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Abstract 

 

by 
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Non-uniform, variable-density fields, resulting from compressibility effects in 

turbulent flows, are the source of aero-optical distortions which cause significant 

reductions in optical system performance.  As a laser beam transverses through an 

optically active medium, containing index-of-refraction variations, several optical 

phenomena occur including beam wander, image distortion, and beam defocus.  When 

encountering a variation in the index field, light waves refract causing an otherwise 

planar wavefront of a laser beam to become aberrated, contributing to the adverse effects 

mentioned above.  Adaptive-Optics (AO) is a technique used to correct for such spatially 

and temporally varying aberrations on an optical beam by applying a conjugate waveform 

correction prior to the beams transmission through the flow.  Conventional AO systems 

are bandwidth limited by real-time processing issues and wavefront sensor limitations.  



Alice M. Nightingale 

 

 

Therefore, an alternative to the conventional AO approach has been proposed, developed 

and evaluated with the goal of overcoming such bandwidth limitations.   

The alternative AO system, presented throughout this document, consists of two 

main features; feed-forward flow control and a phase-locked-loop AO control strategy.  

Initially irregular, unpredictable large-scale structures within a shear layer are regularized 

using flow control.  Subsequently, the resulting optical wavefront, and corresponding 

optical signal, emerging from the regularized flow becomes more periodic and 

predictable effectively reducing the bandwidth necessary to make real-time corrections.  

A phase-lock-loop controller is then used to perform real-time corrections.  Wavefront 

corrections are estimated based upon the regularized flow, while two small aperture laser 

beams provide a non-intrusive means of acquiring amplitude and phase error 

measurements.  The phase-lock-loop controller uses these signals as feedback to 

synchronize the deformable mirror‟s waveform to that of the shear layer by adjusting its 

amplitude and phase.  A third-order analog phase-lock-loop controller has been designed 

and a prototype board assembled; the higher order controller was designed to 

accommodate for any step and ramp changes in phase.  The control system was assessed 

and validated through numerical simulations.  The prototype controller was then 

constructed and several experimental tests were run using a function generator signal as 

the input.  The frequency and phase of the input signal was varied throughout the testing 

process and the phase-lock-loop controller was able to successfully synchronize its output 

signal with the changing sinusoidal input.  This work represents a key step in the 

successful development of an automated AO controller capable of applying real-time 

corrections to an optical beam for high-speed aero-optic applications.
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CHAPTER 1:  

INTRODUCTION 

1.1. Fluid-Optics Overview 

Fluctuations in a medium‟s index of refraction through which light is propagated 

are the cause of several observable phenomena.  In the case of air, index of refraction is, 

for the most part, directly related to the air‟s density.  The appearance of water on dry 

pavement is a common example of a mirage that occurs on hot or humid summer days.  

As light rays encounter pockets of air density gradients, due to hot air near the 

pavement‟s surface, they are refracted upward creating an image of the sky that appears 

to originate from the ground.  Another familiar example is that of “twinkling” stars.  This 

occurs when light from stars pass through rapidly varying density fluctuations in the 

Earth‟s atmosphere caused primarily by temperature variations.  This atmospheric 

turbulence acts like a collection of lenses redirecting or refracting the light in a random 

time-varying manner producing the twinkling phenomenon, technically known as stellar 

scintillation [1, 2].   

Evidence of atmospheric fluctuations not only occurs in the twinkling of stars, but 

also in projected optical signals.  Optical systems require the propagation of optical 

signals through turbulent flow fields such as atmospheric turbulence and aero-optic 

disturbances.  Atmospheric effects are the result of small amplitude aberrations which 
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amass over long propagation distances.  On the other hand, aero-optic effects are caused 

by inhomogeneities in air density within a near-field turbulent medium including 

boundary layers, wakes, free shear layers, etc.  These turbulent flows may be viewed as 

additive phase aberrations advancing and/or retarding points along the wavefront, defined 

as a line of constant phase.  The subsequently distorted optical wavefront and its real-

time correction have been the subject of study for optical designers throughout the past 

several hundred years. 

1.1.1. Brief History of Adaptive-Optics 

With the dawn of telescopic imaging in the early 1600‟s, the need for real-time 

imaging improvements began.  As early as 1704, Isaac Newton acknowledged the 

negative effect turbulence has on imaging systems writing,  

“If the theory of making telescopes could at length be fully brought into practice, 
yet there would be certain bounds beyond which telescopes could not perform.  
For the air through which we look upon the stars is in perpetual tremor” [1, 2].   
 
