod: Song and Waldron (1989), Halme, Hartikainen, and Kärkkäinen

(1994), Pfeiffer, Eltze, and Weidemann (1995), Cruse, Bartling, Cymbalyuk,

Dean, and Deifert (1995), Beer, Chiel, Quinn, Espenschied, and Larsson (1992)

and Collins and Stewart (1993).

While it is true that many of the listed references are based upon general principles,

such as symmetry breaking bifurcations (Collins and Stewart (1993)) or conservation

of energy (Kajita and Tani (1991)), philosophically, none of the references attempt

general applicability, i.e., determining provable properties or algorithms which are

independent of morphology. In contrast to nonlinear control theory, the question of

controllability for legged robots apparently has not been previously considered.

Nonlinear control theory, on the other hand, is typically formulated in complete

generality. The starting point is simply a differential equation. See, for example,

Isidori (1989), Nijmeijer and der Schaft (1990), Sontag (1990). However, these

general nonlinear results require that the equations of motion be smooth. Some

recent works have started to uncover some of the fundamental structure specific to

locomotion mechanics and control. Kelly and Murray (1995) showed that a number

of kinematic locomotive systems can be modeled using connections on principal fiber

bundles. They also provide results on controllability, as well as an interpretation

of movement in terms of geometric phases. Ostrowski, Burdick, Murray, and Lewis

(1995) and Ostrowski (1995) developed analogous results for a class of dynamic

nonholonomic locomotion systems. Also, Krishnaprasad and Tsakiris (1994) have

used methods from nonlinear control theory to develop motion planning schemes for

“G”-snakes, a class of kinematic undulatory mechanisms. All of these approaches,

unfortunately, are limited to smooth systems, and thus are not directly applicable

to stratified systems.

For motion planning, the legged robotics research has, again, focused on a par-

ticular morphology (see the above–listed references), and additionally, has, for ex-

ample, presumed a collection of gaits which enable the robot to locomote as desired
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(Orin (1982)). For smooth nonlinear systems there are general motion planning

algorithms. For differentially flat systems, control and motion planning are trivial

because of a special relationship between the control inputs and the output function

(e.g., Fliess, Lévine, Martin, and Rouchon (1992) and van Nieuwstadt, Rathinam,

and Murray (1998)) Unfortunately, this structure is rather special. Another class

of systems are the so–called chained systems, which can be steered using sinusoidal

inputs (Murray and Sastry (1993) and Tilbury, Murray, and Sastry (1995)). Again,

this structure is somewhat special. The most general method for steering nonholo-

nomic systems is due to Lafferriere and Sussmann (1993). This method is the basis

of our work for two reasons. First, it is the most general method. Secondly, it uses

piecewise constant inputs, which has a direct appeal to stratified systems because

of the piecewise nature inherent in the equations of motion for the system. Closely

related to the piecewise constant inputs are “highly oscillatory inputs” (Sussmann

and Liu (1991a), Sussmann and Liu (1991b)).

Outline and Contributions of this Dissertation

The main contribution of this thesis is, for both controllability and motion planning,

the extension or modification of general results for smooth systems to stratified

system, in particular, legged robotic systems.

Chapter 2 presents background mathematical material which is primarily com-

prised of topics from differential geometry and algebra. One aspect of the chapter

which is new is the definition and geometric description of stratified configuration

spaces.

Chapter 3 presents the most basic nonlinear controllability result, Chow’s the-

orem, and two alternative formulations thereof. In particular, Chow’s theorem can

be restated in terms of tools from exterior differential systems and also in terms of

tools related to principal fiber bundles. These results provide the basis for the result

presented in Chapter 4. Additionally, stratified configuration spaces are topologi-

cally distinct from the standard smooth case. Therefore, a novel focus of a part of

this chapter is the impact of such topological concerns on the fundamental notion
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and definition of controllability for stratified systems. Also presented in this chapter

is the general motion planning algorithm which is the basis for the motion planning

results in Chapter 5.

Chapter 4 contains controllability results for stratified systems. The contribu-

tions in this chapter are several controllability tests; namely, a test based on dis-

tributions, a test using tools from exterior differential systems and a test using the

special geometry of principal fiber bundles. Each of these tests can be viewed as a

new extension of the corresponding smooth test to the stratified case. Additionally,

the definition of gait controllability and a related test are also new. The use of these

tests are illustrated using the example from Figure 1.1.

Chapter 5 contains a motion planning algorithm for stratified systems. The

contribution of this chapter is the extension of the motion planning method of

Lafferriere and Sussmann (1993) to the stratified case. The use of the algorithm

is illustrated using the example from Figure 1.1. Also in this chapter, a grasping

example illustrates the fact that even for completely controllable smooth systems,

directly exploiting any stratified structure in the system may yield efficiency gains

which make it easier for to satisfy stability or obstacle avoidance criteria.

Chapter 6 contains a controllability test for systems with unilateral inputs. The

test itself is new and is essentially a simpler reformulation of some results from

Sussmann (1987). The test is simpler because it is formulated in terms of vector

fields rather than a more difficult algebraic test.

Finally, Chapter 7 summarizes the results in this dissertation and provides details

of potentially fruitful future work.
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Chapter 2

Mathematical Preliminaries

This chapter reviews the mathematical concepts upon which our results are based

and presents some commentary to indicate the role or interpretation of particularly

important concepts. For the most part, the topics are presented in a manner most

consistent with establishing an intuitive understanding of the rest of this thesis.

This approach is usually consistent with the desire for rigor, but, unfortunately

does not lend itself to a basic, fully self–contained presentation. Because of this,

we frequently cite appropriate references to which the reader can turn for a more

complete explanation of the relevant concept.

Section 2.1 reviews some basic differential geometry. Some of the more basic

control results have a nice geometric interpretation and can be proved using ge-

ometric tools. In particular, Section 3.2 presents three alternative formulations

of controllability results. Correspondingly, three sections of this chapter present

the underlying mathematical tools: Section 2.1.1 presents some of the most basic

definitions from differential geometry, including vector fields, distributions and foli-

ations, Section 2.2.2 presents some concepts from exterior differential systems and

Section 2.1.2 presents the rather special geometry of principal fiber bundles. Sec-

tion 2.2 presents some algebra underlying the results of Chapter 5 and Chapter 6.

Finally, Section 2.3 defines a stratified control system in terms of the particular

geometry present in such systems.
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2.1 Differential Geometry

This section reviews some basic differential geometry that are most relevant to

this thesis. The reader should refer to Abraham, Marsden, and Ratiu (1988) and

Boothby (1986) for a complete treatment of this subject.

2.1.1 Vector Fields, Distributions and Foliations

This thesis is concerned with differential equations of the form

ẋ = f(x) +
m∑

i=1

gi(x)ui, (2.1)

defined on a smooth manifold M , where x ∈ M represents the state of the control

system, f(x) and gi(x) are vector fields on M and the ui are control inputs, which

belong to a set of admissible controls, ui ∈ U . The system in Equation 2.1 is called

driftless if f(x) is identically zero; otherwise, it is called a system with drift, and the

vector field f(x) is called the drift term.

On a fundamental level, one way to understand the control system expressed

in Equation 2.1 is to understand the geometry of the vector fields f(x) and gi(x).

Given a manifold M , denote the tangent bundle by TM . Define a vector field as

a section of the tangent bundle TM of M . This is a mapping X : M −→ TM ,

which assigns to each point in x ∈ M a vector v ∈ TxM . Let Xr(M) denote the

Cr vector fields on M , and let X(M) = X∞(M). Central to geometric nonlinear

control theory is the Lie bracket.

Definition 2.1: (Lie bracket) If g1, g2 ∈ Xr(M) and g1 has a flow φg1
t , the vector

field [g1, g2] ∈ Xr−1(M) defined by

[g1, g2] =
d

dt

∣∣∣∣
t=0

(φg1∗
t g2) =

d

dt

∣∣∣∣
t=0

((Tφg1
t )−1 ◦ g2 ◦ φg1

t )

is called the Lie bracket of g1 and g2. The flow, φg
t (x0) represents the solution of

the differential equation ẋ = g(x) at time t starting from x0. 2
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In coordinates, the Lie bracket between g1(x) and g2(x), is computed as

[g1(x), g2(x)] =
∂g2(x)

∂x
g1(x)− ∂g1(x)

∂x
g2(x)

and can be interpreted as the leading order term that results from the sequence of

flows

φ−g2
ε ◦ φ−g1

ε ◦ φg2
ε ◦ φg1

ε (x) = ε2[g1, g2](x) +O(ε3). (2.2)

Roughly speaking, then, one way to interpret a Lie bracket is that it is a “new

direction” in which the system can flow, by executing the sequence of flows in

Equation 2.2. An important relationship between flows of vector fields is given by

the Campbell–Baker–Hausdorff formula:

φg2
1 ◦ φg1

1 (x) = φ
g1+g2+ 1

2
[g1,g2]+ 1

12
([g1,[g1,g2]]−[g2,[g1,g2]])+···

1 (x) (2.3)

(a proof can be found in Varadarajan (1984)). Essentially, if given the composition

of multiple flows along multiple vector fields, this formula gives the one flow along

one vector field which results in the same net flow. This will play a central role in

the motion planning results in Section 3.4 and Chapter 5.

Lie brackets satisfy three important properties, namely,

1. Skew–symmetry: [g1, g2] = −[g2, g1],

2. Jacobi identity: [g1, [g2, g3]] + [g3, [g1, g2]] + [g2, [g3, g1]] = 0, and

3. Chain rule: [αg1, βg2] = αβ[g1, g2] + α(Lg1β)g2 − β(Lg2α)g1, where Lg1β and

Lg2α are the Lie derivatives (directional derivatives) of β and α along the

vector fields g1 and g2, respectively.

Note that the first two of these properties make the set of smooth vector fields

equipped with the Lie bracket a Lie algebra.

In control theory, the set of all possible directions in which the system can move,

or the set of all points the system can reach, is of obvious fundamental importance.
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Geometrically, this is related to distributions.

Definition 2.2: (Distribution) Let M be a manifold. A distribution assigns a

subspace of the tangent space to each point in M in a smooth way. A distribution

∆ is involutive if, for any two vector fields X,Y ∈ ∆, [X,Y ] ∈ ∆. A distribution

∆ is integrable if, for any x ∈M , there is a submanifold N ⊂M containing x such

that the tangent bundle, TN , is exactly ∆ restricted to N , i.e., TN = ∆|N . 2

It is natural to consider distributions generated by the vector fields appearing

in Equation 2.1. In this case, consider the distribution defined by

∆ = span{f, g1, . . . gm},

where the span is taken over the set of smooth real–valued functions. Denote by ∆

the involutive closure of the distribution ∆, which is the closure of ∆ under brack-

eting. Then, ∆ is the smallest subalgebra of X(M) which contains {f, g1, . . . , gm}.

We will often need to “add” distributions. Since distributions are, pointwise, vector

spaces, define the sum of two distributions,

(∆1 + ∆2)(x) = ∆1(x) + ∆2(x).

Similarly, define the intersection

(∆1 ∩∆2)(x) = ∆1(x) ∩∆2(x).

Similar addition and intersections follow for codistributions.

Frobenius’ theorem asserts that integrability and involutivity are equivalent.

Thus, associated with an involutive distribution is a partition of M into disjoint

connected immersed submanifolds called leaves. This partition is called a foliation.

In control theory, these leaves are related to the set of points that a control system

can reach starting from a given initial condition.

The motion planning results of Section 3.4 and Chapter 5 need a basis for the

Lie algebra generated by a set of vector fields. However, because of Jacobi’s identity
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and the fact that a Lie bracket is skew symmetric, it is not easy to select such a

basis. A Philip Hall basis is a particular way to select a basis.

Definition 2.3: (Philip Hall basis) Given a set of vector fields {g1, . . . , gm},

define the length of a Lie product as

l(gi) = 1 i = 1, . . . ,m

l([A,B]) = l(A) + l(B),

where A and B may be Lie products. A Philip Hall basis is an ordered set of Lie

products H = {Bi} satisfying:

1. gi ∈ H, i = 1, . . . ,m

2. If l(Bi) < l(Bj), then Bi < Bj

3. [Bi, Bj] ∈ H if and only if

(a) Bi, Bj ∈ H and Bi < Bj, and

(b) either Bj = gk for some k or Bj = [Bl, Br] with Bl, Br ∈ H and Bl ≤ Bi.

2

For a proof, see Serre (1992). Essentially, the ordering aspect of the Philip Hall basis

vectors accounts for skew symmetry and Jacobi’s identity to determine a basis.

2.1.2 Principal Fiber Bundles

The controllability results in Sections 3.2.3 and 4.2.3 are based on a particular ge-

ometry generic to locomotion systems. The object of ultimate interest is a principal

fiber bundle and its associated connection. There is quite a bit of general theory

associated with principal fiber bundles (Kobayashi and Nomizu (1963)); however,

this dissertation only requires particularly simple aspects of it. Illustrations of the

use of principal fiber bundles in control can be found in Kelly and Murray (1995),

which will be the basis for our results in Section 4.2.3. Use of the more general
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aspects of the theory is by Montgomery (1993) (for control theory) and by Bloch,

Krishnaprasad, Marsden, and Murray (1996) (for mechanics).

The central concept in this section is that of a Lie group. A partial explanation of

its significance is that it is almost universally true that the position and orientation

in space of a locomotion system can be represented by a Lie group. Most of the

definitions in this section are from Kelly and Murray (1995) or Marsden and Ratiu

(1994). Additionally, the reader is referred to Abraham and Marsden (1978), Olver

(1993) and Serre (1992) for a complete exposition on Lie groups.

Definition 2.4: (Lie group) A Lie group is a finite dimensional smooth manifold,

G, that is a group and for which the group operations of multiplication and inversion

are smooth. A Lie subgroup H of a Lie group G is a subgroup of G for which

the inclusion mapping i : H → G is an immersion, that is, i(H) is an immersed

submanifold of G. 2

Rigid body motion corresponds to translation by elements of the Lie group. For

every g ∈ G define the map Lg : G→ G : h 7→ gh, called left translation. Similarly,

define Rg : G → G : h 7→ hg, called right translation. Part of the definition of a

principal fiber bundle includes the notion of a left action.

Definition 2.5: (Left action of a group on a manifold) A left action of a Lie

group G on a manifold M is a smooth mapping Φ : G×M →M such that

1. Φ(e, x) = x ∀x ∈M ;

2. Φ(g2,Φ(g1, x)) = Φ(g2g1, x) for every g1, g2 ∈ G and x ∈M .

A left action Φ of G is called free if Φ(g, x) = x⇒ g = e for each x ∈M . 2

Together, a Lie group and left action define a principal fiber bundle.

Definition 2.6: (Globally trivial principal fiber bundle) Let M = B ×G, B

a manifold and G a Lie group. A globally trivial principal fiber bundle with total

space M , base space (or shape space) B, and the structure group, G, is the manifold

M together with a free left action of G on M given by left translation in the group

variable. 2
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As an aside, note that in the more general theory, the manifold M is only locally

trivial, and the base space B is a quotient manifold determined by identifying con-

figurations that differ only by rigid body displacements.

Many biological systems and biomimetic robots move about and reorient them-

selves by coupling a change in their shape to an external constraint. In such in-

stances, desired changes in spatial location directly result from changes in object

shape. If the relationship between such shape changes and resulting changes in

spatial location can be naturally expressed, the question of controllability can be

more efficiently addressed by studying that relationship, which is expressed as a

connection.

In order to define a connection, we need to consider properties of vector fields.

Of particular importance, are invariant vector fields. A vector field X on G is left

invariant if the vector field is invariant with respect to the push forward of left

translation, (Lg)∗X = X, that is,

ThLgX(h) = X(gh) for every h ∈ G. (2.4)

Denote the set of left invariant vector fields on G by XL. For each ξ ∈ TeG, define a

vector field Xξ on G by Xξ(g) = TeLgξ. It is easy to show that Xξ is left invariant

and that XL and TeG are isomorphic as vector spaces. Also note that defining a Lie

bracket in TeG by

[ξ, η] = [Xξ,Xη](e) for ξ, η ∈ TeG

makes TeG into a Lie algebra. The vector space TeG with this Lie algebra structure

is called the Lie algebra of G and is denoted by g. A Lie subalgebra, of g is a subspace

h ⊂ g such that ξ, η ∈ h⇒ [ξ, η] ∈ h.

Definition 2.7: (Exponential mapping) For every ξ ∈ TeG let φξ : R → G : t 7→

exp(tξ) denote the integral curve of Xξ passing through e at t = 0. The function

exp : TeG → G : ξ 7→ φξ(1) is called the exponential mapping of the Lie algebra of

G into G. 2
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The derivative of the exponential map is the infinitesimal generator. Let Φ be a

left action of G on a manifold M and ξ ∈ g. The infinitesimal generator of Φ

corresponding to ξ is the vector field on M defined by

ξM (x) =
d

dt
(Φ(exp(ξt), x))|t=0.

A connection one-form Γ on M = B×G is a g–valued one form on M satisfying

1. Γ(ξM ) = ξ for every ξ ∈ g;

2. Γ(TxΦgvx) = AdgΓ(vx) for every v ∈ TM .

The connection defines a splitting of the tangent space, TxM , into two comple-

mentary subspaces. The vertical subspace, VxM ⊂ TxM is

VxM = {vx ∈ TxM : vx = ξM (x) for some ξ ∈ g}. (2.5)

The horizontal subspace HxM of TxM is

HxM = {vx ∈ TxM : Γ(vx) = 0}.

In the types of systems considered in this dissertation, connections arise from the

constraints where the horizontal space is defined to be the the set of velocities

which satisfies the constraints on the system. In the more general theory from the

references (particularly Bloch, Krishnaprasad, Marsden, and Murray (1996)), this

is referred to as the kinematic case, and is one of several possible situations which

give rise to a connection. Nonholonomic constraints can be expressed as one–forms

(see Section 2.2). Just as the left action induced an action on tangent vectors

(Equation 2.4) it induces an action on one–forms via the pull back,

(Lg)∗ω(x)(v) = ω(Lgx)(TxLgv).

Group invariance of constraints now follows the same as for vector fields.
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The following result is important because it says that a kinematic system with

group invariant constraints defines a connection.

Lemma 2.8 If the constraints are group invariant and HxM ⊕ VxM = TxM , the

constraints define a connection on M .

For a proof, see Kobayashi and Nomizu (1963). Intuitively, it is natural to define

the horizontal subspace as any velocity vector that satisfies the constraints. Having

a sufficient number of constraints to render the system fully kinematic gives the

necessary splitting of the tangent space. The group invariance of the constraints

then allows one to define the vertical subspace as required by Equation 2.5.

It is natural to split any velocity vector into its horizontal and vertical compo-

nents. Denote the projections onto the horizontal and vertical subspaces by writing

vx = horxvx + verxvx, where

verxvx = (Γ(vx))M (x) and horxvx = vx − (Γ(vx))M (x).

For a trivial principal fiber bundle, the connection can always be written in local

coordinates x = (g, b) as

Γ(x)v = Adg(ξ + A(b)vb), (2.6)

where ξ ∈ g and A : TB → g. A is called the local connection one–form. Equa-

tion 2.6 follows because any velocity vector can be translated back to the identity

(in the group component) and the Adg pulls out via the second defining property of

a connection (called equivariance). The fact that A(b) is only a function of shape

variables also follows from equivariance. The significance of A(b) is that it maps

shape velocities into the corresponding rigid body velocities. The controllability

result in Sections 3.2.3 and 4.2.3 is actually formulated in terms of the derivative

of the local connection one form. The covariant exterior derivative of a Lie algebra

valued one form is defined by applying the ordinary exterior derivative (defined in
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Section 2.2), d to the horizontal parts of vectors:

DΓ(X,Y ) = dΓ(horX,horY ).

Finally, if X is a vector field on TB, the horizontal lift of X is

Xh(x) =

 X(b)

−gA(b) ·X(b)

 .

2.2 Algebra

The controllability results in Sections 3.2.2, 4.2.2 and 6.1 and the motion planning

results in Section 3.4 and Chapter 5 require some background algebra.

2.2.1 Basic Tensor Algebra

Let E be a vector space, and E∗ the dual space of E. A tensor, contravariant of

order r and covariant of order s, denoted by T r
s (E) is a r + s multilinear map from

E∗1 × · · · × E∗r × E1 × · · · × Es to R. To extend this to the tangent bundle, let

T r
s (M) = T r

s (TM) = ∪x∈MT r
s (TxM). Then a tensor field of type (r, s) is a smooth

section of T r
s (M).

Given two tensors, t1 ∈ T r1
s1

(E) and t2 ∈ T r2
s2

(E), define the tensor product of t1

and t2, t1 ⊗ t2, as

t1 ⊗ t2(α1, . . . , αr1 , β1, . . . , βr2 , a1, . . . , as1 , b1, . . . , bs2) =

t1(α1, . . . , αr1 , a1, . . . , as1)t2(β1, . . . , βr2 , b1, . . . , bs2),

where αi, βi ∈ E∗ and ai, bi ∈ E.

2.2.2 Exterior Differential Systems

The exterior algebra of a vector space, E (which can be extended to a bundle), is

concerned with a specific type of tensor; in particular, tensors of the type T 0
k (E)

which are completely skew symmetric. Given a product which preserves the skew
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symmetry, the collection of these tensors will then form an algebra, called the exte-

rior algebra.

Let Sk denote the permutation group on k elements. A transposition is a per-

mutation that swaps two elements. An even permutation can be written as the

composition of an even number of transpositions; correspondingly, an odd permu-

tation is the composition of an odd number of transpositions. Let sign(σ) = 1 if

σ ∈ Sk is even, and sign(σ) = −1 if σ is odd. An element of t ∈ T 0
k (E) is called

skew symmetric if

t(e1, . . . , ek) = (sign(σ))t
(
eσ(1), . . . , eσ(k)

)
,

for all e1, . . . , ek ∈ E and σ ∈ Sk. A tensor, t ∈ T 0
k (E) is an exterior k form if it is

skew symmetric.

In order to construct a product that preserves skew symmetry, define the alter-

nation mapping. The alternation mapping, A : T 0
k (E)→ T 0

k (E) is defined by

At(e1, . . . , ek) =
1
k!

∑
σ∈Sk

(sign(σ))t
(
eσ(1), . . . , eσ(k)

)
,

where the sum is over all k! elements of Sk. Define the wedge product, which takes

a k form α, and a l form β and returns a k + l form,

α ∧ β =
(k + l)!

k!l!
A(α⊗ β).

Let Ωk denote the set of smooth exterior k–forms on M, and let Ω be the algebra

of exterior differential forms on M , defined as the direct sum of Ωk, k = 0, 1, . . . .

Definition 2.9: (Exterior derivative) The exterior derivative is the unique map

d : Ωr → Ωr+1 which satisfies:

1. if f ∈ Ω0(M) = C∞(M) then df = ∂f
∂xi

dxi;

2. if θ ∈ Ωr, σ ∈ Ωs then d(θ ∧ σ) = dθ ∧ σ + (−1)rθ ∧ dσ;

3. d2 = 0.
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2

In controls, it is often convenient to work with the constraints on a system rather

than directly with the equations of motion. In particular, nonholonomic constraints

are conveniently expressed as one–forms, and their span generates a codistribution

on M . Let I be a codistribution on M spanned by a set of linearly independent

one–forms {ω1, . . . , ωm}. The exterior derivative induces a mapping

δ : I → Ω2(M)/I

δ : λ 7→ dλ mod I.

It follows from linearity that the kernel of δ is a codistribution on M . Call the

subspace I(1) the first derived system of I. This construction can be continued to

generate a nested sequence of codistributions

I = I(0) ⊃ I(1) ⊃ · · · ⊃ I(N). (2.7)

If the dimension of each I(i) is constant, then this construction terminates for some

finite integer N . Equation 2.7 defines the derived flag of I. In controls, this nested

sequence of codistributions plays a role analogous to constructing the involutive

closure of a distribution.

2.2.3 Lie Algebra of Indeterminates

While controllability results for driftless systems have a nice geometric interpre-

tation, the same is not true for general nonlinear systems. One approach, which

appears frequently in the work of Sussmann, (Sussmann (1986), Sussmann (1983),

Sussmann (1987) and Lafferriere and Sussmann (1993)), is associating with the

vector fields in the control system a set of indeterminates. Developing sufficient

algebraic structure for the indeterminates allows one to associate solutions of the

control system with solutions of a related differential equation involving the inde-
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terminates.

The majority of this section is from Sussmann (1987), Sussmann (1983) and

Lewis (1995). Other algebraic material is from Hungerford (1974) and Serre (1992).

The first task is to develop a Lie algebraic structure for indeterminates analogous

to that of vector fields. Let X = {X0, . . . ,Xm} be a finite sequence of indetermi-

nates. Let M be a smooth manifold. Consider the system

ẋ = f0(x) + gi(x)ui, x ∈M (2.8)

with a control constraint

u = (u1, . . . , um) ∈ K,

where f = (f0, g1 . . . , gm) is an m–tuple of smooth vector fields on M , and K ⊆ R
m

such that Aff(K) = R
m , where Aff(K) denotes the affine hull of K, i.e., the set

of all finite linear combinations
∑

αiu
i where

∑
αi = 1. Call the triple (M, f ,K)

the control system. Note that the control systems here are not limited to driftless

systems.

A magma is a set M with a map from M ×M → M . If X is a set, generate

the free magma on X as follows. Define X1 = X and inductively define Xn =∏
p+q=n Xp ×Xq for n ≥ 2. The free magma on X is the set

M(X) =
∞∏

n=1

Xn.

Define the free algebra associated with the set X, denoted A(X) which consists of

all finite linear combinations

∑
m∈M(X)

amm

where am ∈ R. Denote the homogeneous components of degree N of A(X) by

AN,hom(X).
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Let I be the two–sided ideal of A(X) generated by elements of the form a ·a and

a · (b · c) + c · (a · b) + b · (c · a) for a, b, c ∈ A(X). The free Lie algebra generated by

X is the quotient algebra L(X) = A(X)/I. The product on L(X) is denoted [·, ·],

and is called the bracket. The Lie algebra L(X) is spanned by the formal brackets

of X0, . . . ,Xm. Define Br(X) to be the smallest subset of L(X) that contains

X0, . . . ,Xm and is closed under bracketing. Elements of Br(X) are called brackets

of X. Similar to homogeneous components of A(X), the homogeneous components

of elements in L(X) are defined and denoted

LN,hom(X) = L(X) ∩AN,hom(X).

Let Â(X) denote the set of all formal power series
∑

I aIXI , where XI =

Xi1Xi2 · · ·Xik for the multi–index I = (i1, i2, . . . , ik) and let Â0(X) denote the

set of formal power series for which a∅ = 0. The exponential map is the well defined

bijection

exp : Â0(X)→ 1 + Â0(X)

whose inverse is denoted by log, both of which are defined by their usual series

definitions. In particular, define the formal exponential

φX
t (x) := exp(tX) = (I + tX +

t2

2
X2 + · · · ) =

∞∑
k=0

q

k!
Xktk (2.9)

and

log(1 + S) =
∞∑

k=1

(−1)k+1

k
Sk.

Note that one way to prove the Campbell–Baker–Hausdorff formula (Equation 2.3)

is to expand the product of two exponentials and equate terms in the resulting

formal power series. Note that for formal exponential calculations, composition is

from left to right; conversely, when composition flows of vector fields, composition
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is usually denoted from right to left. We use the “e” notation for the former and

“φ” notation for the latter.

Also, let L̂(X) ⊆ Â0(X) be the set of all formal sums
∑∞

N=1 SN such that each

SN is in LN,hom(X), i.e., the set of those elements of Â(X) whose homogeneous

components are Lie. Note that the exponential map is well defined on L̂(X). The

elements of Â(X) that are of the form exp(S) for some S ∈ L̂(X) are the exponential

Lie series in X0, . . . ,Xm. The set of all such series is denoted by Ĝ(X), which is a

group. The exponential map, restricted to L̂(X) is a bijection from L̂(X) to Ĝ(X).

Given this algebraic structure, the task now is to develop a differential equation

analogous to that of the control system. Consider the differential equation

Ṡ = S

(
X0 +

m∑
i=1

uiXi

)
(2.10)

for an Â(X)–valued function t → S(t), with the initial condition S(0) = 1. This

is the formal differential equation, solutions to which are related to solutions of the

differential equation describing the control system evolving on M . Sussmann (1983)

notes that the solution to this differential equation exists and is unique, and is given

by

S(t) =
∑

I

(∫ t

0
uI

)
XI (2.11)

where

∫ t

0
uI =

∫ t

0

∫ τk

0

∫ τk−1

0
· · ·
∫ τ2

0
uik(τk)uik−1

(τk−1) · · ·ui1(τ1)dτ1 · · · dτk.

To see this, note that S(t) is a solution of Equation 2.11 if and only if, for each I,

SI(0) = 1

ṠI(t) = SJ(t)ui(t)
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where I = J ∗ {i}, (where ∗ is concatenation). Then

SJ∗{i} =
∫ t

0
ui(τ)SJ(τ)dτ.

The series S(T (u(·))), with t→ S(t) as above is the formal power series associated

with the control u(·), and will be denoted by Ser(u(·)), where T (u(·)) is the terminal

time of u(·).

Let U be the set of all functions u(·) whose domain is a compact interval of the

form [0, T ] such that u(·) takes values in R
m and is Lebesgue integrable on [0, T ].

If K is an arbitrary subset of Rm , consider Um(K), the subsemigroup of Um whose

elements are the K–valued controls. The image of Um(K) under Ser will be denoted

by Ŝ(X,K).

Relationship between Formal Exponential Lie Series and Solutions of the

Control System

This section explores the relationship between solutions of Equation 2.10 (the differ-

ential equation on Â(X)) and solutions of Equation 2.8 (the control system expressed

as vector fields).

The basic mechanism by which indeterminates are related to vector fields is via

the evaluation map. Each gj and f is a member of D(M), the algebra of all partial

differential operators. Define the evaluation map obtained by “plugging in f for X0

and the gj for the Xj”

Ev(f) : A(X) → D(M) (2.12)

Ev(f)

(∑
I

aIXI

)
7→

∑
I

aIfI . (2.13)

Also, define the evaluation map at a point p

Evp(f)(S) = (Ev(f)(S))(p).

The evaluation map can be restricted to L(X). Denote the image Ev(f)(L(X)) by
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L(f).

A system satisfies the Lie algebra rank condition (“LARC”) if L(f)(p) = Tp(M).

Also note that, attempting to apply the evaluation maps to series in Â(X) raises

technical difficulties (because Â(X) contains infinite series), thus motivating the use

of the nilpotent approximation.

Now we can explicitly relate solutions of Equation 2.10 to solutions of Equa-

tion 2.8. Let π(f , u, t, x0) denote the trajectory of Equation 2.8 (vector field system)

corresponding to the control input u, starting at point x0. To make the equations

less cluttered, we will suppress the explicit dependence on f , u, and x0, and write

π(t).

Let φ ∈ C∞(M). Then d
dtφ(π(t)) is the Lie derivative of φ(π(t)) along the vector

field
∑m

i=0 ui(t)fi(π(t)). Therefore,

φ(π(t)) = φ(x0) +
m∑

i=0

∫ t

0
ui(s)(fiφ)(π(s))ds. (2.14)

From this, the Lie derivative of φ along fi is

(fiφ)(π(s)) = (fiφ)(x0) +
m∑

j=0

∫ s

0
uj(σ)(fifjφ)(π(σ))dσ. (2.15)

Therefore, substituting from Equation 2.15 into Equation 2.14,

φ(π(t)) = φ(x0) +
m∑

i=0

[∫ t

0
ui(s)ds

]
(fiφ)(x0)

+
∑
i,j

∫ t

0

∫ s

0
ui(s)uj(σ)(fifjφ)(π(σ))dσds.

Continuing this procedure,

(fifjφ)(π(σ)) = (fifjφ)(π(x0)) +
m∑

k=0

∫ σ

0
(fifjfkφ)(π(τ))dτ, (2.16)
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and substituting as before,

φ(π(t)) = φ(π(x0)) +
m∑

i=0

[∫ t

0
ui(s)ds

]
(fiφ)(π(x0))

+
m∑

i=0

m∑
j=0

[∫ t

0

∫ s

0
uj(σ)ui(s)

]
(fifjφ)(π(x0))

+
m∑

k=0

m∑
j=0

m∑
i=0

∫ t

0

∫ s

0

∫ σ

0
uk(τ)uj(σ)ui(s)(fifjfkφ)(π(τ))dτdσds.

Iterating this procedure yields

φ(π(t)) = Ev(f)(SerN (u(t))(φ(x0)) + RN (φ)(x0),

where the RN (φ)(x0) is the remainder term and the Ser term comes from the terms

in the square brackets.

Let πp(u(·)) be the point to which u(·) steers p. Proposition 4.1 of Sussmann

(1983) proves that the remainder term is appropriately bounded so that the series

Evp(f)(Ser(u(·)) gives an asymptotic expansion for πp(u(·)), in the sense that

‖φ(πp(u(·))) − Evp(f)(Serν(u(·)))φ‖ < βνT (u(·))ν+1,

for all ν and all controls u(·) such that T (u(·)) ≤ τν , (recall that T (u(·)) is the

terminal time of the control u(·)). Taking φ as the coordinate functions finally gives

the desired result.

Dilations and Input Symmetries

The two main concepts appearing in the general controllability theorems are dila-

tions and input symmetries. Basically, a dilation allows for scaling the input vector

fields. Input symmetries are in recognition of the fact that some control inputs can

be interchanged or reflected.

If V is a linear space over R, a group of dilations of V is a mapping ρ → ∆(ρ)

that assigns to every real ρ > 0 a linear endomorphism ∆(ρ) : V → V , in such a
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way that

1. ∆(1) = identity,

2. ∆(ρ1)∆(ρ2) = ∆(ρ1ρ2) ∀ρ1, ρ2,

3. V has a direct sum decomposition V = ⊕Vj such that the subspaces Vj are

invariant under the ∆(ρ), and the action of ∆(ρ) on each Vj is given by

multiplication by ραj for some αj ≥ 0.

The decomposition is unique if αj 6= αk whenever j 6= k. In that case, the Vj

are referred to as the homogeneous components of V with respect to ∆. Note that

any v ∈ V can be expressed in a unique way as a sum
∑

j vj , vj ∈ Vj. The ∆–degree

of v is the largest αj such that vj 6= 0. A group of dilations is called strict if it

has no component of degree zero. If ∆ is a strict group of dilation of L1,hom(x),

call ∆ as an admissible group of dilations. Say that ∆ is compatible with Ŝ(X,K)

if ∆(ρ) (X0 +
∑m

i=1 uiXi) is of the form T (X0 +
∑m

i=1 viXi) for some T > 0, where

(v1, . . . , vm) ∈ K, whenever 0 < ρ ≤ 1 and (u1, . . . , um) ∈ K. If Z ∈ L(X) is ∆–

homogeneous, Z is called ∆–neutralized for f at p if Evp(f)(Z) can be expressed as

a sum of vectors Evp(f)(Qi), where the Qi are elements of L(X) of lower ∆–degree

than Z.

The class of controls is embedded as a subsemigroup Ŝ(X,K) of the group

Ĝ(X) = {exp(Z) : Z ∈ L̂(X)}. An automorphism λ of L(X) gives rise to a mapping

λ̂, where, if Z =
∑∞

i=1 Pi, where Pi is homogeneous of degree i, then λ̂(Z) =∑∞
i=1 λ(Pi). Also, define λ# from Ĝ(X) to Ĝ(X) by letting λ#(exp(Z)) = exp(λ̂(Z))

for Z ∈ L̂(X). An input symmetry is an automorphism λ of L(X) such that the

corresponding map λ# maps Ŝ(X,K) to Ŝ(X,K). A linear map λ : L(X)→ L(X)

is graded if λ maps Lj,hom(X) into Lj,hom(X) for each j.

Finally, an element of L(X) is called totally odd if all its homogeneous compo-

nents have odd degree.
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2.3 Stratified Control Systems

This section defines a stratified configuration space and addresses the issue of ex-

istence and uniqueness of solutions of a differential equation defined on a stratified

configuration space.

2.3.1 Geometry of Stratified Systems

We will motivate our definition of a stratified configuration space with a simple

example.

Example 2.10: (Biped Robot) Consider a biped robot as shown in Figure 2.1.

The configuration manifold for the robot describes the spatial position and orien-

tation of a reference frame rigidly attached to the robot as well as variables such

as joint angles which describe its internal geometry. The robot’s motion will be

subjected to constraints if one or more of its feet is in contact with the ground. The

set of configurations corresponding to one of the feet in contact with the ground is

a codimension one submanifold of the configuration space. The same is true when

the other foot contacts the ground. The fact that these sets are submanifolds is

clearly the true, since the set of points corresponding to a foot in contact with the

ground can be described by the preimage of a function describing the foot’s height.

Similarly, when both feet are in contact with the ground, the system is on a codi-

mension 2 submanifold of the configuration space formed by the intersection of the

single contact submanifolds. The structure of the configuration manifold for such a

biped is abstractly illustrated in Figure 2.2. Our approach is to exploit this type of

geometric structure of such configuration spaces.

Also note that when a foot contacts the ground, the robot is subjected to addi-

tional constraints. In particular, the velocity of the foot relative to the ground must

be zero. Also, except for when the robot transitions from a state where a foot is off

of the ground to one where a foot contacts the ground, the equations of motion for

the system are smooth. In other words, restricted to each stratum, the equations of

motion are smooth. 2
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Figure 2.1. Honda biped robot.

We will refer to the configuration space for the biped robot in Example 2.10 as

stratified. Classically, a regularly stratified set X is a set X ⊂ R
m decomposed into

a finite union of disjoint smooth manifolds, called strata, satisfying the Whitney

condition. The dimension of the strata varies between zero, which are isolated

point manifolds, and m, which are open subsets of Rm . The Whitney condition

requires that the tangent spaces of two neighboring strata “meet nicely,” and for our

purposes it suffices to say that this condition is generically satisfied. See Goresky

and Macpherson (1980) for details on such stratifications. Note that the terms

“stratification” and “strata” are also used in a different context; namely, describing

the topology of orbit spaces of Lie group actions, and are a slight generalization of

the notion of a foliation (Abraham, Marsden, and Ratiu (1988)).

By considering legged robot systems more general than the biped in Exam-

ple 2.10, we can develop a general definition of stratified configuration spaces. Let

M denote the legged robot’s entire configuration manifold (it will often be con-
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Figure 2.2. Schematic view of the configuration manifold

structure of a biped robot.

venient to denote this space as S0). Let Si ⊂ M denote the codimension one

submanifold of M that corresponds to all configurations where only the ith foot

contacts the terrain. Denote, the intersection of Si and Sj, by Sij = Si ∩ Sj. The

set Sij physically corresponds to states where both the ith and jth feet are on

the ground. Further intersections can be similarly defined in a recursive fashion:

Sijk = Si∩Sj∩Sk = Si∩Sjk, etc. Note that the ordering of the indices is irrelevant,

i.e., Sij = Sji. In the classical definition of a stratification, stratum Xi consists of

the submanifold Si with all lower dimensional strata (that arise from intersections

of Si with other submanifolds) removed. However, in our case, we will refer to the

submanifolds Si, as well as their recursive intersections Sij, Sijk, etc, as strata. We

will call the stratum with the lowest dimension containing the point x as the bottom

stratum, and any other submanifolds containing x as higher strata. When mak-

ing relative comparisons among different strata, we will refer to lower dimensional

(i.e. higher codimension) strata as lower strata, and higher dimensional (i.e. lower

codimension) strata as higher strata.

Furthermore, assume that on each stratum, Si, the system may be subjected to

constraints in addition to those present on M . Denote the set of constraints on M =
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S0 by {ω0,1, . . . , ω0,m0}. On a stratum, Si, denote the additional constraints with a

superscript i. Thus, the set of constraints on Si is {ω0,1, . . . , ω0,s, ωi,1, . . . , ωi,mi}.

Note that, on any particular stratum, the system is subjected to, at a minimum,

all the constraints present on all the higher strata whose intersection defines that

stratum. For example, on the stratum Sij = Si ∩ Sj, the system is subjected to the

all the constraints in M , Si and Sj, as well as any additional constraints that may

be present on Sij .

A codimension one submanifold, Si, is locally defined by a level set of a function

Φi(x) : M → R. When the system transitions from M to Si, if the system is going to

evolve on the stratum Si for some finite time, the system must not only satisfy all the

constraints that are present on the stratum, but also the constraint dΦi(x)ẋ = 0, i.e.,

it must satisfy the set of constraints {ω0,1, . . . , ω0,m0 , dΦi, ω
i,1, . . . , ωi,mi}. Note that

whether the intersection, Si∩Sj = Sij is a submanifold depends upon the functional

independence of the functions, Φi and Φj, respectively defining, Si and Sj . A basic

assumption throughout this paper is that for the multi–index, I = i1i2 . . . ik, the

set, SI = Si1i2...ik = Si1 ∩ Si2 ∩ · · · ∩ Sik is a regular submanifold of M = S0. If

the strata Si1, Si2 , . . . , Sik are locally described by the functions Φi1 ,Φi2, . . . ,Φik ,

respectively, then SI will be a submanifold of M if the functions Φi1 ,Φi2 , . . . ,Φik

are functionally independent.

We will write the equations of motion for the system at x ∈M = S0 as

ẋ = g0,1(x)u0,1 + · · · g0,n0(x)u0,n0 , (2.17)

and the equations of motion for the system in one of the strata at x ∈ Si as

ẋ = gi,1(x)ui,1 + · · · gi,ni(x)ui,ni , (2.18)

where ni depends upon the codimension of Si and the nature of the additional

constraints imposed on the system in Si. For an arbitrary stratum, SI ,

ẋ = gI,1(x)uI,1 + · · ·+ gI,nI (x)uI,nI .
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Assume that the vector fields in the equations of motion for any given stratum

are well defined at all points in that stratum, including points contained in any

substrata of that stratum. For example, the vector fields g0,i(x) are well defined for

x ∈ Si. Note, however, that they do not represent the equations of motion for the

system in the substrata, but, nonetheless, are still well defined as vector fields.

Because it is necessary to consider objects defined on different spaces, we need

a rigorous way to “include” objects in a subspace into higher dimensional spaces.

This is done by way of the inclusion map. When proving our stratified controlla-

bility results, we will construct the reachable set for the control system restricted

to one stratum, and then extend the construction to the higher strata. In order

to rigorously extend a construction from a lower to higher stratum, we need the

inclusion map:

i : SI −→ SJ |I| > |J |

i(x|SI ) = x ∈ SJ .

In words, the inclusion map i takes points in a submanifold, and returns the same

point in the higher dimensional manifold. Throughout this dissertation we will

often intentionally skip the step of including a set defined on a lower stratum into

the higher strata, since it will often be clear from the context when a set needs to

be included from a lower stratum into a higher stratum.

In order to control whether the system stays on the stratum Si, we require that

we can algebraically solve the equation

dΦi

(
gi,1(x)ui,1 + · · ·+ gi,ni(x)ui,ni

)
= 0 (2.19)

for one of the control inputs, which we can always do unless all of the g0,j(x)’s

are contained in the submanifold described by Φi(x). However, this would be a

degenerate case because if all the vector fields g0,j are contained in the tangent

space to the stratum described by Φi(x), it would not be possible to move from the

ambient manifold, M , onto the stratum Si in the first place. In other words, in
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such a case, the configuration manifold is foliated by the involutive closure of the

collection of control vector fields {g0,1, . . . , g0,n} in a manner such that the stratum

Si is either a leaf of the foliation, or the leaves of the foliation are submanifolds of

Si.

When the system encounters a stratum with additional constraints, we can

choose, by constraining our control inputs to satisfy Equation 2.19, for the system to

stay on the stratum. Arguably, for a real system, it is impossible to control a system

to stay on a submanifold, since the submanifold will have measure zero. However, in

physical systems where the submanifold corresponds to a physical boundary, it will

be relatively easy to control the system in such a manner. Note that as long as dΦi

is an independent constraint, which we can choose to violate, the system can move

off of the submanifold at any time. Throughout this paper, we assume that this is

the case. Note that so far we have only discussed whether it is possible to move off

of a stratum. The converse situation, whether it is possible to move onto a stratum

from a higher stratum, is a more difficult question and will be briefly discussed in

Section 4.4.

Remark 2.11: The equations of motion on Si, (Equation 2.18), have fewer con-

trol inputs because the inputs are constrained according to equations of the form

of Equation 2.19, codimension–Si times. The codimension of Si and the number

(n0 − ni) (recall that ni is the number of inputs on Si) may not be equal because

constraints other than of the type in Equation 2.19, i.e., the ωi,j, may also constrain

the inputs. Note also that gi,j is not necessarily the same as g0,j , because the addi-

tional constraints imposed on the system in Si may modify the form of each of the

g0,j ’s. 2

Finally, assume that the only discontinuities present in the equations of motion

are due to transitions on and off of the strata Si or their intersections. We also make

a similar assumption regarding the control vector fields restricted to any stratum,

i.e., the control vector fields restricted to any stratum are smooth away from points

contained in intersections with other strata. When a configuration manifold is

consistent with the above description, we will refer to it as a stratified configuration
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manifold.

Definition 2.12: (Stratified configuration manifold) Let M be a mainifold,

and n functions Φi : M 7→ R, i = 1, . . . n be such that the level sets Si = Φ−1
i (0) ⊂M

are regular submanifolds of M , for each i, and the intesection of any number of the

level sets, Si1i2···im = Φ−1
i1

(0) ∩ Φ−1
i2

(0) ∩ · · · ∩ Φ−1
im

(0), m ≤ n, is also a regular

submanifold of M . Then M and the functions Φn define a stratified configuration

space. 2

2.3.2 Existence and Uniqueness of Solutions

Since, for the problems in this dissertation, the right–hand side of the differential

equation

ẋ =
m∑

i=1

gi(x)ui(x, t) = f(x, t) (2.20)

is not continuous everywhere, we must generalize the notion of a solution of a

differential equation.

Definition 2.13: (Solution of a differential equation) If there is a continuous

function, φ(t) which satisfies the initial conditions for Equation 2.20 and

φ̇(t) = f(φ(t), t) almost everywhere, (2.21)

then φ(t) is called a solution of Equation 2.20. 2

In order to assure existence and uniqueness of solutions, we make the following

assumptions regarding the flow of the control system.

Assumption 2.14: Except for the points where the right–hand side of Equa-

tion 2.20 is discontinuous, the differential equation has a unique solution. Since

we have assumed that the only discontinuities in the equations of motion are due

to transitions between strata, this assumption holds for points in M which have a
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neighborhood that do not contain points x ∈ Si. Also, restricted to any stratum, as-

sume that equations of motion have a unique solution for all points in that stratum

which have neighborhoods that do not contain any substrata. 2

Assumption 2.15: If the flow of the system encounters a stratum of the configu-

ration space in which the right–hand side of the differential equation which describes

the motion of the system is discontinuous, then the system evolves on the stratum

for a finite time before leaving it. 2

These assumptions eliminate the possibility, for instance, when, in a neighbor-

hood of a stratum, all solution curves intersect the stratum, but on the stratum, the

vector fields are directed away from the stratum towards the region from which the

solutions came. This is basically the “chattering” problem in sliding mode control.

In this case, a solution of the differential equation as defined by Equation 2.21 will

not exist. Since the purpose of this analysis is to investigate how to exploit the

differences between the equations of motion in the various strata of which the con-

figuration space is comprised, and this is a pathological situation in the sense that a

choice of a control law generally would be necessary to achieve such a situation, we

will specifically exclude its possibility. Filippov (1964) has generalized the notion of

a solution to a differential equation to address this situation.

The above assumptions now guarantee existence and uniqueness of solutions of

Equation 2.20 because of piecewise existence and uniqueness. Points of discontinu-

ity of the right–hand side of Equation 2.20 are encountered only when a trajectory

encounters a substratum of the stratum on which it is evolving, or when the tra-

jectory leaves the stratum on which it is evolving. In either case, since the point of

discontinuity uniquely establishes initial conditions for the system, and we have as-

sumed existence and uniqueness for the equations of motion restricted to any strata

away from substrata, we have existence and uniqueness of solutions in the sense of

Equation 2.21.
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Chapter 3

Review of Nonlinear Control Theory

This chapter presents the concepts in nonlinear control upon which the results of

this dissertation are based. Note that except where explicitly recognized as relating

to stratified systems, the results in this chapter are limited to smooth systems.

Chapters 4 and 5 extend these results to the stratified case.

First, Section 3.1, defines the concept of controllability, both for smooth systems

as well as stratified systems. Certain topological issues which arise with respect to

controllability for stratified systems are also addressed. Section 3.2 reviews three

alternative formulations of Chow’s theorem: Section 3.2.1 presents Chow’s theorem

itself, Section 3.2.2 presents an alternative formulation using the tools from exterior

differential systems, and Section 3.2.3 presents yet another formulation in the special

case where the configuration space is a principal fiber bundle. Then, Section 3.3

presents the most general known controllability test, due to Sussmann (1987), which

is the basis for the results in Chapter 6. Finally, Section 3.4, reviews the motion

planning algorithm due to Lafferriere and Sussmann (1993).