Throughout the next few hundred years, several discoveries were made dealing 

with the propagation and behavior of light: the area of study known as optics.  In 1953, 

Horace Babcock, an American astronomer, introduced the concept of adaptive optics for 

the first time [1, 2].  Adaptive-optics (AO) is “the control of light in a real-time closed-

loop fashion” [2].  It is the technique of applying the conjugate waveform to the optical 

wavefront prior to its transmission through an aberrating medium, effectively restoring a 

planar wavefront.  Although his idea could not be implemented at that time due to a lack 

of available technology, the concept would serve as a springboard for future development 

of real-time wavefront correction control systems.  In the early 1970‟s technological 
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advancements made it feasible to begin developing feedback control systems used to 

perform real-time imaging corrections for low frequency disturbances.  During the next 

several years a considerable amount of research was dedicated to advancing the area of 

adaptive optics.  Today the use of AO systems is common place in correcting telescopic 

images and reducing atmospheric aberrations on aircraft mounted optical systems [1]; 

however, there is still an ever-present need for further advancements in the case of high 

speed aero-optic disturbances.   

The adaptive-optic process consists of three main components or steps within the 

control loop; sensing the aberration, reconstructing the appropriate correction, and 

applying the conjugate correction to the optical beam prior to transmission.  In order for 

this principle to work effectively, the accuracy of each conjugate correction is extremely 

important.  An error in the conjugate correction often produces an output optical signal 

whose quality is worse than its input. [2]  For example, let us assume that at time, t0, the 

AO control process begins and the aberration present at that point in time is as shown in 

Fig. 1.1 (A).  If a perfect conjugate correction were applied (shown in Fig. 1.1 (B)), the 

emerging wavefront will become planar (Fig. 1.1 (C)).  This represents an ideal optical 

correction in which the emerging planar wavefront would produce a perfectly focused 

laser beam.   
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    A            B           C 

Figure 1.1: (A). Optical aberration caused by a flow field at time t0  (B). 
Perfect conjugate correction for the aberration shown in Fig. 1.1 (A)  (C). 
Emerging planar optical wavefront given the perfect conjugate correction 
shown in Fig. 1.1 (B) applied to the wavefront shown in Fig. 1.1 (A). 

 

However, the AO control loop does not happen instantaneously.  Rather, sensing, 

reconstructing and applying the conjugate correction takes a certain amount of time, ∆t, 

during which the aberrating flow field is continually changing.  As the speed or 

frequency at which the aberrations within the flow field are moving and changing 

increases so does the discrepancy between the applied correction and the necessary 

correction after ∆t.  Once the frequency of aberrations exceeds a certain threshold, 

described in more detail in Chapter 2, AO corrections become ineffective and in fact 

destructive.  Referring back to the example shown in Figs. 1.1, if the aberrations are 

occurring too fast for the controller, the conjugate correction will have some amount of 

associated phase lag.  For example, the actual optical aberration present after ∆t may look 

something like the wavefront shown in Fig. 1.2 (A) where the conjugate correction 

happens to be 180º out of phase.  If the conjugate correction shown in Fig. 1.2 (B) was 

applied to the actual wavefront shown in Fig. 1.2 (A), the emerging wavefront would 

become even more aberrated (Fig. 1.2 (C)).  Thus, system latencies alone result in 
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significant bandwidth limitations.  And for high speed aero-optic flows, time delays 

associated with current AO control systems make such corrections virtually impossible. 

 
    A            B           C 

Figure 1.2:  (A). Actual optical aberration caused by a high speed flow 
field after ∆t  (B). Conjugate correction constructed by an AO control 
system whose process began at time t0  (C). Emerging optical wavefront 
given the conjugate correction shown in Fig. 1.2 (B) is applied to the 
wavefront shown in Fig. 1.2 (A).  

1.1.2. Recent Advancements in Aero-Optics 

Aero-optics refers to the study of wavefront distortions caused by index-of-

refraction fluctuations in the near field.  The near field is defined as the region where the 

propagation length is on the same order as the aperture size; this refers to the flow field 

near the exit pupil of an outgoing beam or the receiving aperture of an imaging system 

[3].  Due to the wavelength dependence of a beams maximum irradiance, aero-optic 

effects proved inconsequential until recently with the movement towards visible-

wavelength laser systems.  For an unaberrated beam with a given aperture (diameter), 

laser power, and propagation distance, the far-field irradiance increases with decreasing 

wavelength as shown in Figure 1.3 (A).  This relationship has promoted the use of shorter 

wavelength lasers which in turn has caused the aero-optic problem to become even more 

substantial.  As shown in Figure 1.3 (B), a given aero-optic disturbance that produces 
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95% maximum irradiance for a wavelength of 10.6 microns reduces to less than 10% for 

wavelengths below ~ 1.5 microns [3]. 