3.1 Controllability

This section reviews various approaches to nonlinear controllability because our con-

trollability tests extend these approaches to the case where the configuration space

is stratified and also address some basic topological properties of stratified configu-

ration spaces. The review of controllability and Chow’s theorem is primarily from



36

Isidori (1989), Murray, Li, and Sastry (1994), Nijmeijer and der Schaft (1990) and

Sontag (1990), the material relating to controllability using methods from exterior

differential system is from Abraham, Marsden, and Ratiu (1988), Boothby (1986),

Flanders (1989) and Murray (1994) and the material relating to principal fiber bun-

dles is primarily from Abraham and Marsden (1978), Boothby (1986), Kelly and

Murray (1995), Kobayashi and Nomizu (1963) and Murray, Li, and Sastry (1994).

This section is concerned with kinematic control systems. A control system is

called kinematic if it is of the form

ẋ = g1(x)u1 + · · ·+ gk(x)uk. (3.1)

Such systems are alternatively called driftless or control linear. A stratified system

is kinematic if the equations of motion are of the this form when restricted to each

stratum. In the legged locomotion context, this assumption means that we limit

our attention to legged robotic systems which walk in a quasi–static manner.

First, it is necessary define the term “controllable.” Given an open set V ⊆M ,

define RV (x0, T ) to be the set of states x such that there exists u : [0, T ]→ U that

steers the control system from x(0) = x0 to x(T ) = xf and satisfies x(t) ∈ V for

0 ≤ t ≤ T , where U is the set of admissible controls. Assume that the input space

U is such that the linear span of the set

{
∑

i

gi(x)u : u ∈ U}

contains all the vector fields, gi. Define

RV (x0,≤ T ) =
⋃

0<τ≤T

RV (x0, τ). (3.2)

We will refer to RV (x0,≤ T ) as the set of states reachable up to time T .

Definition 3.1: (Small time local controllability) A system is small time

locally controllable (“STLC,” or simply “controllable”) if RV (x0,≤ T ) contains a

neighborhood of x0 for all neighborhoods V of x0 and T > 0. 2
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For stratified systems, Definition 3.1 must be modified for two topological rea-

sons. First, in terms of controllability, it may not be desirable or possible to reach

an open neighborhood in the entire configuration space, but rather an open set on

a collection of the strata within the whole configuration space. For example, for the

biped, it may be desirable that the robot always has at least one foot in contact

with the ground, i.e., it is walking, as opposed to running. In such a case it is most

natural to consider controllability in terms of reaching an open neighborhood de-

fined in the union of the two strata S1 and S2 (corresponding to each foot in contact

with the ground) as illustrated in Figure 3.1. The following definition is from basic

topology (Abraham, Marsden, and Ratiu (1988)).

Definition 3.2: (Relative topology) If A is a subset of a topological space S

with topology O (the collection of open sets), the relative topology on A is defined

by OA = {U ∩A : U ∈ O}. 2

Thus, in the biped example, as illustrated in Figure 3.1, the dotted regions illus-

trate an open set in the union S1∪S2. The dotted regions represent the intersection

of an open ball in S0 with S1 ∪ S2. Stratified controllability now is defined as in

Definition 3.1, where the reachable set contains a neighborhood of the starting

point, where the neighborhood is open in S1 ∪ S2. Clearly this notion extends to

the case where there is the union of more than two strata.

The second modification is a result of the fact that, until now, we have con-

sidered a stratum to be a submanifold of the configuration space for a stratified

system. In fact, it will often be the case that the strata defining the stratification

are boundaries of the configuration space because the submanifolds upon which the

system is subjected to additional constraints will often be a physical boundaries. In

such a case, it is necessary to redefine a neighborhood of a point x0 contained in

the boundary to be the union of the portion of the standard neighborhood on the

“allowable” side of the manifold with the intersection of the standard neighborhood

with the boundary.

As a simple planar example, Figure 3.2 illustrates the standard open neighbor-

hood; whereas, Figure 3.3 illustrates the open set when there is a boundary present.
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Figure 3.1. Stratified open neighborhood.

Note that this again is a relative topology in accordance with Definition 3.2. Now,

for the biped example, only one of the four “quadrants” defined by the intersecting

strata is “allowable” (the other three correspond to one or both feet penetrating the

ground). Figure 3.4 illustrates an open set for such a stratified configuration space

with boundary. Stratified controllability amounts to reaching an open neighborhood

of the starting point, where an open set is determined by the natural topology of

the problem. We will typically only consider strata as regular submanifolds and not

as boundaries. Where appropriate, we will comment on the effect that a boundary

would have as opposed to a regular submanifold.

Definition 3.3: (Stratified controllability) Given a stratified configuration

manifold and a collection of strata, {SI1 , SI2, . . . , SIm}, a system is small time lo-

cally stratified controllable if RV (x0,≤ T ) contains a neighborhood of x0 in SI1 ∪

SI2 ∪ · · · ∪ SIm, for all neighborhoods V of x0 in SI1 ∪ SI2 ∪ · · · ∪ SIm and T > 0. 2

Note that this definition includes the definition of controllability in Definition 3.1

as a special case when SI1 ∪ SI2 ∪ · · · ∪ SIm = M .
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boundary

Figure 3.2. Standard

open set.

Figure 3.3. Open set

with boundary.

3.2 Three Versions of Chow’s Theorem

Now we present three versions of the same controllability theorem.

3.2.1 Controllability Based on Distributions

The first controllability result is based upon a construction involving distributions.

Let C denote the smallest subalgebra of V∞(M) (the Lie algebra of smooth vec-

tor fields on a manifold M whose product is the Lie bracket, [·, ·]) that contains

g1, . . . , gm. If dim(C) = m at a point x, then the system described by Equation 3.1

satisfies the Lie Algebra Rank Condition (“LARC”) at x. The following is well

known as “Chow’s Theorem.”

Theorem 3.4 If the system described by Equation 3.1 satisfies the LARC at a point

x0 then it is STLC from x0.

Since the proof is similar to the construction of our stratified controllability proof

in Section 4.2, we will present it here.

Proof: Let n = dim(∆) and let W be a neighborhood of x0. Choose X1 ∈ ∆

such that X1(x0) 6= 0. For ε1 sufficiently small, N1 = {φX1
t1 (x0) : t1 ∈ (0, ε1)} is a

submanifold of M of dimension one.
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Figure 3.4. Stratified open set.

Now proceed by induction. Assume that

Nj−1 = {φXj−1

tj−1
◦ φ

Xj−2

tj−2
◦ · · · ◦ φX1

t1 (x0) : ti ∈ (0, εi)}

is a (j− 1)–dimensional submanifold of M . If j− 1 < n, then there exists a Xj ∈ ∆

and a q ∈ W such that Xj(q) 6∈ TqNj−1. If this were not true, then X(q) ∈ W

∀X ∈ ∆, which would imply that dim(∆) < n, which is a contradiction. Therefore,

Nj = {φXj

tj
◦ φ

Xj−1

tj−1
◦ · · · ◦ φX1

t1
(x0) : ti ∈ (0, εi)}

is a j–dimensional submanifold of M . Therefore, Nn is an open in M .

Thus, the set

N = {φ−X1
s1
◦ · · · ◦ φ

−Xj−1
sj−1 ◦ φ

−Xj
sj ◦ φ

Xj

tj
◦ φ

Xj−1

tj−1
◦ · · · ◦ φX1

t1 (x0) : si, ti ∈ (0, εi)}

is an open set of M containing x0. Thus, the reachable set contains an open neigh-

borhood of x0, and hence the system is controllable. �
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See any one of the references Isidori (1989), Nijmeijer and der Schaft (1990),

Jurdjevic (1997) or Murray, Li, and Sastry (1994) for a more complete exposition.

3.2.2 Controllability Based on Exterior Differential Systems

This section presents Chow’s theorem in its “dual” version. The reason that tools

from exterior differential systems are useful is because, for nonholonomic systems,

the constraints on the system can be expressed as one forms. A Pfaffian system is

an exterior differential system generated by a set of linearly independent one–forms.

One way to consider a control problem is to consider the collection of constraints

on the system (one forms spanning a codistribution) rather than the equations of

motion (vector fields spanning a distribution).

Aside from controllability considerations, note that this approach has proved

useful for the trajectory generation problem (Tilbury, Murray, and Sastry (1995)

and Murray (1994)). Also, the notion of differential flatness has received quite a

bit of attention (Fliess, Lévine, Martin, and Rouchon (1992) and van Nieuwstadt,

Rathinam, and Murray (1998)).

The following is the “dual” of Theorem 3.4.

Theorem 3.5 Let I = {ω1, . . . , ωm} represent a set of constraints and assume that

the derived flag of the system exists. Then, there exists a path x(t) between any two

points satisfying ωi(x)ẋ = 0 ∀i if there exists an N such that I(N) = 0.

Rather than prove this directly, we will relate it distributions. If we define a nested

sequence of distributions, E0 ⊂ E1 ⊂ · · · ⊂ EN as

E0 = ∆ (3.3)

Ei = Ei−1 + [Ei−1, Ei−1],

then, I(i) = E⊥i . (See Murray (1994), Tilbury, Murray, and Sastry (1993b) or

Tilbury, Murray, and Sastry (1993a)). The increasing dimension of the distributions

in the filtration in Equation 3.3 correspond exactly to the decreasing dimension of

the derived systems in Equation 2.7, and if I(N) = 0, then dim(EN ) = dim(M) and
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vice versa. So, this theorem is equivalent, from the point of view of controllability,

to Theorem 3.4.

3.2.3 Controllability Based on Principal Fiber Bundles

Because of the global split between shape and group variable for systems on prin-

cipal fiber bundles, it is natural to consider different types of controllability. Kelly

and Murray (1995) distinguish the between the following two definitions of control-

lability.

Definition 3.6: (Strong controllability) A system on a principal fiber bundle

is said to be strongly controllable if, for any xo = (b0, g0) and xf = (bf , gf ), there

exists a time T > 0 and a curve c(·) connecting b0 to bf in the base space such that

the horizontal lift of b passing through x0 satisfies bh(0) = x0 and bh(T ) = xf . 2

This definition is the standard definition of controllability. However, it is called

strong controllability to contrast it with the following notion of weak (or fiber)

controllability.

Definition 3.7: (Fiber controllability) A system on a principal fiber bundle

is said to be fiber controllable if, for any initial position g0 ∈ G, final position

gf ∈ G, and initial shape b0 ∈ B, there exists a time T > 0 and a base space curve

b(·) satisfying b(0) = b0 such that the horizontal lift of b passing through (b0, g0)

satisfies bh(T ) = (b(T ), gf ). 2

The definition of weak controllability encapsulates the notion that, for locomo-

tion systems, final shape of the mechanism is often irrelevant. Of primary impor-

tance is the fact that the locomotor can reach a desired location in G.

The following is the main result in Kelly and Murray (1995). This result is proved

by showing that these conditions are essentially equivalent to Chow’s Theorem.

Theorem 3.8 Define the following sequence of subspaces of the Lie algebra g at a
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fixed point b ∈ B:

h1 = span{A(X) : X ∈ TbB}

h2 = span{DA(X,Y ) : X,Y ∈ TbB}

h3 = span{LZDA(X,Y )− [A(Z),DA(X,Y )], [DA(X,Y ),DA(W,Z)] :

W,X,Y,Z ∈ TbB}
...

hk = span{LXξ − [A(X), ξ], [η, ξ] : X ∈ TbB, ξ ∈ hk−1, η ∈ h2 ⊕ · · · ⊕ hk−1}.

A system defined on a trivial principal fiber bundle M over B with structure group

G and local connection A(b) is locally weakly controllable near x ∈M if and only if

g = h1 ⊕ h2 ⊕ h3 ⊕ · · · .

The system is locally strongly controllable if and only if

g = h2 ⊕ h3 ⊕ h4 ⊕ · · · .

Note that in the expression for hk, the elements ξ and η are not fixed elements

of the Lie subalgebras hi, but rather, result from the connection, its curvatures and

higher order derivatives of the connection (otherwise, if they were fixed elements of

a Lie subalgebra, their Lie derivatives would automatically be zero).

3.3 General Nonlinear Controllability

The following is the most general nonlinear controllability result. The result in

Chapter 6 will follow from the following theorem, due to Sussmann, which is actually

a corollary to the main result in Sussmann (1987).

Theorem 3.9 Let (M, f ,K) be a control system. Assume that f satisfies the LARC

at p, and that there exists (a) an admissible group of dilations ∆ of L1,hom(X) which

is compatible with Ŝ(X,K), (b) a finite group Λ0 of graded linear maps from L(X)
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to L(X) that are input symmetries, such that every totally odd Λ0–fixed element of

L(X) is ∆–neutralized for f at p. Then (M, f ,K) is STLC from p.

Note that the difficulty with this very general result is that one must work with

indeterminates rather than vector fields (or one forms) and this requires all the

machinery associated with “translating” the problem into indeterminates.

Although extremely abstract, this theorem does allow for a (rough) intuitive

interpretation. The underlying method is to construct a “group action” on the

configuration manifold corresponding to the action of the controls. If the group

action is transitive, i.e., “full rank”, and the isotropy subgroup, i.e., group actions

corresponding to control inputs that leave the initial condition fixed, is in the interior

of action of the group on the initial condition, then the system is controllable. The

dilations simply recognize that individual control vector fields can be scaled by

scaling the associated input. A vector field that is fixed under the action of the

group of input symmetries is one which cannot be compensated by any other input.

Finally, the “totally odd” requirement is a reflection of the fact that under time

reversal, even order brackets change sign and odd order brackets do not, and thus

even order brackets cannot be fixed under the “time reversal” input symmetry.

3.4 Nonlinear Motion Planning

To set the context for our approach in Chapter 5, this section outlines the method in

Lafferriere and Sussmann (1993) for generating trajectories for smooth, kinematic

nonholonomic systems of the form

ẋ = g1(x)u1 + · · ·+ gm(x)um x ∈M. (3.4)

Since the method is limited to kinematic systems, so too will our method. The prac-

tical implication of this is that our method applies only to quasi–static locomotion.

A system with equations of motion having the form of Equation 3.4 is to be

nilpotent of order k if all the Lie brackets between control vector fields of order

greater than k are 0. (More precisely, the Lie algebra generated by the vector fields
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is nilpotent). The method presented in this section works exactly for nilpotent

systems, and approximately for systems which are not nilpotent. For non-nilpotent

systems, arbitrary precision can be obtained by iterating the algorithm.

A nonholonomic control system typically does not have enough controls to di-

rectly drive each state variable along a given trajectory, i.e., the number m in Equa-

tion 3.4 is less than the dimension of the configuration space. The motion planning

problem for systems with such a deficit can be managed by using an “extended sys-

tem,” where “fictitious controls,” corresponding to higher order Lie bracket motions,

are added. If enough Lie brackets are added to the system to span all possible mo-

tion directions, then the motion planning problem becomes trivial for the extended

system.

The extended system is constructed by simply “adding on” Lie bracket directions

to the original system from Equation 3.4,

ẋ = b1v
1 + · · · bmvm + bm+1v

m+1 + · · · + bsv
s (3.5)

where bi = gi for i = 1, . . . ,m, and the bm+1, . . . , bs correspond to higher order

Lie brackets of the gi, chosen so that dim(span{b1, . . . , bs}) = dim(M). The vi’s

are called fictitious inputs since they may not correspond with the actual system

inputs. The higher order Lie brackets must belong to the Philip Hall basis for the

Lie algebra. The control inputs vi which steer the extended system can be found as

follows. To go from a point p to a point q, define a curve, γ(t) connecting p and q (a

straight line would work, but is not necessary). After determining γ, simply solve

γ̇(t) = g1(γ(t))v1 + · · ·+ gs(γ(t))vs (3.6)

for the fictitious controls vi. This will involve inverting a square matrix or deter-

mining a pseudo–inverse, depending on whether or not there are more bi’s than the

dimension of the configuration space.

The actual control inputs can be found as follows. Determine the Philip Hall

basis for the Lie algebra generated by g1, . . . , gm, and denote it by B1, B2, . . . , Bs.
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It is possible to represent all flows of Equation 3.4 in the form

S(t) = ehs(t)Bsehs−1(t)Bs−1 · · · eh2(t)B2eh1(t)B1 (3.7)

for some functions h1, h2, . . . , hs, called the backward Philip Hall coordinates. Fur-

thermore, St(x) satisfies the formal differential equation

Ṡ(t) = S(t)(B1v1 + · · · + Bsvs); S(0) = 1. (3.8)

Define the adjoint mapping

Ade−hiBiBj = e−hiBiBje
hiBi .

Now it is straight–forward to show that

Ad
e−hiBi ···e−hj−1Bj−1 Bj ḣj =

(
s∑

k=1

pj,k(h)Bk

)
ḣj , (3.9)

for some polynomials pj,k(h). (For a complete derivation, see Murray, Li, and Sastry

(1994)). Equating coefficients yields the differential equations

ḣ = A(h)v, h(0) = 0. (3.10)

These equations specify the evolution of the Philip Hall coordinates in response to

the fictitious inputs, which were found via Equation 3.6. Next determine the actual

inputs using the Philip Hall coordinates.

It is easier to determine the real inputs using the forward rather than backward

Philip Hall coordinates. The transformation from the backward to forward coordi-

nates is a “simple algebraic transformation” (see Lafferriere and Sussmann (1993)),

and this transformation results in an equation of the form

S = eh̃1B1eh̃2B2 · · · eh̃s−1Bs−1eh̃sBs .
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One way to compute this transformation, is to take

S = ehsBsehs−1Bs−1 · · · eh2B2eh1B1

= eh̃1B1eh̃2B2 · · · eh̃s−1Bs−1eh̃sBs ,

where the h̃i represent the forward Philip Hall coordinates, and equate coefficients

of the basis elements, Bi. We will illustrate this by way of example.

Example 3.10: (Two–Input Nilpotent System) Consider a two input system

that is nilpotent of order three,

ẋ = g1(x)u1 + g2(x)u2,

with an extended system,

ẋ = b1(x)v1 + b2(x)v2 + b3(x)v3 + b4(x)v4 + b5(x)v5,

where

b1 = g1

b2 = g2

b3 = [g1, g2]

b4 = [g1, [g1, g2]]

b5 = [g2, [g1, g2]].

We need to equate the basis elements in the expansions for

eh5B5eh4B4eh3B3eh2B2eh1B1 = eh̃1B1eh̃2B2eh̃3B3eh̃4B4eh̃5B5 .

Using the Campbell–Baker–Hausdorff formula (Equation 2.3), the formal exponen-
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tial on the left–hand side becomes

1 + h5B5 + h4B4 + h3B3 + h2B2 + h1B1 +
1
2
h3h2[B3, B2] +

1
2
h3h1[B3, B1]

+
1
2
h2h1[B2, B1] +

1
12

(h2
2h1[B2, [B2, B1]]− h2h

2
1[B1, [B2, B1]]) =

1 + h5B5 + h4B4 + h3B3 + h2B2 + h1B1 +
1
2
h2h3B5 −

1
2
h1h3B4

− 1
2
h1h2B3 −

1
12

(h1h
2
2B5 − h2

1h2B4) =

1 + h1B1 + h2B2 + (h3 −
1
2
h1h2)B3 + (h4 −

1
2
h1h3 +

1
12

h2
1h2)B4

+ (h5 +
1
2
h2h3 −

1
12

h1h
2
2)B5,

(recall that the system is nilpotent of degree three). Similarly, for the right–hand

side,

1 + h̃1B1 + h̃2B2 + h̃3B3 + h̃4B4 + h̃5B5 +
1
2
h̃1h̃2[B1, B2]

+
1
12

(h̃2
1h̃2[B1, [B1, B2]]− h̃1h̃

2
2[B2, [B1, B2]]) +

1
2
h̃1h̃3[B1, B3] +

1
2
h̃2h̃3[B2, B3] =

1 + h̃1B1 + h̃2B2 + h̃3B3 + h̃4B4 + h̃5B5 +
1
2
h̃1h̃2B3

+
1
12

(h̃2
1h̃2B4 − h̃1h̃

2
2B5) +

1
2
h̃1h̃3B4 +

1
2
h̃2h̃3B5 =

1 + h̃1B1 + h̃2B2 + (h̃3 +
1
2
h̃1h̃2)B3 + (h̃4 +

1
12

h̃2
1h̃2 +

1
2
h̃1h̃3)B4

+ (h̃5 −
1
12

h̃1h̃
2
2 +

1
2
h̃2h̃3)B5.

Equating the coefficients of the basis elements, gives the h̃i’s in terms of the hi’s,

h̃1 = h1

h̃2 = h2

h̃3 = h3 − h1h2

h̃4 = h4 − h1h3 +
1
2
h2

1h2

h̃5 = h5 + h2h3 −
1
2
h1h

2
2.

Note that this transformation bears a striking resemblance to the transformation
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between chained form system (see Section 5.4) and power form (see Teel, Murray,

and Walsh (1992)), but is not precisely the same (neither is its inverse). 2

From the example, it is clear that, regardless of the number of inputs and degree

of nilpotency, h̃i = hi for vector fields in the non–extended system; however, in

general, the degree of nilpotency and number of inputs will affect the structure of

the higher order terms in the transformation.

Now, to determine the real inputs, simply approximate any Lie bracket by its

first order piecewise approximation given in Equation 2.2, as illustrated by the

following example.

Example 3.11: (From Lafferriere and Sussmann (1993)). Consider the same

system as in Example 3.10. Assume further that we have followed the construction

and solved the differential equations in Equation 3.10, which gives the values for

the forward Philip Hall coordinates, h̃1, h̃2, h̃3, h̃4, h̃5. We know that the fictitious

inputs steer the system to the desired final value. The task now is to determine the

real control inputs, ui. Given the forward Philip Hall coordinates, the final position

is given by

S(t) = eh̃1b1eh̃2b2eh̃3b3eh̃4b4eh̃5b5 .

Now, since b1 = g1 the first flow, eh̃1b1 is just along g1, so the control input u1 =

sgn(h̃1) for time 0 < t ≤ |h̃1| will result in the flow eh̃1g1 = eh̃1b1 at time t = h̃1 as

desired. Similarly, for time |h̃1| < t ≤ |h̃2| the control input u2 = sgn(h̃2) will result

in the flow eh̃1g2 = eh̃2b2 , so the composition, u1 = sgn(h1) for 0 < t ≤ |h̃1| followed

by u2 = sgn(h2), |h̃1| < t ≤ |h̃2| results in the net flow eh̃1b1eh̃2b2 .

Now, we need to flow in the Lie bracket direction eh̃3b3 = eh̃3[g1,g2]. To leading
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order, the sequence

u1 = sgn(h̃3), |h̃1|+ |h̃2| < t ≤ |h̃1|+ |h̃2|+
√

h̃3

u2 = 1, |h̃1|+ |h̃2|+
√

h̃3 < t ≤ |h̃1|+ |h̃2|+ 2
√

h̃3

u1 = −sgn(h̃3), |h̃1|+ |h̃2|+ 2
√

h̃3 < t ≤ |h̃1|+ |h̃2|+ 3
√

h̃3

u2 = −1 |h̃1|+ |h̃2|+ 3
√

h̃3 < t ≤ |h̃1|+ |h̃2|+ 4
√

h̃3

gives rise to eh̃3[g1,g2]. However, using the Campbell–Baker–Hausdorff formula, and

assuming a nilpotency of degree three, an easy, but tedious calculation shows that

it actually gives rise to

eh̃3[g1,g2]e
1
2
h̃

3/2
3 [g1,[g1,g2]]e

1
2
h̃

3/2
3 [g2,[g1,g2]] = eh̃3b3e

1
2
h̃

3/2
3 b4e

1
2
h̃

3/2
3 b5 .

We now must find a control that gives rise to e(h̃4− 1
2
h̃

3/2
3 )b4e(h̃5− 1

2
h̃

3/2
3 )b5 , to cancel

out the third–order error from above and give the correct third–order exponentials.

If ρ =
(
δ − 1

2γ
3
2

) 1
3 , and σ =

(
ε− 1

2γ
3
2

) 1
3 , the 20 sequence move that accomplishes

this is

ρg1 ◦ ρg1 ◦ ρg2 ◦ (−rg1) ◦ (−ρg2) ◦ (−ρg1) ◦ ρg2 ◦ ρg1 ◦ (−ρg2) ◦ (ρg1) ◦

σg2 ◦ σg1 ◦ σg2 ◦ (−rg1) ◦ (−σg2) ◦ (−σg2) ◦ σg2 ◦ σg1 ◦ (−σg2)◦ ∈ σg1),

where the notation, ρg1 means flow along g1 for time ρ, i.e., turn on control input

u1 = α for ρ length of time, where α = ±1, as is necessary for any given bracket. The

basic idea is to construct the control inputs that gives the appropriate first–order

flow, and then take care of the higher order error when constructing the control

input sequence to execute the Lie bracket directions. 2

This method generates the actual control inputs necessary to follow the desired

trajectory. If the system is nilpotent this method exactly steers the system to the

desired final state. If the system is not nilpotent, it steers it to a point that is,

at worst, only half the distance to the desired configuration. The algorithm can
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thus be iterated to generate arbitrary precision. This iterated method also includes

the notion of a “critical” step length. It is possible to analytically determine the

critical step length. Alternatively, note that an appropriate step length can be

determined by simulation or experiment, and the simulation results in Lafferriere

and Sussmann (1993) show that the actual critical length can be significantly larger

than the estimated bound.
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Chapter 4

Stratified Controllability

This chapter considers controllability of stratified systems. Section 4.1 presents a

simple example which illustrates the issue of fundamental importance to our result,

which is transversality of foliations. Section 4.2 presents three alternative controlla-

bility tests (corresponding to Chow’s theorem, and the exterior differential systems

and principal fiber bundle reformulations thereof) for a nested sequence of strata.