  
A      B 
 

Figure 1.3:  (A). Peak irradiance of diffraction limited spot versus laser 
wavelength (B). Ratio of target irradiance to maximum achievable 
irradiance (system performance) versus laser wavelength [3].  

 

With the increased use of shorter wavelength lasers over the past decade, it has 

become imperative to perform real-time corrections of aero-optic disturbances.  Current 

AO systems successively correct for low frequency disturbances present in atmospheric 

turbulence, however these systems become bandwidth limited as the frequency increases.  

In the case of aero-optic disturbances, frequencies commonly exceed 1 kHz requiring 

wavefront capture rates of at least 100 kHz due to stability and update criteria discussed 

in Section 2.2.2.  Such bandwidth requirements exceed the ability of available 

technology.  This research seeks to overcome these limitations by proposing an 

alternative approach to the conventional AO system. 
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1.2. Motivation 

Optical systems, including free-space communication platforms and airborne laser 

weapon systems, transmit and receive optical signals that must propagate through 

variable density flow fields which adversely affect system performance.  Various types of 

turbulence may be encountered by the optical signal within the systems field of regard 

including turbulent boundary layers, wakes, and free shear layers.  Due to the high 

frequency content and unpredictable nature of a free shear layer, this form of turbulence 

presents a significant problem with detrimental performance implications.  Figure 1.4 

shows an example of a variable-density shear layer forming as the air separates across an 

airborne turret [4]. 

 

Figure 1.4:  Shear layer formed over a turret/fairing combination.  
 

As the flow goes unstable and begins to roll over itself and downward into the 

cavity between the turret and fairing combination, a recirculation region is formed 

creating a lower speed flow compared with the upper free stream velocity.  This 
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difference in velocity causes the flow to roll-up forming vortical structures which grow as 

they convect downstream creating a separated free shear layer (see Figure 1.4).  In flight 

conditions where the free stream Mach number routinely exceeds 0.6 [3], the 

aerodynamic flows contain temporal and spatial frequencies more than an order of 

magnitude greater than the atmospheric disturbances that are currently being corrected 

using AO systems.  When the optical signal encounters this region of flow significant 

beam degradation occurs.   

As the azimuth angle, defined as the angle between the centerline of the oncoming 

flow and the centerline of the outgoing beam (refer to Fig. 1.4), increases the quality of 

the beam and consequently the performance of an optical system making use of the signal 

greatly reduces.  This is due primarily to the separated free shear layer flow.  In order to 

maximize the system‟s utility it is important to maintain a large field of regard, defined as 

the range of points in space that the laser beam can be successfully propagated.  

Therefore, it becomes necessary to perform AO corrections for large azimuth angles thus 

improving the system‟s field of regard.   

1.3. Research Objective 

The overall goal of this research is to design, simulate, and construct a prototype 

of an alternative AO controller that may be used to perform real-time corrections to an 

aberrating optical wavefront emerging from a regularized free shear layer.  Due to 

bandwidth limitations faced by current AO systems and technology, an alternative 

approach to correcting high-speed optical aberrations must be explored.  Numerical 
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simulations were first conducted to investigate the optical nature of a free shear layer 

flow.  During this process, a method of optically characterizing the flow was proposed 

which provided extremely valuable insight into effectively “controlling” the flow‟s large-

scale structures.  Numerical simulations were verified experimentally, demonstrating the 

feasibility of using flow control to regularize a high-speed shear layer.  Regularized 

large-scale coherent structures produce emerging optical signals that are much more 

periodic, thus providing a priori knowledge of the flow which can be used to reduce 

bandwidth requirements placed on the AO control strategy.  The periodic nature of an 

optical signal propagating through the regularized flow may now be used as a reference 

signal within a phase-lock-loop controller.  The combination of flow control used to 

regularize the shear layer‟s large-scale structures and a phase-lock-loop feedback 

controller used to apply conjugate corrections to a laser beam propagating through the 

flow, will be the primary focus of this dissertation and the means to achieving our 

research objective. 
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CHAPTER 2:  

BACKGROUND 

2.1  Optics 

Since the early 1990s, the optical characteristics of free shear layers have been the 

subject of investigation.  The cause of the optical aberrations in shear layers was found to 

be the large scale structures that naturally “roll up.”  More specifically, it was found that 

the radial pressure gradients (and the associated density deficit) required to support the 

curvature of the structure along with the high pressure/density regions between coherent 

structures substantiate the cause for a large part of the optical aberrations.  Such large 

scale turbulent structures, loosely referred to as compressibility effects, cause variations 

in the flow field density [5].  This in turn produces a variable index-of-refraction field, n, 

which is related to density, , through the Gladstone Dale constant, KGD, by 

),,(1),,( tyxKtyxn GD . (2.1) 