Section 4.3, presents a robotic example to illustrate the application of the theory.

Particularly useful for and motivated by robotics applications is the notion of gait

controllability, which is the subject of in Section 4.4.

4.1 Stratified Controllability: Introductory Example

In order to clarify the presentation and provide an intuitive understanding of our

approach, we first consider a subset of all possible stratified systems for which the

controllability analysis is greatly simplified. In particular, this section focuses on the

case where the configuration manifold contains only one submanifold (or stratum)

upon which the system is subjected to additional constraints, so that the only

stratum is also the bottom stratum. By focusing on this situation, it is rather

straightforward to motivate and obtain a basic controllability result. Also, as will

become clear, this simple result is easily generalized.

The following example, while extremely simple, nevertheless exemplifies the fun-

damental nature of a stratified control system. As we develop our results, we will
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repeatedly return to this problem.

Example 4.1: (Kinematic Leg) Consider the kinematic leg illustrated in Fig-

ure 4.1. The configuration space, M , for the leg is parameterized by the variables

q = (x, l, θ), corresponding to the lateral position of the body, the length of the leg

and the angular displacement of the leg, respectively. Assume that the height of

the body off of the ground remains fixed, so when the leg is lifted off of the ground,

the body does not fall down. While this assumption is clearly unrealistic for, say, a

hopping robot, it may be realistic, for example if the leg under consideration is only

one leg of a multi–legged robot, where the focus is solely on the effect that this one

leg has on the system. The two inputs for the system are the joint velocities u1 = l̇

and u2 = θ̇.

In this case, the bottom stratum (or boundary) is the set of points

S = {q ∈M : l cos θ = h},

where h is some fixed height. The equations of motion are given by

d

dt


x

l

θ

 =


0

1

0

u1 +


0

0

1

u2, (4.1)

when the foot is off the ground, and

d

dt


x

l

θ

 =


− l

cos θ

l tan θ

1

u2, (4.2)

when the foot is in contact with the ground (on the bottom stratum, i.e., q ∈ S).

Note that, consistent with Remark 2.11, when the leg is off the ground, there

are two control inputs; conversely, when the leg is in contact with the ground, there

is only one input because the inputs are constrained when the foot contacts the

ground. Note also that even though Equation 4.1 is not the equation of motion for
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x

l

θ

Figure 4.1. Kinematic leg.

the system when q ∈ S, the two vector fields in that equation are still well defined

for all points in S. 2

It is clear that if the leg needs to move laterally (in the x–direction) while still

retaining control over the joint variables, it must cyclically move the leg in and out

of contact with the ground. This observation motivates the need to formulate a

controllability test which incorporates the equations of motion for the system both

in and out of contact with the ground. Figure 4.2 schematically illustrates the

configuration space for the simple kinematic leg example. It is comprised of the

“ambient” space, M , where the leg is off of the ground, and the submanifold (or

boundary), S, which represents the set of points where the leg is in contact with

the ground.

Since we know the equations of motion in each strata, we can calculate the

associated involutive closures of the distributions associated with M and also with

S, denoted ∆M and ∆S , respectively. Note that in Figure 4.2, the symbols for the

involutive distributions are pointing to the manifolds to which they are the tangent

space.

It follows from Chow’s theorem that, if the system starts at a point in S, then

the set of points it can reach in S is the leaf of the foliation of S defined by ∆S

which contains that point. In Figure 4.2, such a leaf is represented by the lines in
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Foliation associated with
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Figure 4.2. Controllability of a stratified system.

S. Similarly, if the system starts at a point in M , then the set of points that can

be reached in M is represented in Figure 4.2 by the vertical sheets in M , which

represent the foliation defined by ∆M . Any arbitrary point in S is contained in one

leaf of the foliation of M defined by ∆M and one leaf of the foliation of S defined by

∆S. By the proof of Chow’s Theorem (Theorem 3.4), ∆M and ∆S are the directions

in which the system can flow on M and S, respectively. Since any point in S is also

contained in M , and by assumption, the system can move from S to M arbitrarily,

then the vector space sum of ∆M |x0 and ∆S |x0 represents all the directions in which

the system can flow. Thus, if ∆M and ∆S intersect transversely, i.e.

∆M |x0 + ∆S |x0 = Tx0M,

then the system can flow in any direction in M . This argument suggests the following

Proposition.

Proposition 4.2 If

∆M |x0 + ∆S |x0 = Tx0M,
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then the system is STLC from x0.

Since this proposition will follow trivially as a corollary of a following more

general result (Proposition 4.4), we will not provide the proof.

Example 4.3: (Kinematic leg — continued) To show that the kinematic leg

is controllable, we must show that its equations of motion satisfy the requirement

of Proposition 4.2. Since the vector fields in the equations of motion when the foot

is not in contact with the ground are constant, then

∆M = span


0 0

1 0

0 1

 .

When the foot is in contact with the ground, there is only one vector field, so

∆S = span


− l

cos θ

l tan θ

1

 .

Clearly, away from singularities at ±π
2 ,

∆M + ∆S = TM.

Thus the kinematic leg is controllable. 2

4.2 Controllability for a Nested Sequence of Strata

The central aspect of the above controllability discussion was the transversal re-

lationship between the foliations defined by the control vector fields on M and S.

This notion is easy to generalize to a nested sequence of submanifolds:

Sp ⊂ S(p−1) ⊂ · · · ⊂ S1 ⊂ S0 = M.
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In this sequence of submanifolds, the subscript is the codimension of the submani-

fold. Note that there may be multiple submanifolds with the same codimension at a

point. If there are multiple submanifolds with the same codimension, this sequence

contains only one of them. Also, denote the distribution defined by the control

vector fields defined on a stratum Si by ∆i, and its associated involutive closure by

∆i.

Clearly, the fact that we limit our attention to the equations of motion in a

nested sequence is rather limiting. Section 4.4 presents results which eliminate this

restriction. However, this comes at the expense of a more complicated test. Also,

later in this section we will show that this limitation actually encompasses quite a

broad class of legged locomotion problems.

4.2.1 The Distribution Approach

Here we present a test using distributions, which may be considered an extension

of Chow’s theorem. This result is central to this chapter because the results that

follow are based upon it.

Proposition 4.4 If there exists a nested sequence of submanifolds

x0 ∈ Sp ⊂ S(p−1) ⊂ · · · ⊂ S1 ⊂ S0,

such that the associated involutive distributions satisfy

p∑
j=0

∆Sj |x0 = Tx0M

then the system is stratified controllabile from x0.

Proof: Let Vp be a neighborhood of the point x0 in the submanifold Sp, which is

the bottom stratum, i.e., the manifold of smallest dimension in the nested sequence

at x0. Choose X1 ∈ ∆Sp . For ε1 sufficiently small,

N1
p = {φX1

t1 (x0) : 0 < t1 < ε1}
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is a smooth manifold of dimension one. This follows from, for example, the Flow-

Box theorem (Theorem 2.26 of Nijmeijer and der Schaft (1990)), the Straightening

Out Theorem (Theorem 4.1.14 of Abraham, Marsden, and Ratiu (1988)) or the

Orbit Theorem (Theorem 1, Chapter 2 of Jurdjevic (1997)).

Now, construct N j
p by induction. Assume that the collection of vector fields,

{X1, . . . ,Xj−1}, Xi ∈ ∆Sp is such that the mapping

(t1, . . . , tj−1) 7→ φ
Xj−1

tj−1
◦ · · · ◦ φX1

t1 (x0), Xi ∈ ∆Sp 0 < ti < εi, (4.3)

has rank j − 1. Thus, by the immersion theorem (see, for example, Theorem 3.5.7

of Abraham, Marsden, and Ratiu (1988), Theorem 2.19 of Nijmeijer and der Schaft

(1990)), the set

N j−1
p = φ

Xj−1

tj−1
◦ · · · ◦ φX1

t1 (x0) 0 < ti < εi

is a (j − 1)–dimensional manifold. Also, for the εi sufficiently small, N j−1
p ⊂ Vp.

If (j − 1) < dim
(
∆Sp

)
, then there exists x ∈ N j−1

p and Xj ∈ ∆Sp such that

Xj(x) 6∈ TxN j−1
p . If this were not so, then ∆Sp ⊂ TxN j−1

p for any x in some open

set W ⊂ Vp. This cannot be true since dim
(
∆Sp

)
> dim

(
N j−1

p

)
. Thus, for εj

sufficiently small the mapping

(t1, . . . , tj) 7→ φ
Xj

tj
◦ φ

Xj−1

tj−1
◦ · · · ◦ φX1

t1 (x0), Xi ∈ ∆Sp , 0 < ti < εi (4.4)

has rank j. To see this, consider the tangent mapping

T
(
φ

Xj

tj
◦ φ

Xj−1

tj−1
◦ · · · ◦ φX1

t1
(x0)

)
=[

XjΦj(x0)
(
φ

Xj

tj

)
∗
Xj−1Φj(x0) · · ·

(
φ

Xj

tj
◦ · · · ◦ φX2

t2

)
∗
X1Φj(x0)

]
,
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where Φj(x0) = φ
Xj

tj
◦ φ

Xj−1

tj−1
◦ · · · ◦ φX1

t1 (x0). For a diffeomorphism, φ, and a vector

field, X, φ∗X = Tφ ◦X ◦ φ−1. If the rank of this mapping is not j, then

Xj(Φj(x0)) =
j−1∑
i=1

αi

(
φ

Xj

tj
◦ · · · ◦ φ

Xi+1
ti+1

)
∗
Xi(Φj(x0)),

for some coefficients, αi. However, if we pull this back along the flow of Xj , then

(
φ
−Xj

tj

)
∗
Xj(Φj(x0)) =

j−1∑
i=1

αi

(
φ

Xj−1

tj−1
◦ · · · ◦ φ

Xi+1

ti+1

)
∗
Xi(Φj−1(x0))

=⇒ Xj (Φj−1(xo)) =
j−1∑
i=1

αi

(
φ

Xj−1

tj−1
◦ · · · ◦ φ

Xi+1

ti+1

)
∗
XiΦj−1(x0),

which contradicts the fact that Xj /∈ TN j−1
p . Thus,

N j
p = {φXj

tj
◦ · · · ◦ φX1

t1 (x0) : 0 < ti < εi, i = 1, . . . , j}

is a j dimensional manifold. Since ε can be made arbitrarily small, N j
p ⊂ Vp. Now,

if k = np, Nk
p ⊂ Vp is an np–dimensional manifold.

Now, let (s1, . . . , sn) satisfy 0 < s1 < εi and consider the map

(t1, . . . , tnp) 7→ φ−X1
s1
◦ · · · ◦ φ

−Xnp
snp ◦ φ

Xnp

tnp
◦ · · · ◦ φX1

t1 , 0 < ti < εi. (4.5)

Since φ−X
s = φX

−s, it follows that the image of this map is an open set of Nn

containing the point x0. HenceRV (x0, ε) contains x0 and an open set in the manifold

whose tangent space is ∆sp . By restricting each ε ≤ T/(2np), there is such an open

set for any T > 0.

So far, we have constructed the reachable set for the system restricted to the

bottom stratum, Sp. The process is to extend the reachable set by using vector fields

defined on the next higher stratum, Sp−1, and then proceed to each higher stratum

in order. (Note that we are following the indices in reverse order). Proceed by

induction. Assume that we have constructed the reachable set up to and including

stratum Sk+1, and denote this reachable set by Nk+1. Without loss of generality,
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assume that

dim

 p∑
j=k

∆Sj |x0

 > dim

 p∑
j=(k+1)

∆Sj |x0

 ,

(otherwise, the control distribution, ∆Sk would not contribute any “new directions”

to the reachable set, in which case we can proceed to the next higher stratum, Sk−1).

Now, let ni =
∑p

j=i dim
(
∆Si

)
, let the vector fields X1, . . . ,Xnp be defined on Sp,

let the vector fields Xnp+1, . . . Xnp−1 be defined on Sp−1, etc. We will be considering

compositions of flows of the following type:

φ
Xnk
tnk
◦ · · · ◦ φ

Xnk+1+1

tnk+1+1︸ ︷︷ ︸
onSk

◦ · · ·︸︷︷︸
onSk+1,... ,Sp−1

◦φ−X1
s1
◦ · · · ◦ φ

−Xnp
snp ◦ φ

Xnp

tnp
◦ · · · ◦ φX1

t1︸ ︷︷ ︸
onSp

(x0),

where the construction starts on the bottom stratum, Sp, using vector fields defined

there, and proceeds to the higher strata in order.

Also assume (as part of the induction hypothesis) that the mapping

(t1, . . . , tnp , . . . , tnk+1
) 7→ φ

Xnk+1
tnk+1

◦ · · · ◦ φ−X1
s1
◦ · · · ◦ φ

−Xnp
snp ◦ φ

Xnp

tnp
◦ · · · ◦ φX1

t1 (x0),

has rank nk+1, so the set

N
nk+1

k+1 = φ
Xnk+1
tnk+1

◦ · · · ◦ φ−X1
s1
◦ · · · ◦ φ

−Xnp
snp ◦ φ

Xnp

tnp
◦ · · · ◦ φX1

t1 (x0),

is a (nk+1)–dimensional manifold.

By continuity, there exists a neighborhood, Vk ⊂ Sk in which dim
(
∆Sk

)
is

constant. Since dim (Nk+1) < dim
(∑p

j=k ∆Sj |x0

)
, there exits a vector field, X ∈

∆Sk , and a point, x ∈ Vk, such that X(x) 6∈ TxNk. If this were not possible, then

X(x) ∈ TxNk+1 ∀X ∈ ∆Sk and x ∈ Vk. But this implies that ∆Sk ⊂ TNk+1.

Since, by construction, ∆Si ⊂ TNi ⊂ TNk+1 for i = (k + 1), . . . , p,

 p∑
j=k

∆Sj |x0

 ⊂ Tx0Nk+1,
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which implies that

dim

 p∑
j=k

∆Sj |x0

 ≤ dim (Nk+1)

which is a contradiction.

By exactly the same argument as before, then, the set

Nnk
k = φ

−Xnk+1+1

snk+1+1 ◦ · · · ◦ φ
−Xnk
snk

◦ φ
Xnk
tnk

◦ · · · ◦ φ−X1
s1
◦ · · ·

◦ φ
−Xnp
snp ◦ φ

Xnp

tnp
◦ · · · ◦ φX1

t1 (x0),

is an nk–dimensional manifold containing the point x0, and by construction Nk
p ⊂

RV (x0,≤ ε1+· · ·+εnp). HenceRV (x0, ε) contains x0 and an open set in the manifold

whose tangent space is ∆sp . By restricting each ε ≤ T/(2np), there is such an open

set for any T > 0. �

The proof of Proposition 4.2 now follows trivially by considering a nested se-

quence containing only one submanifold.

Note that it is not necessary that the nested sequence actually include the full

configuration space M . It may, in fact, terminate at some stratum, Sp. In such

a case, however, controllability amounts to reaching an open neighborhood of the

starting point in the relative topology of the highest stratum, Sp.

Also note that if the configuration space has a boundary, Proposition 4.4 still

applies with a simple modification of the proof. In a manner similar to that in the

proof, when extending the reachable set from the submanifold boundary into the

manifold in which it is contained, we can always choose the first vector field along

which the system flows to be the one that violates the constraint dΦi(x)ẋ = 0, in

the “allowable” direction (Section 4.4 elaborates more on this notion). However, in

the constructed “reversed” flow (Equation 4.5), do not include this reversed flow

corresponding to this vector field which moves the system off of the boundary. In

this case, the reachable set will be open in the interior of the manifold and contain

points arbitrarily close to points in the boundary. By assumption, it is possible to
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move from the interior of the manifold to points in the boundary. In this manner,

then, the final constructed manifold contains x0 and will be an open neighborhood

of x0 defined in the appropriate relative topology, i.e., the topology of a manifold

with boundary.

Digression: Manifolds with Boundary

At this point, a natural question is whether it would be beneficial to explicitly

incorporate into our analysis machinery associated with manifolds with boundary.

This seems appealing for at least two reasons. First, it is the case physically that

the configuration space for many stratified systems are actually manifolds with

boundary. Secondly, the basic manifold structure (including the tangent bundle, the

notion of diffeomorphisms and so on) is well developed (see, for example, Boothby

(1986) and Abraham, Marsden, and Ratiu (1988)). One would hope, then, that

the manifold with boundary structure, and associated machinery, lends itself to the

direct application of Chow’s theorem.

Mathematically, the primary purpose of manifolds with boundary seems to be in

connection with integration on manifolds, with the ultimate purpose of formulating

Stokes’ theorem. (In particular, the integral of an (n− 1)–form on the boundary an

n–dimensional orientable manifold is equal to the integral of its exterior derivative

over the manifold itself).

The problem with stratified systems that prevents the direct application of

Chow’s theorem (even recognizing the boundary structure) is the fact that the equa-

tions of motion on the boundary are not the same as the equations of motion in

the interior of the manifold. This is in contrast with Stokes’ theorem, where the

form on the boundary and the derivative of the same form in the interior are the

objects of interest. This leads to the necessity of treating the equations of motion

on a stratum by stratum basis, as was necessary in the proof of Proposition 4.4.

Additionally, as the equations of motion for the kinematic leg in Example 4.1 illus-

trates, the “natural” equations of motion for the system provide no indication that

there is a boundary present in the problem. For example, one cannot determine
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that there is a boundary by inspecting the vector fields that make up the equations

of motion for the leg when the foot is off the ground. In fact, the vector fields in the

equations of motion are well defined everywhere, including points in the boundary

and points corresponding to penetrating the ground. The presence of the boundary

is only indicated by the fact that we provide an additional set of equations that we

specify as the equations of motion on the boundary. Since the focus of the analysis

is on the vector fields in the equations of motion which do not naturally indicate the

boundary structure and since, unlike Stokes’ theorem, there is no natural relation-

ship between the equation of motion in the interior and the boundary, we choose not

to incorporate explicitly any manifold with boundary machinery, and treat possible

boundaries as simple submanifolds.

Combinations of Nested Sequences of Strata

Proposition 4.4 only directly applies to a single nested sequence of strata; however,

repeatedly applying the test to multiple sequences is possible. The usefulness of

this approach is that if the top stratum in each sequence is different, then the test

determines controllability for the union of the top strata. For example, for the

configuration space shown in Figure 4.3, Proposition 4.4 applied to the sequence

S12 ⊂ S1 will tell if the system can reach an open set in S1 and applied to S12 ⊂ S2

will tell if it can reach an open set in S2, and taken together, gives controllability

in the relative topology of the union S1 ∪ S2. This is useful because, for problems

like the biped from Example 2.10, reaching open sets in the relative topology of the

union of strata is often the most natural way to define controllability.

4.2.2 The Exterior Differential Systems Approach

This section and the following section offer two alternative approaches to the for-

mulation of Proposition 4.4. As mentioned in Section 2.2.2, in some cases these two

alternative formulations simplify the calculations necessary to determine controlla-

bility.

Recall the definition of the derived flag in Section 2.2.2. The derived flag de-
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Figure 4.3. Stratified open neighborhood.

scribes the integrability properties of the ideal generated by I. It follows from Frobe-

nius’ Theorem that I(N) is the largest integrable subsystem contained in I, therefore,

if I(N) is not empty, there exists functions h1, . . . , hr such that {dhi} ⊂ {I}. Thus,

if the bottom derived flag is not empty, there exists functions which describe a

foliation of the state space.

Recall that on M , there is collection of constraints

{ω0,1, . . . , ω0,m0},

and on a codimension one submanifold S1i there is the collection of constraints

{ω0,1, . . . , ω0,s, dΦ1iω
1,1, . . . , ω1,m1}.

On any stratum, SI , we will have all the regular constraints in the codistribution

along with the derivatives of the functions, ΦI which locally defines the stratum.

Let I
(N0)
M be the bottom derived flag for the constraints on M . Let I

(NSi )

Si
be the

bottom derived flag for the set of constraints on Si. Similarly to the manner of
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construction in the previous section, we can calculate derived flags associated with

each submanifold Si.

Proposition 4.5 If there exists a nested sequence of submanifolds

Spi ⊆ S(p−1)i ⊆ · · · ⊆ S1i ⊆ S0 = M,

such that the associated derived flags satisfy

I
(NSpi

)

Spi
∩ · · · ∩ I

(NS1i
)

S1i
∩ I

(NM )
M = 0,

at x0 then the system is STLC from x0.

Proof: Note that the subspace of TxM such that 〈v, ω〉 = 0, v ∈ TxM,ω ∈

span(I(NM )
M ) is ∆M |x. Similarly, the subspace of TxM such that 〈v, ω〉 = 0, v ∈

TxM,ω ∈ span(I
(NSi )

Si
) is and ∆Si |x. A complete explanation on the relationship

between the levels of the derived flags and distributions (in a filtration) can be found

in Murray (1994).

Now, the collection of tangent vectors that satisfies 〈v, ω〉 = 0, v ∈ TxM ,

ω ∈ span(I(NM )
M ) ∩ span(I

(NS1i
)

S1i
) ∩ · · · ∩ span(I

(NSpi
)

Spi
)

is the whole tangent space at x, TxM . Therefore

∆M |x +
∑

i

∆Si |x = TxM.

Thus, by Proposition 4.4, the system is STLC from x0. �

Example 4.6: (Kinematic leg — revisited) We now return to the simple kine-

matic leg example to illustrate the application of the exterior differential systems

approach.

In this case, the application of Proposition 4.5 is simple because the constraints

are integrable in all the strata. In particular, note that when the leg is not in contact
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with the ground, there is the constraint

dx = 0.

This constraint is integrable, so it is also the bottom derived system.

When the leg is in contact, there are the constraints

cos θdl− l sin θdθ = 0,

dx + sin θdl + l cos θdθ = 0.

Again, these constraints are integrable, so they comprise the bottom derived system.

Clearly,

span {dx} ∩ span {cos θdl− l sin θdθ, dx + sin θdl + l cos θdθ} = 0,

so the system is STLC. 2

Again, as in the construction using distributions, there is no necessity that the

highest stratum in the nested sequence be the entire configuration manifold. It could

be a stratum, SI . In this case, however, the intersections of the derived flags will

not be empty. This results from the fact that the functions defining the strata are

included in the codistribution describing the constraints, with the ultimate result

that for controllability on a stratum which is not S0 the bottom derived system will

contain the derivatives of the functions which describe that stratum. In practice,

this will be easy to recognize since these functions will typically be the height of the

feet off of the terrain. Section 4.3.2 contains an example illustrating this.

4.2.3 Principal Fiber Bundle Approach

A question naturally arises regarding whether there are any circumstances in which

the above analyses can be simplified. In many instances, particularly with robotic

systems, it is clear that the configuration manifold of the system is naturally consid-

ered in two parts, namely, the shape of the robot and its location in space. In such
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a context, the question of controllability is more naturally (and frequently more

simply) addressed by considering directly the relationship between changes in shape

and the resulting change in position in space.

The interpretation of the system’s configuration space as a principal fiber bundle

arises naturally in the study of robotic locomotion and many rigid body mechanical

systems. The configuration space associated to a such mechanisms can naturally be

decomposed into two sets of variables: those that describe the location of a frame

rigidly affixed to one of the system’s bodies, and those that describe the internal

shape of the system. The set of all possible location of the body fixed frame is the

set rigid body displacements, which is a Lie group: SE(2) for systems restricted to

motion in the plane, or SE(3) in general. Let G denote a Lie group and B the set

of internal shape variables.

Obviously, formulating controllability in terms of connections, and their curva-

ture is problematic when the connection is not continuous or sufficiently differen-

tiable. This section essentially combines the previous results in this dissertation to

extend the results of 3.2.3 to the stratified case. We emphasize the fundamental

assumptions in Kelly and Murray (1995); namely, that the constraints must be in-

variant under the action of the structure group and that there is full shape space

actuation, i.e., all the shape variables are directly controlled via an independent

control input. In a nutshell, in a manner similar to formulating controllability in

terms of the transversality of submanifolds of the configuration space of the con-

trolled system (as we did in the previous sections of this paper), we will formulate

controllability here in terms of direct sums of Lie subalgebras of the Lie algebra

associated with the Lie group giving rise to the principal fiber bundle structure.

As before, consider a nested sequence of strata

Sp ⊂ S(p−1) ⊂ · · · ⊂ S1 ⊂ S0 = M.

Assume, furthermore, that each strata, Si is a principal fiber bundle and so can

be expressed as Si = Bi × G, where the structure group, G is the same group
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for each stratum. Again, as before, if the equations of motion for the system on

each stratum are kinematic, then there is a connection defined on each stratum, Γi.

Now, in accordance with the construction illustrated in subsection 2.1.2, define the

sequence of Lie algebra subspaces hi
1, h

i
2, . . . , hi

k, . . . , associated with each stratum,

Si.

Proposition 4.7 If there exists a nested sequence of strata

Sp ⊂ S(p−1) ⊂ · · · ⊂ S1 ⊂ S0 = M,

such that

g =
p∑

i=0

∑
j

hi
j ,

then the system is weakly or fiber controllable. If

g =
p∑

i=0

∑
j 6=1

hi
j , (4.6)

then the system is strongly controllable (STLC).

Proof: The proof of Proposition 3.8 (Kelly and Murray (1995)) shows the equiva-

lence of Proposition 3.8 and Chow’s theorem. In particular, it is assumed that there

is complete shape space controllability in the sense that the equations of motion for

the system can be expressed as the horizontal lift of m linearly independent vector

fields defined on the shape space, B, where m is the dimension of B. Furthermore,

it is assumed that the Lie bracket between any of these vector fields is zero. Thus,

any “new directions” with result from bracketing contribute only in the fiber or

group directions.

In the case of strong controllability, then, there is a direct correspondence be-

tween the series hi
2 ⊕ hi

3 ⊕ · · · and the distributions ∆Si defined in association with
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Proposition 4.4. In particular,

∆Si = span {gi,1, . . . , gi,ni} ⊕ hi
2 ⊕ hi

3 ⊕ · · · , (4.7)

where the vector fields {gi,1, . . . , gi,ni} are the shape or base components of the

control vector fields on stratum S. For this sum to make sense, the base component

must be evaluated at the identity and each Lie algebra subspace, hi
j must be included

via an inclusion into TM . Now, the result follows from Proposition 4.4.

In the case of weak controllability, Proposition 3.8 is just Chow’s Theorem re-

stricted to the structure group, G. In this case, there is a correspondence with the

∆Si in Proposition 4.4 in that

∆Si = hi
1 ⊕ hi

2 ⊕ · · · .

Now, the result follows directly from Proposition 4.4. �

Note that unlike Propositions 4.4 and 4.5, for strong controllability, this result

requires that the last stratum in the sequence be the top stratum, because otherwise,

complete shape controllability is not guaranteed. Thus, if the sequence is truncated

at a lower stratum, the constraints in the shape space corresponding to various strata

may not allow complete shape space controllability. Alternatively, the sequence

can be truncated at a lower stratum if the sequence is such that, in combination,

the system has complete shape space actuation controllability. When considering

strong controllability in the union of a set of strata, one must consider the effect of

constraints on the shape of the robot on each sequence of strata. The example in

Section 4.3 will illustrate this concept. We emphasize that this limitation applies

only to strong controllability, not weak controllability, because, in that case, the

shape is irrelevant.

In contrast to this limitation, however, one aspect of this result is, in fact, too

restrictive. In Proposition 3.8, the result for strong controllability is the sum of Lie

algebra subspaces not including h1 because these are the terms that give complete

controllability over the shape space. The Lie algebra subspaces, hi, i > 1, are the
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Lie bracket terms that give rise to controllability in the group directions. In the

above Proposition 4.7, in condition for strong controllability where none of the hj
1

are considered in Equation 4.7 is in fact too strong. As long as some of the hj
1 span

all the shape directions, the other ones may be considered to give controllability in

the group directions; however, which of the hk
i ’s that can be included in the sum in

Equation 4.6 is problem specific, and thus cannot be set forth in a general form.

4.3 An Example

Because the kinematic leg example was so simple, it is instructive to include a more

complicated example. The following is adapted from Kelly and Murray (1995).

Consider the six–legged robot shown in Figure 4.4. It will be clear from the equations

of motion for the system that each leg has only two degrees of freedom. In particular,

the leg can move “up and down” and “forward and backward,” but not “side to side”

(in a direction outward from the body). In such a case it is not obvious how the

robot can move in any direction.

Assume that the robot walks with a tripod gait, alternating movements of legs

1–4–5 with movements of legs 2–3–6. Hence, we are considering motions in only a

subset of all possible strata. Suppose that

ẋ = cos θ (α(h1)u1 + β(h2)u2)

ẏ = sin θ (α(h1)u1 + β(h2)u2)

θ̇ = lα(h1)u1 − lβ(h2)u2

φ̇1 = u1

φ̇2 = u2

ḣ1 = u3

ḣ2 = u4

where (x, y, θ) represents the planar position of the center of mass, φi is the front

to back angular deflection of the legs and hi is the height of the legs off the ground.
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Figure 4.4. Six legged robot.

The tripod gait assumption requires that all the legs in a tripod move with the same

angle φ̇i. The inputs u1 and u2 control the leg swing velocities, while the inputs u3

and u4 control the leg lifting velocities.

The functions α(h1) and β(h2) are defined by

α(h1) =

 1 if h1 = 0

0 if h1 > 0
β(h2) =

 1 if h2 = 0

0 if h2 > 0

(recall the tripod gait assumption: legs 1–4–5 move in unison as do legs 2–3–6 ).

Denote the stratum when all the feet are in contact (α = β = 1) by S12 (short for

S123456), the stratum when leg one is in contact (α = 1, β = 0), by S1 (short for

S145), the stratum when leg two is in contact (α = 0, β = 1), by S2 (short for S236).

and the stratum when no legs are in contact (α = β = 0), by S0.

This is a very simple model. In fact, it would not be possible to actuate both

control inputs u1 and u2 independently without the feet slipping on the ground.

However, if we allow the feet to slip as required by the equations of motion, then

these equations roughly model the effect of the net frictional force on the body of

the robot if the unactuated legs are completely passive. The “twisting” in the θ

direction accounts for the fact that two feet are pushing on one side of the body;

whereas, only one foot is pushing on the other side. This is a somewhat unsatisfying

model in that it requires an “unnatural” consideration of forces when considering a
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purely kinematic model. However, we adopt it for clarity of presentation. A slightly

more sophisticated model of this same robot is considered in Section 5.3.

4.3.1 The Distribution Approach

If all legs are in contact with the ground, the equations of motion are



ẋ

ẏ

θ̇

φ̇1

φ̇2


=



cos θ cos θ 0 0

sin θ sin θ 0 0

l −l 0 0

1 0 0 0

0 1 0 0




u1

u2

u3

u4

 (4.8)

where u3 and u4 are constrained to be 0. Note that if f represents the first column,

and g represents the second column, then

[f, g] =



−2l sin θ

2l cos θ

0

0

0


and [[f, g], f ] =



2l2 cos θ

2l2 sin θ

0

0

0


. (4.9)

Clearly, with all the legs in contact with the ground, these vector fields span the

(x, y, θ) directions. However, at this point we have not generated enough directions

to span all the shape variables as well.

If legs 1, 4 and 5 are in contact with the ground, but legs 2, 3 and 6 are not in
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contact, the equations of motion are



ẋ

ẏ

θ̇

φ̇1

φ̇2

ḣ2


=



cos θ 0 0 0

sin θ 0 0 0

l 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1




u1

u2

u3

u4

 (4.10)

where u3 is constrained to be 0.

If legs 2, 3 and 6 are in contact with the ground and legs 1, 4 and 5 are not,

then the equations of motion are



ẋ

ẏ

θ̇

φ̇1

φ̇2

ḣ1


=



0 cos θ 0 0

0 sin θ 0 0

0 −l 0 0

1 0 0 0

0 1 0 0

0 0 1 0




u1

u2

u3

u4

 (4.11)

where u4 is constrained to be 0.

If none of the legs are in contact with the ground,



ẋ

ẏ

θ̇

φ̇1

φ̇2

ḣ1

ḣ2


=



0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




u1

u2

u3

u4

 . (4.12)

If we consider either the distributions associated with the sequence S12 ⊂ S1 ⊂
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S0 or S12 ⊂ S2 ⊂ S0, the distributions spanned by the vector fields comprising

Equations 4.8, 4.9, 4.10 and 4.12, or the distributions spanned by the vector fields

comprising Equations 4.8, 4.9, 4.11 and 4.12, respectively, the hypotheses of Propo-

sition 4.4 are satisfied. Note that this example has the somewhat unrealistic require-

ment of considering the equations of motion when none of the feet are in contact

with the ground. In fact, this is required for controllability in the entire configuration

space since both leg heights are variables.

Since it is undesirable to lift all the feet of the robot out of contact with the

ground at once, a better notion of controllability may be to ask that the system

reach an open set in the union S1 ∪ S2. Thus, we need to consider the nested

sequences S12 ⊂ S1 and S12 ⊂ S2 simultaneously. From Equations 4.8, 4.9 and

4.10, the sum of the associated distributions is six dimensional, as is the sum from

Equations 4.8, 4.9 and 4.11. Thus, the system is controllable because it can reach an

open neighborhood of a starting point in the bottom strata defined in the relative

topology of the union S1 ∪ S2.

Note also, that for this particular model, all gaits are controllable because the Lie

brackets in Equation 4.9 span the (x, y, θ) directions. Since the robot is kinematic,

whenever a foot is not in contact with the ground, the motion of that leg will be

decoupled and independent of the other degrees of freedom of the robot. Thus, with

the (x, y, θ) directions spanned with all the feet in contact with the ground, control

over the leg variables is obtained whenever any of the feet are not in contact with

the ground, thus giving controllability for any gait which allows each foot out of

contact with the ground at some point during the gait.
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4.3.2 The Exterior Differential Systems Approach

When all legs are in contact with the ground, the constraints are

ω12,1 = dx− cos θ(dφ1 + dφ2) = 0

ω12,2 = dy − sin θ(dφ1 + dφ2) = 0

ω12,3 = dθ − ldφ1 + ldφ2 = 0

ω12,4 = dh1 = 0

ω12,5 = dh2 = 0.

Computing the derived system for this system,

I
(1)
S12

= {− csc θdφ1 − csc θdφ2 + cot θdx − cot2 θdy + csc2 θdy,

ldφ2 − ldφ1 + dθ, dh1, dh2},

and

I
(2)
S12

= {−ldφ1 + ldφ2 + dθ, dh1, dh2},

which is clearly the bottom derived system.

When legs 1, 4 and 5 are in contact with the ground, but legs 2, 3 and 6 are not

in contact, the constraints are

ω1,1 = dx− cos θdφ1 = 0

ω1,2 = dy − sin θdφ1 = 0

ω1,3 = dθ − ldφ1 = 0

ω1,4 = dh1 = 0.

Computing the derived flag for this system,

I
(1)
S1

= {dy − dφ1 sin θ,− cos θdφ1 + dx,−ldφ1 + dθ, dh1},
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which is the bottom derived system on S1.

When legs 2, 3 and 6 are in contact with the ground, but legs 1, 4 and 5 are not

in contact, the constraints are

ω2,1 = dx− cos θdφ2 = 0

ω2,2 = dy − sin θdφ2 = 0

ω2,3 = dθ − ldφ2 = 0

ω2,4 = dh2 = 0.

Computing the derived flag for this system,

I
(1)
S2

= {dy − dφ2 sin θ,− cos θdφ2 + dx,−ldφ2 + dθ, dh2},

which is the bottom derived system on S2.

When none of the legs are in contact with the ground,

ω0,1 = dx = 0

ω0,2 = dy = 0

ω0,3 = dθ = 0.

Clearly, the bottom derived system is

I
(1)
S0

= {dx, dy, dθ}.

Now, the hypotheses of Proposition 4.5 are satisfied by either the nested sequence

S12 ⊂ S1 ⊂ S0, or S12 ⊂ S2 ⊂ S0. As before, we can also consider controllability

relative to the topology of the union S1∪S2. The intersection of the bottom derived

systems associated with the nested sequence S12 ⊂ S1 contains only {dh1}, so the

system can reach an open set in S1. Similarly, intersection of the bottom derived

systems associated with the nested sequence S12 ⊂ S2 contains only {dh2}, so the

system can reach an open set in S2. Thus, the robot is controllable in S1 ∪ S2.
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4.3.3 The Principal Fiber Bundle Approach

The configuration space splits globally into shape and group variables. The vari-

ables (x, y, θ) can locally parameterize the group SE(2), and the remaining variables,

(φ1, φ2, h1, h2), describe the shape. From Kelly and Murray (1995), the local con-

nection one form for the hexapod is given by

A(x) =


−α(h1)dφ1 − β(h2)dφ2

0

−lα(h1)dφ1 + lβ(h2)dφ2


and that the curvature is given by

DA =


−dα ∧ dφ1 − dβ ∧ dφ2

0

−ldα ∧ dφ1 + ldβ ∧ dφ2

+


0

2lαβdφ1 ∧ dφ2

0

 .

For the upcoming computations, define the two vector fields X1 = ∂
∂φ1

and X2 = ∂
∂φ2

.

When both feet are in contact with the ground,

A12(x) =


−dφ1 − dφ2

0

−ldφ1 + ldφ2

 and DA12 =


0

2ldφ1 ∧ dφ2

0

 .

The vectors

A12 ·X1 =


−1

0

−l

 , and A12 ·X2 =


−1

0

l

 , (4.13)
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span h12
1 , and the vector

DA12 · (X1,X2) =


0

2l

0

 , (4.14)

spans h12
2 . Clearly, at this point, the group directions are spanned, and so the robot

is weakly controllable from Proposition 4.7 without even considering the higher

strata.

For strong controllability, we must consider the higher strata. When leg 1 is in

contact with the ground, and leg 2 is not in contact,

A1(x) =


−dφ1

0

−ldφ1

 and DA1 = 0.

When leg 2 is in contact with the ground, and leg 1 is not in contact,

A2(x) =


−dφ2

0

ldφ2

 and DA2 = 0.

The vectors

A1 ·X1 =


−1

0

−l

 and A2 ·X2 =


−1

0

l

 .
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Constructing the Lie algebra subspaces in accordance with Proposition 4.7,

h12
1 = spanA12(x)

h12
2 = spanDA12(x)

h1
1 = spanA1(x)

h2
1 = spanA2(x)

h0
1 = 0.

As before, considering S12 ⊂ S1 ⊂ S0, we have g = h12
1 ⊕ h12

2 and excluding

h0
1 from the sum gives strong controllability. The same is true for S12 ⊂ S1 ⊂ S0.

Considering S12 ⊂ S1 and S12 ⊂ S1 simultaneously, g is spanned by the connection

and its curvature on S12, and in combination S1 and S2 allow for complete shape

controllability (each allows control over a different leg height).

4.4 General Stratified Systems

This Section extends the previous results to overcome the limitation in Proposi-

tions 4.4 and 4.5 which considered only the geometry of a nested sequence of sub-

manifolds, thus possibly excluding the effect of multiple submanifolds with the same

codimension.

First, we must consider the structure of a general stratified system in more detail.

Recall the definitions of the bottom and higher strata from Section 2.3. At a point,

x, the lowest dimension stratum containing the point x is the bottom stratum, and

any other submanifolds containing x are higher strata. Denote an arbitrary stratum

by SI = Si1i2···in , I = {i1i2 · · · in}, and note that its codimension is n, the length of

the multi–index subscript.

Assume that at point, x0, the stratum SB = Si1i2···in is the bottom stratum. We

will refer to the level of the stratum as its codimension. Thus, the bottom stratum is

on the nth level, the (n− 1)th level contains all the strata with codimension (n− 1),

and so forth. It is easy to verify that if every stratum is accessible, then kth level
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Figure 4.5. Four level stratification.

contains  n

k

 =
n!

(n− k)!k!

strata. Figure 4.5 illustrates the combinatorial structure of a stratification with four

levels. In Figure 4.5, the nodes of the graph correspond to the different strata. The

edges connecting the nodes indicate whether it is possible for the system to move

from one stratum to another, i.e., if the nodes are connected by an edge, then the

system can move between the strata, if there is no edge, then the system cannot

move between the strata. Note that while the figure simply illustrates edges between

nodes only one level apart, it may be the case that multi–level jumps are possible,

in which case there would be an edge connecting strata of two levels that are more

than one level apart.
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If there are n codimension one strata, then the total number of strata is

n∑
k=1

 n

k

 = 2n − 1,

which clearly increases quickly with n. The corresponding graph structure also grows

similarly in complexity. Even with this simplistic pictorial view, it is evident that the

a general stratified configuration space is characterized by an interesting algebraic

structure. Specifically, as illustrated by the dotted lines connecting the strata, there

is an naturally defined graph structure in which to consider the problem. Note that

one way to consider a gait is simply a choice of a cyclic path through this graph

structure. Specify a gait as an ordered sequence of strata,

G = {SI1 , SI2, . . . , SIn , SIn+1 = SI1}. (4.15)

In this ordered sequence, the first and last element are identical, indicating that the

gait is a closed loop. Clearly, in order for the gait to be meaningful, it must be

possible for the system to switch from stratum SIi to SIi+1 for each i. In Figure 4.5,

this corresponds to each stratum SIi in the sequence being connected to SIi+1 and

SIn being connected to SI1. Limitations on gaits, such as stability requirements,

could be expressed as limitations (possibly as a function of configuration) on the

cyclic gait paths.

Here assume that we know the physical constraints on the system and the man-

ner by which these constraints are manifested as constraints in its graph repre-

sentation. In other words, assume that there is a collection of strata (or nodes),

S = {SI1, SI2 , . . . , SIn} which are deemed “permissible,” and similarly a collection

of “permissible” edges connecting the nodes, denoted by

C = {(SI1 , SJ1), (SI2 , SJ2), . . . , (SIn, SJn)}.

Which strata and edges are permissible may, of course, be a function of the config-

uration of the system.
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Whether a stratum is permissible depends upon whether the equations of motion

for the system can be expressed as a kinematic system (recall Equation 3.1), in a

neighborhood of the point of interest. For example, for a biped robot, clearly if it

lifts both feet off of the ground, it is not a kinematic system because the fact that

gravity will make it fall back to the ground.

Whether or not edges between nodes are permissible is a more complicated issue.

We have assumed that the system can always move off of a stratum into a higher

stratum (recall Equation 2.19). Clearly, a system can always return to a stratum

from whence it came. The more difficult problem is whether the system can leave

a stratum into a higher stratum, and then move to a different substratum of the

higher stratum. The answer to this question is different depending upon whether

the strata are defined by boundaries or simple submanifolds.

Consider the situation illustrated in Figure 4.6. Assume that starting from S12

the reachable sets in S1 and S2 are open in their respective topologies. Further as-

sume that the foliation associated with the control system on S0 are one–dimensional

lines as shown. For this system, it is not possible to leave either S1 or S2 and move

to the other stratum if S1 and S2 are boundaries. If S1 and S2 were not boundaries,

then it would be possible to flow “through” S1 to S2 and vice–versa.

If the strata are defined by simple submanifolds, then locally, the reachable set

on the higher stratum, SH must intersect each of the substrata. If the substrata

are codimension one submanifolds of the higher stratum, this will always be true

since we have assumed that there is a vector field that moves the system off of any

stratum. Because it is a codimension one submanifold, the stratum and reachable set

will then intersect transversely. Recall that two submanifolds intersect transversally

if

TxS1 + TxS2 = TxM, (4.16)

where S1 and S2 are submanifolds of M . If S1 and S2 are transversal, then following

theorem (Corollary 3.5.13 of Abraham, Marsden, and Ratiu (1988)) is useful.
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Figure 4.6. Stratification that prohibits a gait.

Lemma 4.8 If S1 and S2 are transversal and have finite codimension in M , then

codim (S1 ∩ S2) = codim (S1) + codim (S2) .

If the strata are actually boundaries of the manifold, then the reachable set in the

higher stratum, SH , must intersect the substrata with a particular orientation. We

refer the reader to Abraham, Marsden, and Ratiu (1988) for a complete exposition

on orientations of manifolds and adopt a rather simplistic approach here. Note

that for a codimension one stratum, Si, with corresponding level set function Φi,

the exterior derivative of Φi, dΦ, in a local sense defines an “orientation” in the

following manner. If dΦ 6= 0 in a neighborhood of a point, x0, then, the set of

tangent vectors, v ∈ Tx0 oriented “into” Si are those that satisfy 〈v, dΦi〉 < 0.

Thus, if there exists a vector field, g defined on S0 such that 〈g, dΦ1〉 < 0 and

〈g, dΦ2〉 > 0, the system will be able to locally “hop” from S1 to S2. Intuitively,

the way to interpret this is that the vector points into one stratum and out of the

other.
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Figure 4.7. The simplified hexapod graph.

Note that for applications such as robotic systems, whether or not it is possible

to move from a higher stratum onto a lower stratum naturally will be obvious from

the kinematics of the problem.

Example 4.9: (Hexapod — revisited) Recall that the hexapod example in

Section 4.3, assumed that the hexapod walked with a tripod gait. That assumption

reduced the high dimensional and complex graph structure of the system to a very

low dimensional and simple one, as illustrated in Figure 4.7. The arrows in the

figure represent the tripod gait.

Note that, for this problem, it will always be possible for the system to move

from a higher stratum onto the bottom stratum. This is manifested in the fact that

the robot can always put its feet on the ground regardless of its configuration. 2

4.4.1 Gait Controllability

This section considers the problem of whether a particular gait is controllable. Recall

that a gait is defined as a cyclic path through the graph structure discussed in

Section 4.4 and illustrated in Figure 4.5. In this section, we will limit our attention

to a particular form of controllability; namely, gait controllability. Assume that

if SIi+1 ⊂ SIi , then the reachable set is transversal to the substratum, SIi+1. As

noted previously, this is natural if dim
(
SIi+1

)
= dim (SIi)− 1. Switches between

strata with dimensions which vary by more than one are allowable as long as this
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transversality assumption is satisfied.

In the complete stratified structure, there is one bottom stratum, defined by

the intersection of all the codimension one strata in the configuration space. In

Figure 4.5, this corresponds to stratum S1234. For a locomotion system, such as

a legged robot, this bottom stratum corresponds to the set of points in the con-

figuration space where all the feet are in contact with the ground. Now, for gait

controllability, the reachable set, RV (x0,≤ T ), is defined as before, but is restricted

to control inputs consistent with the gait, i.e., the reachable set must be constructed

consistent with the ordering of the strata that define the gait.

Definition 4.10: (Gait controllability) A gait, G = {SI1 , SI2, . . . , SIn, SI1} is

gait controllable from the point x0 if the reachable set RV (x0,≤ T ) (defined in

Equation 3.2 and consistent with the gait) contains a neighborhood of x0 for all

neighborhoods V of x0 and T > 0, where the neighborhood is defined by the topology

of the lowest stratum, SI1. 2

Example 4.11: (Kinematic leg — revisited) In the simple kinematic leg exam-

ple, Example 4.1, illustrated in Figure 4.1, the bottom stratum is the set of points

q = (x, l, θ) such that

l cos θ = h, (4.17)

for some fixed height, h. This is most naturally parameterized by the variables x

and θ, and so an open set in S corresponds to reaching an open neighborhood of x

and θ, where l is subject to the constraint expressed by Equation 4.17. 2

Let ∆I denote the involutive closure of the control distribution on SI , where the

subscripted index for ∆I corresponds to the subscripted index for the stratum SI

to which it is associated. Now construct the gait distribution. Given a gait, G, the

gait distribution is constructed as follows. First, let D1 = ∆SI1
. If SI1 ⊂ SI2, then

let D2 = D1 + ∆S2 (implicitly assuming the appropriate inclusion of D1 into S2);

else, if SI2 ⊂ SI1, then let D2 = (D1 ∩ S2)+∆S2. In general, then, Di = Di−1 +∆Si

if SIi−1 ⊂ SIi , and Di = (Di−1 ∩ Si) + ∆Si if SIi ⊂ SIi−1 .
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In fact, the term “gait distribution” is a slight misnomer because the sum of the

distributions in the construction of the gait distribution only make sense for points

in the bottom stratum. Therefore, the gait distribution is not actually a section

of the tangent bundle of the full configuration space. However, for our purposes,

evaluating the sums at the point x0, so it is just a vector space, will suffice.

Proposition 4.12 If

dim (Dn) = dim Tx0SI1,

then the system is gait controllable from x0.

Proof: Our proof relies on one corollary to Proposition 4.4 and one lemma.

Corollary 4.13 In the construction of the gait distribution, if SIi ⊂ SIi+1, then

the dimension of the reachable set increases by the same amount as the increase in

dimension between DIi and DIi+1 and contains the point x0.