Such variations in the index-of-refraction field impose aberrations on an otherwise planar 

optical wavefront propagating through the flow.  The path that a ray follows through a 

variable flow field as well as the time taken to transverse that path is dependent upon the 

index-of-refraction field.  When a beam encounters fluctuations in index-of-refraction, 

portions of the optical wavefront become advanced or retarded, deviating the wavefront 

from its otherwise planar form.  These distortions are commonly quantified using optical 
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path length (OPL) and optical path difference (OPD).  OPL(t,x) is defined as the integral 

through a variable index-of-refraction field, n(t,x,y), with respect to the ray‟s path of 

travel.  Due to small deviations in the ray‟s path from the initial direction of propagation, 

OPL(t,x) can be approximated by integrating along the axis corresponding to the initial 

direction of propagation; 

 
ray

y

y

2

1
dy)y,x,t(nds)y,x,t(n)x,t(OPL . (2.2) 

Removing the spatial mean ( )( otOPL ) at each time step produces 

)t(OPL)x,t(OPL)x,t(OPD ooo   (2.3) 

where OPD(t,x) represents the conjugate of the optical wavefront defined as a locus of 

points along which the beam‟s phase is constant [6].   

According to Huygen‟s Principle, a wavefront can be decomposed into several 

secondary spherical wavelets, with radius vΔt (where v is the wave‟s propagation 

velocity), radiating from the locus of points defining the initial wavefront.  At some later 

time, t + Δt, a new wavefront can be defined as the envelope of these secondary wavelets 

revealing that a wavefront will propagate in a direction normal to itself.  Concomitantly, 

if a small-aperture laser beam is directed through an aberrating flow field, it will emerge 

normal to the outgoing aberrated wavefront at an angle, (t,x), defined by 











dx
xtOPDdxt ),(arctan),( . (2.4) 

When a small-aperture laser beam is projected through an aberrating flow field, (t,x) 

varies in time producing a series of angles referred to as beam “jitter” [6].  These small-
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aperture jitter signals play a significant role in this research; they are used to characterize 

a shear layer‟s optical properties (Section 3.1.3) and provide a non-intrusive means of 

acquiring feedback information for the proposed alternative AO controller (Chapter 4). 

Far-field intensity pattern, or irradiance pattern, is another important term used 

throughout this dissertation.  Such visible patterns provide a useful means of evaluating a 

system‟s response.  Irradiance patterns, defined as the constructive and destructive 

interference of light waves, may be determined from OPD(t,x) using Fourier optics.  

Fraunhofer diffraction, also known as far-field diffraction, is the phenomenon that occurs 

when spherical waves become essentially planar at the point of observation.  This arises 

when the source and observation point are sufficiently far apart or through the use of 

lenses creating a planar wavefront at the observation plane.  In each case, the following 

Fraunhofer approximation becomes valid for calculating the peak electric field [6], 

 



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
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00
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
, (2.5) 

where A is the amplitude of the incident wave, λ is the wavelength, k is the wave number, 

R0 defines the distance between the source and the aperture, R0
' is the distance between 

the aperture and point of observation, tr(x’,z’) is the transmission function, φ(x', z') is the 

function defining OPD (the wavefront at the aperture) and x' and z' represent a point in 

the aperture over which the integration is performed.  The incidence of flux density, also 

referred to as irradiance (I), is proportional to the square of the electric fields amplitude 

and can therefore be determined from Eq. (2.5).  In the case of a perfectly planar 

wavefront (i.e., no phase variations) with circular aperture, an image known as an Airy 
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disk is formed in the far field.  As shown in Figure 2.1, a bright central lobe forms (Airy 

disk) with concentric rings surrounding it.  These rings are due to the intensity 

distribution described by the following result obtained using Eq. (2.5) for far-field 

irradiance in polar coordinates, 

2

0

01

/
)/(2

)( 













Rrka
RrkaJ

rI , (2.6) 

where J1() represents a Bessel function of the first-order, a represents the aperture radius, 

and r’ is the radial distance from the beams center in the aperture plane [2, 3, 6].  Figure 

2.1 was created by numerically propagating a perfectly planar wavefront through a 

circular aperture.  The irradiance distribution shown below was normalized by dividing 

the resulting field by the maximum or peak intensity value. 