Lemma 4.14 In the construction of the gait distribution, if SIi+1 ⊂ SIi, then the

dimension of the reachable set increases by the same amount as the increase in

dimension between DIi and DIi+1 minus the difference between the dimensions of

SIi+1 and SIi.

Proof: This follows from the transversality assumption and the codimension result

of Theorem 4.8. H

It follows that in the construction of the gait distribution that the dimension of

the reachable set will be the dimension of Dn. If the first and last strata in the gait

G is the bottom stratum, then the result follows since the reachable set it contained

in SI1 and has dimension equal to the dimension of SI1. �

4.4.2 Gait Controllability of the Hexapod Robot Example

This section returns to the hexapod robot example considered in Section 4.3. Here,

however, we consider gait controllability, as opposed to regular controllability.
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The first step is to construct the gait distribution. Take as the gait the following

sequence of strata:

G = {S123456, S145, S123456, S236, S123456},

as illustrated in Figure 4.7. To simplify notation, let S12 = S123456, S1 = S145 and

S2 = S236. The equations of motion for the system restricted to the bottom stratum,

S12 are given in Equation 4.8. Also, a Lie bracket is necessary to construct ∆12, as

given in Equation 2.2. By inspection, ∆12 = D1 has a dimension of three.

Next extend the construction to S1. Since S12 ⊂ S1, D2 = D1 + ∆1, where ∆1

is determined from Equation 4.10. By inspection, then, dim (D2) = 5.

The construction next returns to the bottom stratum, S12. Note that S12 is a

codimension 1 submanifold of S1. Also, since D2 contains the basis vector ∂
∂h1

, it

is clear that the transversality assumption in Equation 4.16 is satisfied. Therefore,

dim (D3) = dim (D2)− 1 = 4.

The construction is next extended to stratum S2. As with S1, S2 increases the

dimension of D4 by two, so that dim (D4) = 6. “Projecting” this back down to S12

as before gives the dimension of the reachable set to be 5, which is the dimension

of S12. Therefore, the hexapod example is gait controllable.

4.4.3 Gaits and Connections

Now consider the case when the system has the properties described in Section 4.2.3,

namely, each stratum in the gait is a principal fiber bundle with the same structure

group. As before, assume that each stratum is a globally trivial principal fiber

bundle, which can be written as Si = Bi × Gi. A consequence of this assumption

is that for the entire configuration manifold, S0 = M = B0 × G, the stratification

is of the base space, B0 and not G. Since gait controllability was defined in terms

of controllability in the bottom stratum only, we will consider only weak or fiber

controllability. (The notion of strong controllability requires us to consider the entire

configuration space).
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Given a gait, G = {SI1 , SI2, . . . , SIn, SI1}, associated with each stratum, SI

is a connection, ΓI , and a corresponding sequence of Lie algebra subspaces, hI
i

constructed in accordance with Proposition 3.8. Observe that since only the base

space is stratified, restricting the dimension of the reachable set as in Lemma 4.14

only restricts the reachable set in the shape or base space, i.e., the reachable set in

the group or fiber space is unaffected. Thus, we have the following Proposition.

Proposition 4.15 If

∑
I

∑
i

hI
i = g,

then the system is weakly controllable.

Note that one nice aspect of this proposition is that there is no need to keep a

dimension count as in Proposition 4.12.

Example 4.16: (Hexapod Robot — Revisited) The Lie algebra subspaces

h12
1 and h12

2 span g, so any gait which contains the bottom stratum will be weakly

controllable. 2

4.5 Conclusions

This chapter presented controllability tests for stratified systems. In particular,

three controllability tests from nonlinear control which are applicable to smooth

systems were extended to encompass the stratified case. The first test was based

on calculations involving distributions, the second test used tools from exterior dif-

ferential systems and the third test used results specific to systems on principal

fiber bundles. An additional contribution of this chapter was the controllability test

for gaits, which provides sufficient conditions for a specified gait to be controllable.

Note that the result for gait controllability is not necessarily limited to legged lo-

comotion problems. For example, as long as the kinematic assumption is valid on

each strata and the grasp has the force–closure property (see Murray, Li, and Sastry
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(1994) for a definition and discussion of force–closure), it applies to multi–fingered

robotic grasping problems as well. The main limitation of these results is that they

are limited to kinematic system. In the legged locomotion context, this limits their

applicability to quasi–static locomotion.
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Chapter 5

Stratified Motion Planning

In contrast to controllability, which is an analysis tool, the motion planning problem

is constructive, such that the ultimate goal is to determine control inputs so that

the system will behave in a particular manner. Controllability is not completely

unrelated, however. It will be clear subsequently that a form of gait controllability

is a necessary condition for the motion planning method presented in this chapter.

This chapter extends the procedure outlined in Section 3.4, which only works for

smooth systems, to kinematic legged systems with a stratified configuration space.

5.1 Legged Trajectory Generation

The main difficulty with stratified systems is that the various sets of equations of

motion are defined on different spaces. Since we are ultimately required to consider

the vector fields associated with each stratum in one common space, vector fields

on different strata must have a particular relationship. In this case, that common

space will be the bottom stratum and the particular relationship will involve Lie

bracket. A few examples will help motivate this.

Example 5.1: Consider the simple biped configuration space as shown in Fig-

ure 2.2. Assume that on stratum S12, the vector field g1,1 moves the system off of

S12 and onto S1, and correspondingly, g2,1 moves the system off of S12 onto S2. Also,

consider the vector fields g1,2 and g2,2, defined on S1 and S2 respectively. Consider
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Figure 5.1. Sequence of flows.

the following sequence of flows, starting from the point x0 ∈ S12

xf = φt6
−g2,1︸ ︷︷ ︸

S12←S2

◦ φt5
g2,2︸︷︷︸

on S2

◦ φt4
g2,1︸︷︷︸

S2←S12

◦ φt3
−g1,1︸ ︷︷ ︸

S12←S1

◦ φt2
g1,2︸︷︷︸

on S1

◦ φt1
g1,1︸︷︷︸

S1←S12

(x0). (5.1)

The notation under each flow indicates what the flow is doing, e.g., “S12 ← S1”

means that the flow takes the system from S1 to S12 and “on S1” means that the

flow was entirely on S1. This sequence of flows is illustrated in Figure 5.1. In this

sequence of flows, the system first moved off of the bottom stratum into S1, flowed

along the vector field g1,2, flowed back onto the bottom stratum, off of the bottom

stratum onto S2, along vector field g2,2 and back to the bottom stratum.

It is clear from the Campbell–Baker–Hausdorff formula (Equation 2.3) that if

the Lie bracket between two vector fields is zero, then their flows commute. Thus,

if

[g1,1, g1,2] = 0 and [g2,1, g2,2] = 0, (5.2)
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we can reorder the above sequence of flows, by interchanging the flow along g1,1 and

g1,2 and the flows along g2,1 and g2,2 as follows

xf = φt5
g2,2
◦ φt6
−g2,1︸ ︷︷ ︸

interchanged

◦φt4
g2,1
◦ φt2

g1,2
◦ φt3
−g1,1︸ ︷︷ ︸

interchanged

◦φt1
g1,1

(x0). (5.3)

If t1 = t3 and t4 = t6, this reduces to

xf = φt4
g2,2
◦ φt2

g1,2︸ ︷︷ ︸
on S12

(x0). (5.4)

Note that that g1,2 and g2,2 are vector fields in the equations of motion for the

system on S1 and S2, respectively, but not on S12. However, the sequence of flows

in Equation 5.1, where each flow occurs on a stratum where the associated vector

field is in the equations of motion results in the same flow as in Equation 5.3, where

the vector fields are evaluated on the bottom stratum, even though they are not

part of the equations of motion there. Furthermore, note that if the vector fields

g1,2 and g2,2 are tangent to the substratum S12, then the resulting flow given in 5.3

will remain in S12. In fact, it is implicitly required in the above argument that at

least g1,2 is tangent to S12.

As a concrete example, consider a biped robot. The above sequence of flows

corresponds to lifting one foot out of contact with the ground, moving it parallel

to the ground, replacing the foot back in contact with the ground and then doing

exactly the same motion with the other foot. Equation 5.4 represents the fact that

the final net motion is exactly equivalent to sliding each foot along the ground with-

out ever lifting each foot out of contact. In fact, this sliding motion is not allowed

by the equations of motion, but it does give the same net flow. The significance of

this fact is that, for the purposes of motion planning, one can consider such sliding

motions as part of the equations of motion on the bottom stratum, thus increasing

the number of vector fields available for the motion planning method outlined in

Section 3.4.

If the bottom stratum is described by the level set of a function, ΦB, and if a
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vector field, g1,2 is not tangent to the bottom stratum, then, 〈dΦB, g1,2〉 = f1(x) 6= 0.

Also, since the vector field g1,1 moves the foot out of contact, we similarly have

〈dΦB, g1,1〉 = f2(x) 6= 0. Then, the vector field, g̃1,2 = g1,2 − f1(x)
f2(x)g1,1, is tangent to

SB because

〈dΦB, g̃1,2〉 = 〈dΦB, g1,2〉 −
f1(x)
f2(x)

〈dΦB, g1,1〉 = 0. (5.5)

2

Henceforth, we will just assume that the vector field on the higher stratum is

tangent to the lower stratum, and note that if it is not tangent, we can modify it to

be so in the above manner.

Example 5.2: Now consider a slightly more complicated sequence of flows using

the same stratification and vector fields as in Example 5.1. Consider

xf = φt12
−g2,1

◦ φt11
−g2,2

◦ φt10
g2,1
◦ φt9
−g1,1

◦ φt8
−g1,2

◦ φt7
g1,1

◦φt6
−g2,1

◦ φt5
g2,2
◦ φt4

g2,1
◦ φt3
−g1,1

◦ φt2
g1,2
◦ φt1

g1,1
(x0).

The first six flows in this example are the same as in Example 5.1. However, following

the first six flows are six more flows wherein the flows that are entirely on S1,

i.e., the flow along g1,2, and entirely on S2, i.e., the flow along g2,2, are in the

negative direction. If the Lie brackets are zero as in in Equation 5.2, and ti = ti+2,

i = 1, 4, 7, 10 the flows on and off of S12 can be rearranged as

xf = φt11
−g2,2

◦ φt8
−g1,2

◦ φt5
g2,2
◦ φt2

g1,2
(x0).

Now, if t2 = t5 = t8 = t11,

xf = φt11
−g2,2

◦ φt8
−g1,2

◦ φt5
g2,2
◦ φt2

g1,2
(x0) = φt2

[g1,2,g2,2] +O(t3)(x0),

where t = t2 = 55 = t8 = t11 � 1, thus, providing a net flow in S12 in the direction

of the Lie bracket between vector fields which are in the equations of motion for the
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Figure 5.2. Sequence of flows for example 5.3.

system on different strata, S1 and S2. 2

Example 5.3: Now, consider a third example. Consider the strata, S123 ⊂ S12 ⊂

S1, and let g123,1 move the system from S123 into S12. Let g12,1 move the system

from S12 into S1 and let g12,2 be a vector field defined on S12. Finally, let g1,2 be a

vector field defined on S1. Consider the following sequence of flows

xf = φt6
−g123,1︸ ︷︷ ︸

S123←S12

◦φt5
−g12,1︸ ︷︷ ︸

S12←S1

◦φt4
g1,2︸︷︷︸

onS1

◦ φt3
g12,1︸ ︷︷ ︸

S1←S12

◦φt2
g12,2︸ ︷︷ ︸

onS12

◦ φt1
g123,1︸ ︷︷ ︸

S12←S123

(x0).

These flows are illustrated in the graph representation of the stratification in Fig-

ure 5.2. Now, if [g12,1, g1,2] = 0 and t3 = t5, this reduces to

xf = φt6
−g123,1

◦ φt4
g1,2
◦ φt2

g12,2
◦ φt1

g123,1
(x0), (5.6)

and if [g123,1, g1,2] = 0 and [g123,1, g12,2] = 0, (which implicitly requires that g1,2 be

tangent to S12) then Equation 5.6 can be reduced to

xf = φt4
g1,2
◦ φt2

g12,2
(x0),
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as long as g1,2 and g12,2 are tangent to S123.

This example illustrates that multi–level “jumps” between higher and lower

strata are possible if all the vector fields that move the system off of a substra-

tum are decoupled from all vector fields defined on that and higher level strata in

the sense that their Lie bracket is zero. Again, if the tangency requirements are not

met, the vector fields can be “parallelized” as in Equation 5.5 of Example 5.1. 2

Example 5.4: As a final example, consider the following sequence of flows, which

are illustrated in Figure 5.3

xf = φt7
g13,1︸ ︷︷ ︸

S123←S13

◦φt6
g1a3,2︸ ︷︷ ︸

on S13

◦ φt5
g1,3︸︷︷︸

S13←S1

◦ φt4
g1,2︸︷︷︸

on S1

◦ φt3
g1,1︸︷︷︸

S1←S12

◦ φt2
g12,2︸ ︷︷ ︸

on S12

◦ φt1
g12,1︸ ︷︷ ︸

S12←S123

(x0). (5.7)

As illustrated in Figure 5.3, this can represent a gait of a three legged robot com-

prising the following steps:

1. lift foot 3 out of contact with the ground, (S12 ← S123);

2. lift foot 2 out of contact with the ground, (S1 ← S12);

3. replace foot 3 on the ground, (S13 ← S1); and,

4. replace foot 2 on the ground, (S123 ← S13).

Interestingly, note that lifting a foot and placing it down do not necessarily occur

on the same stratum. For example, foot 3 is lifted off of the ground by a vector

field defined in stratum S12, and replaced in contact by flowing along a vector field

defined in S1. Obviously, our desire is to get these two flows to cancel each other as

illustrated in the previous examples, and the only way for this to be possible is for

them to be defined on the same manifold. The obvious choice for this manifold is

the lower stratum since it is more natural to consider a restriction of a vector field

to a submanifold than to construct an (artificial) extension of a vector field into a

higher stratum.

Returning to the example illustrated in Figure 5.3, if we have

[g1,3, g1,2] = 0, [g1,2, g1,1] = 0, and [g1,1, g1,3] = 0,



96

123
S

S
12S

13

S
1

g
12,1

g
1,1

g
12,2

g
1,2

g
13,1

g

g

1,3

13,2

replace foot 3

lift foot 3

lift foot 2

replace foot 2
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then their corresponding flows (on S1) commute. Thus, the flow in Equation 5.7

becomes

xf = φt7
g13,1
◦ φt6

g13,2
◦ φt3

g1,1
◦ φt4

g1,2
◦ φt5

g1,3︸ ︷︷ ︸
switched

◦φt2
g12,2
◦ φt1

g12,1
(x0).

The goal is to have the flow along g1,3 to commute with the flow along g12,2 so

that we can switch the flows to cancel the flow along g12,1, (lifting foot 3), and the

flow along g1,3, (replacing foot 3). Unfortunately, g1,3 is defined on S1 and g12,1 is

defined on S12. However, since S12 ⊂ S1, if g1,3 is tangent to S12, then the flow of

g1,3 restricted to S12 will be the same as the flow of g1,3 not restricted to S12.

Therefore, if g1,3 is tangent to S12, and using the same argument for foot 2, and

if [g12,1, g1,3|S12 ] = 0 and [g13,1, g1,1|S13 ] = 0, then

xf = φt7
g13,1
◦ φt3

g1,1
|S13 ◦ φt6

g13,2
◦ φt4

g1,2
◦ φt2

g12,2
◦ φt5

g1,3
|S12 ◦ φt1

g12,1
(x0)

= φt6
g13,2
◦ φt4

g1,2
◦ φt2

g12,2
(x0),

which is a flow that can be treated as entirely flowing on S123. 2
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Examples 5.1, 5.2, 5.3 and 5.4 required that either certain Lie brackets be zero,

and Example 5.4, required that foot lifting or replacing vector fields be tangent to

other strata. Although the most general approach is to simply check that the neces-

sary conditions are met in a given situation, to simplify the presentation, make the

following assumption regarding the kinematics of the problems under consideration.

If it is necessary for the robot to lift a foot off of the ground in a gait cycle, we

will assume that the robot can directly control, (either via a single control input,

or a combination of control inputs), the height of that foot relative to the ground.

Furthermore, for each stratum comprising the gait under consideration, assume that

the equations of motion for the system are independent of the foot height (except

for whether or not the foot is in contact with the ground). In other words, the

motion of the robot is independent of whether a particular foot is very close to the

ground, or very far from the ground, but may be dependent upon whether or not a

foot is in contact or out of contact with the ground.

Assumption 5.5: Assume that there exists a control input, or a linear combina-

tion of control inputs, such that their sum is
{

∂
∂hi

}
, where hi is the height of the

foot in interest. Furthermore, assume that the equations of motion are otherwise

independent of the foot height. 2

If this assumption is satisfied, then the Lie bracket of the vector field controlling

the height of the foot and any other vector field is zero, so that flows corresponding

to lifting a foot and flows corresponding to motions with the foot out of contact

with the ground will commute. Additionally, since the same vector field raises and

lowers the foot, the tangency requirements for cancelling raising and lowering the

foot will automatically be satisfied.

This is arguably a strict assumption; however, for kinematic, legged robots this

assumption will often naturally be satisfied. This is because the vector fields in the

equations of motion for the system typically will be independent of the leg height.

The example we present in Section 5.3 is such a system. Note that one appropriate

characterization of the work is that it is a “modification” or “extension” of the re-

sults in Lafferriere and Sussmann (1993), and thus carries with it the fundamental
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limitation that the system considered be kinematic. Until similar results exist for

dynamic systems, which hopefully can be similarly extended, we will defer consider-

ing such a case. Such an extension to dynamic systems would be difficult because,

even if the kinematic restriction were overcome, for dynamic legged systems, the

Assumption 5.5 will not be naturally satisfied because changing a leg height will

affect the inertial properties of the body.

We have assumed that the foot lifting and replacing vector fields are of the

form gi = ∂
∂hi

. Additionally, note that it is impossible for this flow to occur on

the stratum Si since, by definition, Si corresponds to a constant value of the foot

height, hi. Specifically, in this example, g1,3 = ∂
∂h3

, and S12 corresponds to all

configurations where h1 = h2 = 0. It will be generically true, then, that gi = ∂
∂hi

will be tangent to all strata SI , where the multi–index I does not contain the index

i. Thus, if Assumption 5.5 is satisfied, then the tangency requirement illustrated in

Example 5.4 will naturally be satisfied.

In general, then, these Examples 5.1, 5.2, 5.3 and 5.4 show that given a stratified

system we can consider the vector fields on any stratum (other than vector fields

corresponding to lifting or replacing feet) as part of the equations of motion in the

bottom stratum if either certain Lie bracket and tangency conditions are met, or if

the more restrictive Assumption 5.5 is satisfied. If the vector fields are not tangent

to the bottom stratum, then they must be modified as in Example 5.1.

Now, consider the motion planning planning problem. The above examples

show that it is possible to consider vector fields in higher strata as part of the

equations of motion for the system on the bottom stratum. At this point, then,

we have essentially increased the class of vector fields that we may use in using the

motion planning algorithm presented in Section 3.3. Thus, the method presented

in Section 3.3 could be used with the modification that whenever the system must

flow along a vector field in a higher stratum, it switches to that stratum by lifting

the appropriate foot or feet, flows along the vector field, and then replaces the

appropriate foot or feet, as in Example 5.1.
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In particular, construct the extended system on the bottom stratum using the

extended class of vector fields which contain vector fields from higher strata. This

effectively takes multiple sets of equations of motion for the system on different

strata and combines them into one system on the bottom stratum called the bottom

stratified system. If Assumption 5.5 is satisfied, then this system will have all the

control vector fields from every stratum, except the vector fields which correspond to

raising and lowering the feet. If Assumption 5.5 is not satisfied, then it will contain

all the vector fields which commute with the vector fields that correspond to raising

and lowering a foot and that are tangent to the bottom stratum. Then, the bottom

stratified extended system is constructed by computing Lie brackets among all the

vector fields in the bottom stratified system. As in Section 3.4, the brackets must

belong to a Philip Hall basis. By including vector fields from higher strata, as well

as their brackets, the number of vector fields available for motion planning increases

with the number of strata. The construction involving the equations of motion are

illustrated as follows.
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Multiple Stratified Equations

S0 : ẋ = g0,1u
0,1 + · · · + g0,n0u

0,n0

S1 : ẋ = g1,1u
1,1 + · · · + g1,n1u

1,n1

S2 : ẋ = g2,1u
2,1 + · · · + g2,n2u

2,n2

...

SI : ẋ = gI,1u
I,1 + · · ·+ gI,nIu

I,nI



Bottom Stratified System

-

ẋ = g0,1u
0,1 + · · ·+ g0,n0u

0,n0

+ g1,1|S0u
1,1 + · · ·+ g1,n1 |S0u

1,n1

+ g2,1|S0u
2,1 + · · ·+ g2,n2 |S0u

2,n2

...

+ gI,1|S0u
I,1 + · · ·+ gI,nI |S0u

I,nI︸ ︷︷ ︸
�
�
�

�
�
�

�
�
��

Stratified Extended System

ẋ = g0,1v
0,1 + · · · + g0,n0v

0,n0

+ g1,1|S0v
1,1 + · · · + g1,n1|S0v

1,n1

+ g2,1|S0v
2,1 + · · · + g2,n2|S0v

2,n2

...

+ gI,1|S0v
I,1 + · · ·+ gI,nI |S0v

I,nI


+ Lie brackets

Now proceed just like in Section 3.4. Pick a nominal trajectory γ(t) connecting

the starting point with the desired final point. Denoting the stratified extended

system by ẋ = b1(x)v1 + · · ·+ bk(x)vk, set

γ̇(t) = b1(γ(t))v1 + · · · + bk(γ(t))vk ,

and solve for the fictitious inputs, vi(t). This is where gait controllability is a

necessary condition, albeit in a slightly different form that in the previous chapter.

If the system is not gait controllable, then it not be possible to construct an extended

system such that the bi span the entire tangent space. In that case, it will not be

possible to follow an arbitrary γ(t). The difference between controllability here and

in the previous chapter is that because of Assumption 5.5, we are able to consider

Lie brackets between vector fields defined on different strata. This is not possible
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in the more general case considered in Chapter 4 since the vector fields were not

considered in one common space.

Equating the formal equations

Ṡ(t) = S(t)(b1v
1 + · · · + bkv

k) = ehkbkehk−1bk−1 · · · eh1k1

(again, as detailed in Section 3.4), gives the backward Philip Hall coordinates, hi(t).

Equating the coefficients of basis elements in

ehkbkehk−1bk−1 · · · eh1b1 = eh̃1b1eh̃2b2 · · · eh̃kbk

gives the forward Philip Hall coordinates, from which, we can approximate indi-

vidual Lie bracket as in Equation 2.2. The only complicating detail is that control

inputs to switch among strata must be interspersed with the regular inputs to en-

sure that any flow occurs on its appropriate stratum. We will illustrate this in

Section 5.3.

With regard to gait efficiency, note that the straight–forward application of the

method of Section 3.3 may result in an inordinate amount of strata switches. That

is because the sequence of flows in Equation 3.7 are arranged by order, and, from

a gait efficiency point of view, it is desirable to have them arranged by strata. It is

possible to regroup this sequence of flows by strata if the Lie bracket between any

vector fields (considered restricted to the bottom stratum) from different strata are

zero. If this is true, then, as already clearly illustrated in the Examples 5.1, 5.2, 5.3

and 5.4, it will be possible to reorder the flows to obtain the same net result. In

particular, then, flows corresponding to the same stratum could be grouped together.

In physical terms, this will reduce the amount that a particular foot would have to

be lifted and replaced in and out of contact with the ground. Note that the example

in Section 5.3 is not a problem of this type.
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5.2 Gait Stability

An important issue for quasi–static legged robotic locomotion is gait stability;

namely, ensuring that the quasi–static assumption remains valid. Note that there

is not an inherent mechanism in the direct application of the method in Section 3.4

to guarantee the stability of the gait. Recall that the main approach of the method

was to pick a trajectory for the extended system, γ(t), from which to determine

the fictitious inputs. Then, using the fact that any flow can be decomposed to

individual flows along the Philip Hall basis vector fields, the real inputs could be

determined. The important point to note is that the actual trajectory will, in gen-

eral, not be γ(t). Thus, merely picking an initial trajectory γ(t) which is always

stable is not sufficient. What also must be guaranteed is that deviations from the

initial trajectory be within the stability bounds as well.

Our approach to this is as follows. Assume that there is a means for determining

the stability of the system. Typically, this may be a scalar–valued function of the

configuration, Ψ(x). For convenience, assume that when Ψ(x) has a negative value,

the system is unstable, when Ψ(x) has a positive value, the system is stable, and

when Ψ(x) = 0, the system is on the boundary between stability and instability.

In the trajectory generation method, then, we must pick the initial trajectory, γ(t)

such that it does not does not intersect any unstable regions and also such that it

does not intersect the stability boundary, i.e., Ψ(γ(t)) > 0, t ∈ [0, 1].

The overall approach is to take steps that are “small enough” to ensure that the

system remains stable. Since we are considering small motions and need a norm to

provide a measure of the length of a flow, we will consider the system locally in Rn .

Given a desired step along the trajectory, γ(t), t ∈ [0, 1], let R = min{‖x− c‖, c ∈

Ψ−1(0)}, i.e. the distance from the starting point to the closest point on the stability

boundary.

The goal is to ensure that the trajectory of the system does not intersect the set

Ψ−1(0). If x denotes the starting point, and xf the final point, let γ(t) = x+t(xf−x)

be the desired straight line path between the starting and end points. Also, let

∆ = ‖xf − x‖. Recall that the fictitious inputs, vi were determined by solving the
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equation γ̇(t) = g1(γ(t))v1 + · · ·+gs(γ(t))vs for the vi. Then ‖vi‖ < C‖γ̇(t)‖ = C∆,

for some fixed constant C. By the method of construction of the real inputs from

the fictitious inputs, then, ‖ui‖ < C∆1/k, where k is the degree of nilpotency of the

system, or the degree of the nilpotent approximation.

Now, pick a ball, B, of radius R, and let K be the maximum norm of all the

(first order) vector fields, gi for all points in the ball B. Recall that the real inputs,

ui were given by a sequence of inputs which approximate the flow of the extended

system. Denote this sequence by ui
j, where the superscript indexes which input it

is, and the subscript indexes its position in the sequence. The maximum distance

that the system can possibly flow from the starting point, x, is given by the sum of

the distances of the individual flows. Let xmax = maxt∈[0,1]{‖x(t)− x‖} denote the

point in the flow that is maximally distant from the starting point. (Note that this

is not necessarily the final point, xf ). To guarantee stability, we want to show that

‖xmax − x‖ < R. However, this distance, ‖xmax − x‖ is necessarily bounded by the

sum of the norms of each individual flow associated with one real control input, ui
j ,

i.e.,

‖xmax − x‖ ≤
∑
i,j

‖
∫ 1

0
giu

i
jdt‖.

However, ‖ui
j‖ ≤ C∆1/k and ‖gi(x)‖ ≤ K ∀x ∈ B. Thus,

‖xmax − x‖ ≤
∑
i,j

KC∆1/k, (5.8)

and since ∆ = ‖xf − x‖, by choosing the desired final point close enough to the

starting point, the trajectory will not intersect the stability boundary.

Note that because ∆ is raised to the power of 1/k, if k is large, then it may be

necessary to make ∆ exceedingly small in order to ensure stability. However, the

bound expressed in Equation 5.8 is itself very conservative since it sums the length

of a bound on each individual flow in the series. Thus an appropriate step length

may be best determined experimentally.
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Figure 5.4. Six legged robot.

Finally, note that these very same observations apply to obstacle avoidance. If

the robot is traversing an environment with obstacles, assume that the nominal

trajectory is designed by a given holonomic or rigid body motion planner in such a

manner that it avoids all the obstacles (e.g., Latombe (1990)). Then, ensuring that

the actual trajectory avoids the obstacles as well, amounts, in the exact same manner

as the stability analysis above, to requiring that the nominal trajectory is broken

into sufficiently small steps to ensure that the actual trajectory remains sufficiently

close to it. Section 5.3 illustrates both the stability and obstacle avoidance problems.

5.3 Example

We illustrate the application of our approach by generating control inputs which

will steer the hexapod robot model from Section 4.3, illustrated again in Figure 5.4.

Assume that the robot walks with a tripod gait, alternating movements of legs 1–4–5

with movements of legs 2–3–6.
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Recall that the equations of motion are

ẋ = cos θ (α(h1)u1 + β(h2)u2)

ẏ = sin θ (α(h1)u1 + β(h2)u2)

θ̇ = lα(h1)u1 − lβ(h2)u2

φ̇1 = u1

φ̇2 = u2

ḣ1 = u3

ḣ2 = u4

where (x, y, θ) represents the planar position of the center of mass, φi is the front

to back angular deflection of the legs and hi is the height of the legs off the ground

and the functions α(h1) and β(h2) are defined by

α(h1) =

 1 if h1 = 0

0 if h1 > 0
β(h2) =

 1 if h2 = 0

0 if h2 > 0
.

Since the robot walks in a tripod gait, stability on flat terrain is ensured if the

center of mass of the robot remains above the triangle defined by the three feet of

the robot which are in contact with the ground. Denote the length of the body by

lb, and consider the motion of legs 1–4–5. The center of mass of the robot must be

at least a distance b = lb
4 + l sin φ1 from the front of the robot to ensure stability.

Figure 5.5 schematically illustrates this geometry. Alternatively, if the center of

mass is located a distance b from the front of the robot, then stability is ensured if

φ1 < sin−1

(
b− lb/4

l

)
and φ2 > − sin−1

(
3lb/4 − b

l

)

during its motion to remain stable.

Denote the stratum when all the feet are in contact (α = β = 1) by S12, the

stratum when leg one is in contact (α = 1, β = 0), by S1, the stratum when leg two

is in contact (α = 0, β = 1), by S2 and the stratum when no legs are in contact
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Figure 5.5. Stability margin for hexapod tripod gait.

(α = β = 0), by S0.

Note that this system satisfies the requirements of Assumption 5.5 since, regard-

less of the values of α and β, the vector fields moving the foot out of contact with

the ground are of the form
{

∂
∂hi

}
for each foot. Also, the rest of the equations of

motion are independent of the foot heights, hi.

The equations of motion in the bottom strata, S12 (where all the feet maintain

ground contact), are:



ẋ

ẏ

θ̇

φ̇1

φ̇2


=



cos θ cos θ

sin θ sin θ

l −l

1 0

0 1


 u1

u2

 (5.9)

where (x, y, θ) represents the planar position of the robot’s center. φ1 is the angle of

legs 1–4–5 and φ2 is the angle of legs 2–3–6. The variables u3 and u4 are constrained

to be 0 (so that the legs maintain ground contact). Let g12,1 and g12,2 represent the
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first and second columns in Equation 5.9.

If legs 1–4–5 are in contact with the ground, but legs 2–3–6 are not in contact,

the equations of motion are



ẋ

ẏ

θ̇

φ̇1

φ̇2

ḣ2


=



cos θ 0 0

sin θ 0 0

l 0 0

1 0 0

0 1 0

0 0 1




u1

u2

u4

 (5.10)

where hi is the height of the corresponding set of legs and u3 is constrained to be

0. Let columns one, two and three in Equation 5.10 be labeled g1,1, g1,2 and g1,3,

respectively. This higher stratum will be called S1. If legs 2–3–6 are in ground

contact and legs 1–4–5 are not, the equations of motion are



ẋ

ẏ

θ̇

φ̇1

φ̇2

ḣ1


=



0 cos θ 0

0 sin θ 0

0 −l 0

1 0 0

0 1 0

0 0 1




u1

u2

u3

 (5.11)

where u4 is constrained to be 0. The columns in Equation 5.11 will be denoted

g2,1, g2,2 and g2,3, respectively, and this higher stratum is S2.

We need enough vector fields to span the tangent space of the bottom stratum,

S12. A simple calculation shows that the set of vector fields,

{g12,1, g12,2, g1,2, g2,1, [g1,1, g2,2]}

spans TxS12 for all x ∈ S12. Note that [g1,1, g2,2] = (−2l sin θ, 2l cos θ, 0, 0, 0)T . This

Lie algebra is not nilpotent, and thus the extended system will only be a nilpotent
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approximation.

Now, construct the stratified extended system by constructing the extended sys-

tem using the vector fields from all strata.

ẋ = g12,1v
1 + g12,2v

2 + g1,2v
3 + g2,1v

4 + [g1,1, g2,2]v5, (5.12)

or, in greater detail,



ẋ

ẏ

θ̇

φ̇1

φ̇2


=



cos θ cos θ 0 0 −2l sin θ

sin θ sin θ 0 0 2l cos θ

l −l 0 0 0

1 0 0 1 0

0 1 1 0 0





v1

v2

v3

v4

v5


. (5.13)

Let the starting and ending configurations be:

p = (x, y, θ, φ1, φ2, h1, h2) = (0, 0, 0, 0, 0, 0, 0)

q = (x, y, θ, φ1, φ2, h1, h2) = (1, 1, 0, 0, 0, 0, 0)
.

A path that connects these points is γ(t) = (t, t, 0, 0, 0, 0, 0). Equating γ̇(t) with

with the stratified extended system and solving for the fictitious controls yields



v1

v2

v3

v4

v5


=

1
2l



l(cos θ + sin θ)

l(cos θ + sin θ)

−l(cos θ + sin θ)

−l(cos θ + sin θ)

(cos θ − sin θ)


,



109

or, since θ(t) = 0, and if l = 1,



v1

v2

v3

v4

v5


=

1
2



1

1

−1

−1

1


.

For a system which is nilpotent of order 2, from Equation 3.9 for the extended

system on S12

ḣ1 = vS12,1, ḣ2 = vS12,2,

ḣ3 = vS12,3 + h1, v
S12,2

which yields.

h1(1) =
1
2

h2(1) =
1
2

h3(1) =
3
4
. (5.14)

Since the nilpotent approximation is of order two, there is no need to transform

to forward Philip Hall coordinates. The control sequence is√
3
4
(vS12,1 ◦ vS12,2 ◦ −vS12,1 ◦ −vS12,2)

to get eh3B3 , and 1
2vS12,2 ◦ vS12,1 to get eh2B2eh1B1 . Hence, the complete sequence is

√
3
4
(vS12,1 ◦ vS12,2 ◦ −vS12,1 ◦ −vS12,2) ◦ 1

2
vS12,2 ◦ vS12,1.

Figure 5.6 shows the path of the robot’s center as it follows a straight line trajec-

tory, which is broken into four equal segments. Due to the nilpotent approximation,

there is some small final error. Better accuracy can be obtained by use of a higher

order nilpotent approximation or a second iteration of the algorithm from the robot’s
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Figure 5.6. Straight trajectory.

ending position. The “zig–zag” pattern results from the piecewise inputs and the

strata switching.

There is no inherent limitation in the method which requires the trajectory to be

broken down into subsegments, however, there are two reasons to do so. First, since

the method fundamentally is based upon decomposing a desired trajectory into flows

along the Philip Hall basis vector fields, the final trajectory is only related to the

desired trajectory in that the end points are the same (or approximately the same,

in the case of a nilpotent approximation). Second, robot stability requirements may

also demand smaller steps.

The approach is general enough that arbitrary trajectories are possible. Fig-

ure 5.7 shows the hexapod tracking an ellipse while maintaining a constant angular

orientation. Figure 5.8 shows the results when a smaller step size is used. In the

first simulation, the the elliptical trajectory is broken down into 30 segments. In the

second, it is broken down into 60 segments. In this example, part of the trajectory

tracking error is due to the nilpotent approximation, but another contribution to

the trajectory error is the simplicity of the hexapod mechanical model. Essentially,

some directions are more “difficult” for the hexapod to execute than others. In

these simulations, because of the simplicity of the model, which eliminates “crab–

like” gates, when the robot has to move sideways, its tracking error is greater because

this direction corresponds to a Lie bracket direction.

Also plotted along with the trajectory is the stability criterion. In each case,
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Figure 5.7. Elliptical trajectory and stability criterion for

the hexapod robot.
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Figure 5.8. Elliptical trajectory and stability criterion for

the hexapod robot taking smaller steps.

take the length of the body to be 2 units of length and let the center of mass be

located a distance of 0.75 units from the front of the robot. Then, the stability

criterion is φ1 < 0.25 [rad] and φ2 > −.85 [rad]. In Figures 5.7 and 5.8 the stability

limits for φ1 are indicated by the straight horizontal lines. In the first case, where

the robot takes bigger steps, the stability condition is violated. However, in the

second case it is not.

Figure 5.9 shows the hexapod following the same ellipse while also rotating at

a constant rate. Figure 5.10 plots the robot’s angular orientation as the simulation

progresses.

Finally, consider the obstacle avoidance issue. As a starting point, the nominal
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Figure 5.10. Hexapod orientation

during execution of path seen in

Figure 5.9.
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Figure 5.11. Nominal trajectory for obstacle avoidance

problem.

trajectory γ(t) must a priori avoid any obstacles. Unfortunately, this still does not

guarantee that the actual motion will avoid the obstacles. As discussed previously,

however, if the trajectory is divided into sufficiently small step sizes, then the actual

motion will not significantly deviate from the nominal trajectory. Figure 5.11 shows

a nominal path between a set of obstacles. The desired trajectory is indicated by

the black line and the “walls” of the environment by dark grey regions. Since the

plots will show the path of the center of mass of the robot, it is not enough for the

center of mass to avoid the walls, the center of mass must not come within a certain

distance from the walls so that the other portions of the body do not come into

contact with the wall. The lighter grey regions indicate “buffer zone” near the walls

that the center of mass can not enter to ensure that other parts of the robot do not

hit the real walls (dark grey).

To make the problem more challenging and realistic, assume that the robot

rotates at a uniform rate as it follows the nominal trajectory. A real–world scenario

in which this might be desirable would be some sort of patrol robot, that must

constantly scan in all directions. Figure 5.12 shows the path of the center of mass

of the robot when the trajectory is subdivided into 100 subtrajectories. The path of

the center of mass intersects the lighter grey regions during its motion both on the

lower and upper horizontal trajectory portions. However, if the nominal trajectory

is subdivided into 300 subtrajectories, then the robot avoids the walls, as illustrated
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Figure 5.12. Obstacle contact. Figure 5.13. Obstacles avoided.

in Figure 5.13.

One possible implementation improvement would be an adaptive step size scheme

wherein the robot only shortens step lengths in “critical” regions. In the trajectories

illustrated in Figures 5.12 and 5.13, these critical regions correspond to when the

robot is attempting to walk in a “crab–like” manner. These motions are when the

desired motion is almost directly along a Lie bracket direction, which requires the

greatest excursion from the nominal trajectory.

5.4 The “Efficiency” of Stratified Systems

Primarily by way of example, this section illustrates that even for systems that are

controllable without making and breaking contact, a more efficient control strategy

may be to utilize the possibility intermittent contact. The example is related to

grasping, and appears in Murray, Li, and Sastry (1994) and in Murray and Sastry

(1990). Essentially the example is that of a sphere rolling on a plane, and is intended

to model a finger–tip contacting a grasped object. In Murray, Li, and Sastry (1994)

and Murray and Sastry (1990) this model is used as an example of how a finger–tip

can reorient itself by exploiting its nonlinear surface geometry. Here, we modify the

example by allowing the finger to lift off of the surface. In such a case, “inefficient”

high order Lie bracket motions can be replaced by low order motions when the finger

is not in contact with the object.
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Figure 5.14. Spherical finger rolling on a plane.

Example 5.6: (Spherical finger rolling on a plane.) Consider the sphere

rolling on a plane shown in Figure 5.14. Parameterize the plane (the “object”) with

local coordinates co(uo, vo) = (uo, vo, 0) and locally parameterize the sphere (the

“finger”) with the chart

cf (uf , vf ) =


ρ cos uf cos vf

−ρ cos uf sin vf

ρ sin u

 ,

where ρ is the radius of the sphere, uf ∈ (−π
2 , π

2 ) and vf ∈ (−π, π). Denote the

distance of the finger from the object by h. Thus, the configuration space for the

system is parameterized by the variables x = (uf , vf , uo, vo, φ, h).

Montana (1988) provides the equations of motion for such contacting systems in

terms of the surface geometry of the finger and object. If the control inputs are the

angular velocities of the sphere, it is easy to show (Murray, Li, and Sastry (1994))



116

that the equations of motion when the finger is in contact with the object are



u̇f

v̇f

u̇o

v̇o

ψ̇


=



0

sec uf

−ρ sin ψ

−ρ cos ψ

− tan uf


ωx +



−1

0

−ρ cos ψ

ρ sin ψ

0


ωy = g1,1(x)u1 + g1,2(x)u2.

This system is controllable because the vector fields

{g1, g2, [g1, g2], [g1, [g1, g2]], [g2, [g1, g2]]}

span the tangent space to the configuration space.

Also consider when the finger is lifted off of the surface. When the finger is not

in contact with the object, the equations of motion are



u̇f

v̇f

u̇o

v̇o

ψ̇

ḣ


=



0

sec uf

0

0

0

0


ωx +



−1

0

0

0

0

0


ωy +



0

0

0

0

0

1


u3

= g0,1(x)u1 + g0,2(x)u2 + g0,3(x)u3.

2

We will use two standard methods applicable to smooth systems to reorient the

finger tip, and then compare the results when the stratified nature of the system is

exploited. As will be clear shortly, explicitly exploiting the stratified nature of the

system may make it easier to avoid obstacles or maintain stability.
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5.4.1 Motion Planning Using Sinusoids

There exists a canonical class of nonlinear systems called chained systems, for which

motion planning can be accomplished using sinusoidal inputs with integrally related

frequencies (see Murray and Sastry (1993)). In particular, a one–chain system is a

two–input system of the form:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

ẋ4 = x3u1

...

ẋn = xn−1u1.

Murray and Sastry (1993) present a general method for steering such systems.

Rather than present the most general results, here simply note that if the inputs

are

u1(t) = a cos t

u2(t) = b cos 2t,

then x1(2π) = x2(2π) = x3(2π) = 0 and

x4(2π) = −a2bπ

4
, (5.15)

so by appropriately choosing a and b the inputs u1 and u2 steer the system in the

x4–direction.

Now, say we wish to move the finger to a point on the object above the current

point of contact. Let the initial configuration be x0 = (0, 0, 0, 0, 0) and specify the

final desired configuration to be xf = (0, 0, 0.1, 0, 0). Solving Equation 5.15 yields
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Figure 5.15. Trajectories for object contact coordinates:

sinusoidal inputs.

the inputs:

u1(t) = 0.5 cos t (5.16)

u2(t) = 0.51 cos 2t

Figure 5.15 shows the time evolution of the object contact coordinates, and Fig-

ure 5.16 shows the evolution of the finger contact coordinates. The trajectory for

the finger contact coordinates return to their initial conditions, but there is a net

displacement in the uo variable, as desired. All the other variables return to their

initial conditions as well.
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Figure 5.16. Trajectories for finger contact coordinates: si-

nusoidal inputs.

5.4.2 Motion Planning Using Piecewise Constant Inputs

Now use the method outlined in Section 5.1 to steer the system to the same final

position. Since the final motion is along only the vector field

−[g1, [g1, g2]] =



0

0

1

0

0


,

the method simply amounts to determining the sequence of piecewise constant in-

puts which approximate the bracket. One possibility is the following sequence of

flows:

φ−g1
ε ◦ φ−g2

ε ◦ φg1
ε ◦ φg2

ε ◦ φ−g1
ε ◦ φ−g2

ε ◦ φ−g1
ε ◦ φg2

ε ◦ φg1
ε ◦ φg1

ε (x0). (5.17)

Figure 5.17 shows the time evolution of the object contact coordinates, and Fig-

ure 5.18 shows the evolution of the finger contact coordinates. Again, the trajectory
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Figure 5.17. Trajectories for object contact coordinates:

piecewise constant inputs.
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Figure 5.18. Trajectories for object contact coordinates:

piecewise constant inputs.

for the finger contact coordinates return to their initial conditions, but there is a

net displacement in the uo variable. All the other variables return to their initial

conditions as well.

5.4.3 Example of Constrained Motion

Now consider one additional aspect of the problem shown in Figure 5.14; namely, the

fact that some objects have edges, off of which the finger may roll. From Figure 5.15

it is clear that if the dimensions of square side of the object are less than 0.6 units

of length, then the motion above (designed to only move the finger 1/3 of the way

to the edge of the object) will cause the finger to fall off of the object.

The remedy for this is, just as for the obstacle avoidance analysis in Section 5.3,

is to break the trajectory into a sequence of small segments. As an illustration of
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Figure 5.19. 13 and 20 segment motions: sinusoidal inputs.

the difficulties associated with this problem, consider the following examples. For

the following examples, assume that the square side of the object is 0.4 units of

length square. Note that the order of the maximum net deflection scales with the

desired net motion as umax ∼ u
(1/3)
net . (The 1/3 factor comes from the order of the

a2b term in the numerator of the expression in Equation 5.15).

To break the trajectory into sufficiently small subsegments, we must consider

the maximum displacements in the uo and vo directions. By inspecting Figure 5.15,

the magnitude of the periodic motion is approximately 0.26. Now, the goal is for

the uo < 0.2. However, since the motion is designed to take that coordinate to

uo = 0.1, the maximum magnitude must be less than 0.1. So, the maximum step

length must be on the order of (0.1/0.26)1/3 = 0.057, which requires the trajectory

to be split into about 1/0.057 = 17.5 subsegments.

Figure 5.19 show the trajectories in the object contact coordinates for a simu-

lation with 13 segments (where the finger still rolls off the object) and 20 segments

(where the finger stays on the object). As before, all the other variables return to

their initial conditions the finger contact coordinates return to the initial conditions.

Figure 5.20 shows the similar results for the piecewise constant input case. These

simulations have the same nominal trajectory as before, but uses the piecewise

constant inputs rather than the sinusoidal inputs, again with 13 segments and 20

segments.

Now, for the stratified system, it is a simple matter to lift the finger off of the

object. The desired motion is along the difference of the vector fields g1,2 − g0,2
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Figure 5.20. 13 and 20 segment motions: piecewise con-

stant inputs.

(when ψ = 0), and so the simple sequence of flows

φ0.1
g1
2
◦ φ0.1

g0
3
◦ φ0.1
−g0

2
◦ φ0.1
−g0

3

gives the desired motion. The result is shown in Figure 5.21. The dotted parallel

lines represent two edges of the object (the other “edge” coordinate is not plotted).

Of course, for the particular example given, there is some flexibility in choosing

the “aspect ratio” of the motion by appropriately choosing the values of a and b in

Equation 5.15 or by not choosing equal length piecewise constant inputs in Equa-

tion 5.17. However, the main point is that a higher order brackets require motions

that are large compared with the desired final net motion. For a stratified system,

this can often be avoided by switching strata, thus resulting in more “efficient”

motion planning.

5.5 Summary

This chapter extended a general motion planning algorithm for smooth systems to

the stratified case. Basically, if the vector fields on different strata satisfied certain

conditions, then it is possible to consider some, or nearly all, of the vector fields

defined on higher strata as defined on the bottom stratum. This greatly increases

the number of vector fields available in the motion planning algorithm. Additionally,
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Figure 5.21. “Stratified” input.

we illustrated that for systems which are completely controllable on the bottom

stratum, higher order motions which correspond to higher order brackets may be

replaced by lower order motions. This is desirable because the motions associated

with higher order brackets cause large excursions from the nominal trajectory, which

may cause stability or obstacle avoidance problems.
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Chapter 6

Unilateral Controllability

This chapter considers a distinct, but closely related topic to the controllability re-

sults in Chapter 4. A basic assumption in the controllability results in Sections 3.2.1,

3.2.2 and 3.2.3 was that the control inputs could be both positive and negative. In

other words, it was possible to flow in both the positive and negative directions of a

vector field. This chapter considers control systems where some of the control inputs

are restricted to be strictly positive. Another important fact is that the results in

this chapter are not restricted to driftless systems.

The relationship between the results in this chapter and the previous chapters

in this dissertation is that one example of a stratified system is the problem of

so–called nonprehensile manipulation. This is the problem of trying to manipulate

an object by pushing on it. Clearly, the intermittent physical contact present in

this problem makes it a stratified system. However, since the object is not fixed, in

contrast to the terrain in a legged locomotion problem, this gives rise to vector fields

along which the system can only flow in one direction. Physically, this corresponds

to the fact that physical contact can only “push” on an object, and not “pull” it.

Unfortunately, a simple general theory does not exists for systems with unilateral

inputs. Therefore, a prerequisite to considering stratified unilateral systems is to

develop a test for smooth unilateral system. This is the subject of Sections 6.1, and

6.2. Section 6.3 considers the stratified generalization.
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6.1 Systems with Unilateral Control Inputs

This section considers control systems of the form

ẋ = f(x) + hi(x)vi + gj(x)uj (6.1)

where i = 1, . . . ,m, j = 1, . . . , n, vi ∈ [0, 1) ∀i, uj ∈ (−1, 1) ∀j, x ∈ M , M a

manifold and f , hi and gj vector fields on M ; that is, the control inputs vi are

restricted to be non–negative.

Let C be the smallest subalgebra of V∞(M) (the Lie algebra of smooth vector

fields on M) that contains f, h1, . . . , hm, g1, . . . , gn, and let C be the accessibility

distribution generated by C:

C(x) = span{X(x) : X ∈ C}, x ∈M.

If dimC(x0) = dimM , then the system satisfies the Lie Algebra Rank Condition

(“LARC”) at x0. This is the same definition of LARC as before, except this defini-

tion includes the drift term and unilateral inputs as well.

Let X = {X0,X1, . . . ,Xm,Xm+1, . . . Xm+n} and f = {f, h1, . . . , hm, g1, . . . , gn}

so that Ev(f) takes X0 to f , Xi to hi for i = 1, . . . ,m and Xj to gj−m for j =

m + 1, . . . ,m + n. The f , hi and gj above correspond to the vector fields in the

Equation 6.1. Let Br(X) be the set of “brackets” of elements from X and δi(B) be

the number of occurrences of Xi in B ∈ Br(X).

Consider the automorphism generated by σi, i = m + 1, . . . ,m + n where σi

sends Xj to Xj if j 6= i and Xi to −Xi. Clearly, a Λ0–fixed element of L(X) cannot

have an odd number of each X ∈ {Xm+1, . . . ,Xm+n}. Thus, we can consider only

elements with an even number of each X ∈ {Xm+1, . . . ,Xm+n}, so we will call an

element B ∈ Br(X) bad if δb is even for each b = m+1, . . . ,m+n and δ0 +
∑m

a=1 δa

is odd. A bracket is good if it is not bad. Let Sm denote the permutation group on

m symbols. For πm ∈ Sm and πn ∈ Sn define π(B) to be the bracket obtained by

fixing X0, sending Xa to Xπm(a) for i = 1, . . . m and sending Xb to X(πn(b−m))+m
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for b = m + 1, . . . ,m + n. Now define the symmetrization operator

β(B) =
∑

πn∈Sn

∑
πm∈Sm

π(B). (6.2)

Let θ ≥ 1 be a real number, and define ∆(ρ) by

∆(ρ) : (X0, . . . ,Xm+n) 7→ (6.3)

(ρX0, ρ
θX1, . . . , ρθXm, ρXm+1, . . . , ρXm+n).

This dilation is compatible with Ŝ(X,K) by construction. Note also that this di-

lation makes each π a graded linear map. The ∆–degree of a bracket B is given

by

δθ(B) = δ0(B) + θ
m∑

i=1

δhi(B) +
n∑

i=1

δi+m(B).

The following is the main result of this chapter.

Proposition 6.1 Consider the bijection φ : X→ f which sends X0 to f , Xa to ha

for a = 1, . . . ,m, and Xb to gb−m for b = m+1, . . . m+n. Suppose that the system

described by Equation 6.1 is such that every bad bracket B ∈ Br(X) has the property

that

Evx(φ)(β(B)) =
k∑

a=1

ξaEvx(φ)(Ca) (6.4)

where ξi ∈ R and δθ(Ca) < δθ(B) for a = 1, . . . k. Also suppose that 6.1 satisfies the

LARC at x. Then the system described by Equation 6.1 is STLC at x.

Proof: Provided that the dilation defined by Equation 6.3 is compatible with

Ŝ(X,K) and that the collection of all π’s comprise a group which is an input sym-

metry, then this follows from Theorem 3.9. As previously mentioned, the dilation

defined by Equation 6.3 is compatible with Ŝ(X,K) by construction.

We need to show that the group comprised of all the π’s is an input symmetry.



127

Define π# by π#(expZ) = exp(π̂(Z)) Z ∈ L̂(X), where π̂ : L̂(X) → L̂(X) is given

by π̂(Z) =
∑∞

i=1 π(Pi), if Z =
∑∞

i=1 Pi, where each Pi is homogeneous of degree i.

Clearly, π# simply fixes X0, sends Xa to Xπm(a) for i = 1, . . . m and sends Xb to

Xπn(b−m)+m for b = m + 1, . . . ,m + n for each term in the infinite series.

Now, from Equation 2.11, we can write

π#(S(t)) =
∑

I

(∫ t

o
uI

)
Xπ(I)

where, for I = {i1, . . . , ik}, π(I) = {πmn(i1), . . . , πmn(ik)}, where mn is either m or

n, depending upon whether i ∈ {1, . . . ,m} or i ∈ {m + 1, . . . ,m + n} respectively.

However,

∑
I

(∫ t

o
uI

)
Xπ(I) =

∑
I

(∫ t

o
uπ−1(I)

)
XI

since the summation is over all possible multi–indices I. Since π−1 maps K to K,

it follows that π# maps Ŝ(X,K) to Ŝ(X,K). Therefore the collection of π is an

input symmetry and controllability follows from Theorem 3.9. �

The difficulty with unilateral systems is that the first order vector fields asso-

ciated with the unilateral inputs must be neutralized. Therefore, the unilateral

vector fields must either satisfy some convexity condition (so that under the action

of the symmetrization operator, they are neutralized), or they cannot be used to

satisfy the LARC and must be assigned a sufficiently high degree so that they are

neutralized by lower degree brackets.

Using the former approach, one corollary is simple to obtain. First, we must

specify a particular dilation. For a given Lie bracket X, consider the degree of a

bracket with respect to a vector field f , hi or gj , denoted by δf (X), δhi(X) and

δgj (X), respectively, to be the number of times that the superscripted vector field

appears in the bracket X. Now consider the total degree, δ(X), to be

δ(X) = δf (X) + (1 + ε)
m∑

i=1

δhi(X) +
n∑

j=1

δgj (X),
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where 0 < ε� 1.

Now, call a bracket, X “bad” if δgj is even (including 0) for each j, δf (X) +∑m
i=1 δhi(X) is odd and

∑m
i=1 δhi(X) 6= 1. Otherwise, call the bracket “good.”

Corollary 6.2 Consider the control system described by Equation 6.1. Assume that

the system satisfies the LARC and that there exist coefficients λi and αj such that

m∑
i=1

λihi(x) +
n∑

j=1

αjgj(x) = 0 ∀x ∈ nbd(x0), (6.5)

where λi ∈ (0, 1) and αj ∈ R. Assume further that any bad bracket can be written

as a linear combination of brackets of lower total degree. Then the system is STLC

at x0.

The intuition behind the restriction expressed by Equation 6.5 is simple. Due

to the control input restrictions, none of the control inputs vi can be negative.

However, Equation 6.5 can be solved for one −hi in terms of the other hj ’s with

positive coefficients and the gk’s with arbitrary coefficients. Thus, allowable control

inputs (vj > 0, j 6= i) effect the same result as a disallowed control input (one

vi < 0).

Proof: First, scale the coefficients λiand αj in Equation 6.5 so that

∑
i

|λi|+
∑

j

|αj | = 1. (6.6)

Now, observe that if the system

ẋ = f(x) + h̃i(x)vi + g̃j(x)uj (6.7)

where h̃i = λihi and g̃j = αjgj , where λi and αj are from Equation 6.6, is control-

lable, then so is the system described by Equation 6.1 (because we have effectively

further restricted the set of allowable control inputs).

If B is a bad bracket such that
∑m

i=1 δhi(B) 6= 1, then Proposition 6.2 is simply

a restatement of Proposition 6.1 where, instead of requiring the symmetrization of
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a bad bracket, defined in Equation 6.2, to be ∆–neutralized, each term in the sum

which defines the symmetrization must be individually ∆–neutralized.

Now if B is such that
∑m

i=1 δhi(B) = 1, then β(B) is of the form

β(B) =
∑

πn∈Sn

π(B̃)

where the single X ∈ {X1, . . . ,Xm} in B is replaced by X1 + · · · + Xm in B̃ by

the operation of
∑

πm∈Sm
π(B). Recall that, by assumption,

∑m
i=1 h̃i = −

∑n
j=1 g̃j .

Thus, if we let B̂ be the bracket B̃ with the term X1 + · · · + Xm replaced by

−(Xm+1 + · · · + Xm+n), then, we have Evx(φ)(β(B)) = Evx(φ)(
∑

πn∈Sn
B̂). Since

δθ(
∑

πn∈Sn
B̂) < δθ(β(B)), the hypotheses of Proposition 6.1 is satisfied. �

6.2 Example

This section illustrates the application of Corollary 6.2 by way of an example. Con-

sider the controllability of rigid body with “thrusters.” Initially consider the body

to be centered about orthogonal coordinate axes, and let two thrusters be placed

at the points where the x–axis intersects the surface of the body and two more

thrusters placed at the points where the y–axis intersects the surface. Let the force

of the thrusters on the x–axis be in the negative z–direction, and the force of the

thrusters on the y–axis be in the positive z–direction. As a fifth control input, let

the thrusters rotate by a small angle, ψ (which can be both positive and negative)

about their respective axes so that the thrusters aligned on the x–axis rotate in

opposite directions so that if they are both “thrusting” they both contribute to a

positive torque about the z–axis, and let the thrusters aligned on the y–axis rotate

in opposite directions so that both contribute a negative torque about the z–axis.

We will consider a spherical body with unit radius and mass 5
2 (so that the inertia

tensor is the identity) as illustrated in Figure 6.1; although, for a non–spherical

body, the following controllability analysis still holds. In Figure 6.1, for clarity, the

coordinate system is shown displaced from the center of mass of the sphere, but for
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Figure 6.1. Rigid body with thrusters.

the calculations, the origin of the coordinate system is assumed to initially coincide

with its center of mass.

Parameterize the configuration space for the system SE(3) × S1 by the coordi-

nates X = (x, y, z), which are the displacements of the center of mass from the fixed

inertial frame, Φ = (φ1, φ2, φ3), which are the “roll, pitch, yaw” rotations about the

x– y– and z–axes, respectively and ψ, which is the rotational angle of the thrusters.

Thus, a point in the phase space is given by q = (X,Φ, Ẋ, Φ̇, ψ).

Now, we can write the equations of motion as



Ẋ

Φ̇

Ẍ

Φ̈

ψ̇


=



Ẋ

Φ̇

0

−Q−1Q̇Φ̇

0


+ F · v, (6.8)

where Q is the local mapping which takes the derivatives of the roll, pitch and yaw
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coordinates we chose for our parameterization and gives the body angular velocities,

which given by

Q =


cos φ2 cos φ3 sin φ3 0

− cos φ2 sin φ3 cos φ3 0

sin φ2 0 1

 .

If we let ê1, ê2 and ê3 represent the standard unit vectors in the x–, y– and z–

directions fixed in the body, Rx and Ry represent the usual rotation matrices rep-

resenting a rotation by an angle ψ about the x–axis and the y–axis, respectively

and R represent the 3 × 3 rotation matrix that takes body coordinates to spatial

coordinates, then

F =



0 0

0 0

−5
2RRxê3 −5

2RRxê3

Q−1((Rxê3)× ê2) Q−1((−Rxê3)× ê2)

0 0

0 0 0

0 0 0
5
2RRyê3

5
2RRy ê3 0

Q−1((Ry ê3)× e1) (Q−1(−Ryê3)× e1) 0

0 0 1


and v = (v1, . . . , v4, u)T . We will refer to the first four columns in the matrix on the

right–hand side of the equation for F as h1, . . . , h4, the fifth column as g and the

first column on the right–hand side of Equation 6.8 as f , to notationally correspond

to Equation 6.1, i.e., the thruster forces, vj are restricted to be non–negative, and

the thruster rotation angle, ψ can be either positive or negative.

First we must check that the system satisfies the LARC. Tedious calculations

show that the following collection of vector fields spans TxM everywhere except for
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the parameterization singularity at φ2 = π
2 :

{h1, h2, h3, g, [g, h1], [g, h2], [h1, f ], [h2, f ], [h3, f ],

[g, h3], [[g, h1], f ], [[g, h2], f ], [[g, h3], f ]} .

Now, we note that the hypothesis of Proposition 6.2 expressed by Equation 6.5

is satisfied because

∑
j

hj(x) = 0, ∀x ∈M.

The LARC is satisfied by brackets with total degree ≤ 3 + ε, so we need to show

that all bad brackets with total degree ≤ 3 + ε are spanned by brackets with lower

total degree. Note, that the only bad bracket with one element is f(x). However,

f(x) = 0 if Ẋ = Φ̇ = 0. For brackets with three elements, we note that any bad

bracket must have zero or two occurrences of the vector field g. If there are zero

g’s, there must be one or more h’s (since [f, [f, f ]] = 0). If there is only one h, then

it is not a bad bracket. If there are two or more h’s, then the total degree of the

bracket is greater than 3+ε. If there are two occurrence of g, then there must either

be two g’s and one hi or two g’s and one f . In the first case, since there is one hi,

that bracket is not a bad bracket. In the second case, we note that in this example

[g, f ](x) = 0, so that bad bracket can be written as a linear combination of lower

order elements. Therefore the system is STLC from any position with zero velocity.

We also verify by way of simulation that the controllability properties of this

system. The following graphs are intended to illustrate that, after a sequence of

control inputs, and possibly after a complicated series of gyrations, the system,

to leading order, has undergone a net motion in a particular direction. We only

present results for motion in two directions, but note that it is possible to do so for

all directions in the 13–dimensional phase space.

For example, consider motion in the x–direction. We note that ẋ = 1
2 [[g, h1], f ]−

1
2 [[g, h2], f ]. Figure 6.2 illustrates a sequence of motions that the system may un-
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Figure 6.2. Control inputs for x direction.

dergo to move in the x–direction. Note that the system is momentarily displaced

in various states other than purely the x–direction; however, the end result is pure

displacement in the x–direction.

Also, consider motion in the φ3 direction. Note that φ̇3 = 1
5([[g, h1], f ] +

[[g, h2], f ]). Figure 6.3 illustrates a sequence of motions that the system may un-

dergo to move in the φ3–direction. Again, note that the system is momentarily

displaced in various states other than purely the φ3–direction; however, the end

result is pure displacement in the φ3–direction.

Rather than specifically illustrate how we obtained the sequence of control inputs

used for the above simulations, we will discuss the heuristic synthesis technique we

used in more general terms. This technique is merely presented to illustrate the

means by which we obtained the control inputs for the above examples, and is

not presented as part of a rigorous theory. (A possible rigorous approach to this

synthesis problem would be to extend the averaging results of Leonard (1994) to

the context of the problem we are considering.)

Recall that if we denote the flow of a vector field f at time t starting at a point

x0 by φf
t (x0), we can write

φ−g2
ε ◦ φ−g1

ε ◦ φg2
ε ◦ φg1

ε (x0) = x0 + ε2[g1, g2] +O(ε3).
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Figure 6.3. Control inputs for φ3 direction.

Thus to “flow” in the direction of a Lie bracket (to leading order), we simply mod-

ulate the control inputs associated with two vector fields to execute the sequence of

flows illustrated.

Now consider, for example, the third–order bracket [f, [f, g]]. Writing this in

terms of its approximation by flows we have

[f, [f, g]] ∼ φ−f
ε ◦ φ−g

ε ◦ φf
ε ◦ φg

ε ◦ φ−f
ε ◦ φ−g

ε ◦ φ−f
ε ◦ φg

ε ◦ φf
ε ◦ φf

ε .

All the −f terms appearing throughout the above equation are clearly problematic.

However, it is actually possible to rewrite the bracket in a manner that will allow

it to be executed. First, consider

[f, [f, g]] = [−f, [−f, g]] ∼ φf
ε ◦ φ−g

ε ◦ φ−f
ε ◦ φg

ε ◦ φf
ε ◦ φ−g

ε ◦ φf
ε ◦ φg

ε ◦ φ−f
ε ◦ φ−f

ε .

(6.9)

Now, the first two −f terms do not affect the flow since we assume that f(x0) = 0.

There still is one remaining−f flow. However, we note that it corresponds to a set of

four flows which are approximating the bracket [g,−f ]. However, [g,−f ] = [−f,−g]

and [−f,−g] ∼ φg
ε ◦ φf

ε ◦ φ−g
ε ◦ φ−f

ε , and when this is substituted into Equation 6.9,
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we have

[f, [f, g]] = [−f, [−f, g]] ∼ φg
ε ◦ φf

ε ◦ φ−g
ε ◦ φ−f

ε ◦ φf
ε ◦ φ−g

ε ◦ φf
ε ◦ φg

ε ◦ φ−f
ε ◦ φ−f

ε ,

and so the composed flow φ−f
ε ◦ φf

ε = 0, and thus has no effect on the net flow.

Finally, to flow along the negative direction of an integral curve of one of the hi, we

simply flow along the positive direction of the vector field
∑

j 6=i hj .

These observations allowed us to determine sequences of control inputs which

produced displacements in all 13 states of the system, similar to the results illus-

trated in Figures 6.2 and 6.3

6.3 Unilateral Stratified Systems

Extending the unilateral result to the stratified case is straight–forward. One way

to interpret Proposition 6.1 is as follows: the Lie algebra rank condition specifies the

dimension of the reachable set of the system and the good/bad brackets requirement

tells whether the system is controllable, as opposed to simply accessible. (A system is

accessible if the LARC is satisfied, meaning that the reachable set is open. However,

this does not mean that the starting point is in the interior of the reachable set.)

A straight–forward extension of the controllability test for a nested sequence of

strata would retire that the good/bad bracket test be satisfied on each stratum.

Proposition 6.3 If there exists a nested sequence of submanifolds

x0 ∈ Sp ⊂ S(p−1) ⊂ · · · ⊂ S1 ⊂ S0,

such that the associated involutive distributions satisfy

p∑
j=0

∆Sj |x0 = Tx0M

and on each stratum in the nested sequence, the requirements of either Proposi-

tion 6.1 or Corollary 6.2 are met in a neighborhood of x0 in each stratum, then the
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system is STLC (in the topology of S0) from x0.

Proof: By standard accessibility theory (e.g., Nijmeijer and der Schaft (1990)),

the dimension of the reachable set is the dimension determined by the LARC. The

requirements of Proposition 6.1 specify whether this reachable set contains a neigh-

borhood of the starting point, thus making the system controllable.

If the conditions of Proposition 6.1 are met on the bottom stratum, Sp, the

the dimension of the reachable set on Sp, denoted Np is equal to dim
(
∆p

)
. By

assumption, the system can move off of Sp into Sp−1. Thus, from every point in Np,

the system can reach an dim
(
∆p−1

)
submanifold of Sp−1. The union of all these

submanifolds, denoted, Np−1 is a dim
(
∆p + ∆p−1

)
submanifold of Sp−1 because,

both ∆p and ∆p−1 ∈ TNp−1 by construction.

Now proceed by induction. Assume we have constructed a dim
(∑p

i=k ∆i

)
man-

ifold, Nk ⊂ Sk. At each point in Nk, the reachable set in Sk−1 is an dim
(
∆k−1

)
sub-

manifold of Sk−1. The union of these submanifolds, denoted Nk−1 is a dim
(∑p

i=k−1 ∆i

)
submanifold of Sk−1, because, by construction, ∆i ∈ TNk−1 for k = k − 1, . . . , p.

Continuing in this manner gives the desired result. �

Note that one limitation of Proposition 6.3 is that the additional good/bad

bracket condition must be satisified on each stratum.

6.4 Summary

This chapter presented results for systems with unilateral inputs. This type of

problem arises naturally in stratified systems because one aspect of physical contact

is that the normal force between two objects in contact must be positive. One

contribution of this chapter was a simpler reformulation of the results of Sussmann

(1987) to apply specifically to the stratified case. We also extended this result to

the stratified case, and illustrated the application of this controllability test with a

very simple example.
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Chapter 7

Conclusions

In this dissertation we have extended several standard controllability tests to the

case where the configuration space for the control system is stratified. Such a

stratified structure provides a means to model many physical systems with governing

equations which are discontinuous across subsets of the state space. The general

philosophy underlying these extensions was to exploit the particular structure of

stratified configuration spaces, which, loosely speaking, allowed us to simultaneously

consider the equations of motion for the system on each strata. The examples

contained herein illustrated both the steps involved in applying the tests as well as

their ease of use.

We also provided a general means to solve the trajectory generation problem

for certain types of legged robotic systems and the simulations indicate that the

approach is rather simple to apply. The method is independent of the number of

legs and is not based on foot placement principles. For a given legged robot mech-

anism, the deployment of a specifically tuned leg-placement-based algorithm may

lead to motions which use fewer steps or results in less tracking error. However, for

the purposes of initial design and evaluation of a legged mechanism, our approach

affords the robotic design engineer an automated way to implement a realistic tra-

jectory generation scheme for a quasi-static robot of nearly arbitrary morphology.

More importantly, we believe that our approach provides an evolutionary path for

future research and generalizations. Clearly, this general framework also encom-
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passes other types of systems whose configuration space is similarly stratified. An

obvious example would be a robotic grasping problem, where we wish to reorient

an object grasped by a robot hand by used of repeated finger repositioning.

The final topic in this dissertation was unilateral controllability. We have pre-

sented and illustrated the application of a controllability test for control systems

which may have inputs constrained to be non–negative. Although technically diffi-

cult to prove, this result is relatively straightforward to use in applications. Roughly,

we have treated the vector fields corresponding to the constrained inputs in a manner

similar to that for the drift term.

Several avenues of potentially fruitful further work could be based upon the re-

sults in this thesis. First, the results in Chapters 4 and 5 are restricted to driftless

control systems. Although a much harder problem, controllability tests for smooth

systems with drift exist, Sussmann (1987), and could potentially be extended to

stratified configuration spaces. One difficulty with simply extending that test is

that the test only provides a sufficient condition for controllability. In the case

where there is a large number of strata, one is faced with the prospect of the need

to satisfy a sufficient condition a large number of times. This is problematic to the

extent that sufficient conditions are, generally, too restrictive, in which case, if the

test needs to be satisfied multiple times, the restrictive nature of the sufficient con-

ditions are similarly multiplied. Clearly, necessary and sufficient conditions would

be preferable, and would provide a more practical basis from which controllability

tests for stratified systems could be derived.

Unfortunately, an even more fundamental limitation also exists for systems with

drift. A basic hypothesis of the main result in Sussmann (1987) is that controllability

is only defined at equilibrium points. Therefore, to extend the general results for

systems with drift to the stratified case would require that the point of interest be

an equilibrium point in all strata (or at least enough strata to satisfy a Lie algebra

rank condition type test). Two practical problems illustrate that, at least in the

legged robotic context, a point that is an equilibrium point on one stratum will not

necessarily be an equilibrium point on another stratum.
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Figure 7.1. Hopping robot.

Figure 7.1 shows the robotic leg used to illustrate the stratified controllability

results in Chapter 4. However, now we consider it as a dynamic system, e.g., as

a hopping robot, so that when the foot is not in contact with the ground, gravity

causes the robot to accelerate downward. If the foot is in contact with the ground

and the robot is vertical, then it is at an equilibrium point. However, if the foot

is not in contact with the ground, there are no equilibrium points, and so the

general controllability results due to Sussmann (1987) are not applicable, and thus,

extending those results to the stratified case are problematic.

Another example further illustrates this problem. Consider the biped robot in

Figure 7.2, built in the Caltech robotics laboratory by Dr. Shuuji Kajita. Also

illustrated is a depiction of the robot’s stratified configuration space. As with the

hopping robot, if both feet are in contact with the ground and the robot is vertical,

then the system is at an equilibrium point. However, if the robot lifts either foot

out of contact with the ground, then in either stratum corresponding to one of the

two feet out of contact with the ground, the system is no longer in a neighborhood

of an equilibrium point. This is because the center of mass of the robot is located

vertically above a point between the two feet.

Some progress has been made with stratified dynamic systems with regard to a

particular model called the shimmying wheel (Goodwine and Stépán (1997)). Un-
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Figure 7.2. Caltech biped.

fortunately, so far the results are specific to the model. Specifically, the shimmying

wheel is a model intended as a simplified model of systems such as an aircraft

landing gear structure. A common undesirable feature of such systems is that the

rolling behavior can be unstable. Since the nonholonomic “rolling without slipping”

constraint is imposed by friction, for some trajectories the system will switch from

rolling to skidding, which increases the dimension of the phase space by two. The

rolling without slipping constraint defines a codimension two submanifold of the

phase space, and switches between pure rolling behavior and skidding are switches

on and off of the submanifold. Hence, the phase space of this system is a stratified

space. One effective approach to control this system is to design a stabilizing con-

troller for the rolling state, and allow the natural dissipative nature of the skidding

system drive the system back to the rolling substrata. Due to the complexity of

the model, however, the results are primarily numerical, and it is not clear how to

generalize them. Some analytic stability results specific to this model were obtained

by Žefran and Burdick (1997).

Another avenue of future work would be to make more concrete connections with

recent results for hybrid systems. The stratified systems considered here clearly are
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a subset of all hybrid systems. However, we were able to exploit the particular

geometry of the state space to formulate the main controllability results which will

not be present in a generic hybrid system. One possible way to do this would be to

attempt to generalize the stratified structure present in the systems we consider to

encompass a broader class of “switching” systems common in hybrid control.
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