 

Figure 2.1:  2-D Fraunhofer diffraction pattern (Airy disk) for a planar 

wavefront with circular aperture (left) and a 3-D visualization of the same 
diffraction pattern (right).  
 

When aberrations are imposed on a wavefront, significant degradation in image 

quality occurs.  On-axis intensity is greatly reduced due to beam wander and beam 
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spreading.  As the beam moves off target and/or the central diffraction spot is broken up 

into several smaller intensity lobes, the operation of an optical system making use of such 

a signal becomes severely impaired.  Figure 2.2 shows an example of a far field 

diffraction pattern induced by a wavefront containing a plus or minus 1µm peak to peak 

sinusoidal aberration whose OPDrms is approximately 0.7 µm.  The one-dimensional 

sinusoidal aberration was uniformly spread in the cross-stream direction and numerically 

propagated through a circular aperture.  The resulting intensity pattern was normalized by 

the maximum irradiance produced in the ideal case (i.e., planar wavefront).  As shown in 

the figures below, the on-axis (0,0) and surrounding intensity for the aberrated wavefront 

in Fig. 2.2 has decreased appreciably compared to the on-axis intensity of the planar 

wavefront shown in Fig. 2.1.  A wavelength of 600 nm was used to create the results in 

both Fig. 2.1 and Fig. 2.2.   

 

Figure 2.2:  2-D Fraunhofer diffraction pattern (Airy disk) for an aberrated 

wavefront with circular aperture (left) and a 3-D visualization of the same 
diffraction pattern (right). 
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The performance of an optical system is commonly characterized by this on-axis 

intensity.  The Strehl ratio (SR) is defined as the ratio of actual on-axis intensity, I, to the 

maximum achievable on-axis intensity, Io, 

oI
ISR  , (2.7) 

producing a value between zero and one, where a Strehl ratio of one represents a 

perfectly focused on-target beam (as shown in Fig. 2.1) [6].  The overall tilt, or average 

slope of the wavefront across the aperture, is typically removed prior to calculating the 

Strehl ratio to produce a more accurate estimation of the beam‟s quality [2].  In this case 

Strehl ratio is measured as the ratio of actual tilt-removed on-axis intensity to maximum 

achievable on-axis intensity, and when used will be specifically stated as such.  The terms 

and equations described in this section will be referred to throughout the following 

dissertation, specifically when discussing optical performance. 

2.2  Conventional Adaptive-Optic (AO) System 

Systems that sense aberrations, and construct and apply the proper conjugate 

waveforms at regular time intervals are termed AO systems [2].  A conventional AO 

system operates in consecutive steps; the first step is to sense the aberration for which a 

conjugate must be constructed.  Since optics is linear, this aberration can be determined 

by measuring the aberrated wavefront from a source propagating through the aberrating 

flow from either direction.  For projecting systems, determining the aberration (or the 

remaining residual aberration after a correction has been made) at any given instant is 
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done by sensing the aberration from an incoming optical signal.  The wavefront 

aberration is measured using a WaveFront Sensor (WFS).  Once the wavefront‟s figure is 

measured a Conjugate Constructor (CC), also referred to as a “reconstructor,” 

determines the distorted pattern that must be sent to a deformable mirror (DM).  The 

conjugate waveform (or some portion of it) is then sent to a DM, whose electro-

mechanical characteristics, including its source of excitation (i.e., amplifiers) limit the 

rate at which it can be deformed.  The conjugate wavefront is placed on the laser prior to 

its propagation through the aberrating turbulence by first reflecting it off the DM.  Such 

AO corrections are applied to the DM at regular time intervals with the goal of reducing 

wavefront aberrations and consequently increasing on-axis intensity.   

The conventional AO process discussed above is depicted in Fig. 2.3.   Since a 

perfect correction is impossible due to latencies and wavefront approximations, a certain 

amount of error remains on the reflected beam which is directed onto the WFS.  The 

residual error is measured and a signal sent to the CC which approximates a fraction of 

the error, based on system gain requirements.  The wavefront correction is then applied to 

the DM closing the feedback loop [2].  Each component within the system possesses its 

own set of time delays and bandwidth constraints.  In general the CC is typically much 

faster than the WFS and, at present, does not form the bandwidth-limiting step.  The 

following section describes some bandwidth constraints and limitations associated with 

this conventional AO approach in more detail; this includes update rates, time delays, 

slew rates, and more. 
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Figure 2.3:  Closed-loop depiction of the conventional AO system, 
consisting of a WFS, reconstructor (CC), and DM. 

2.3 Limitations of the Conventional AO Approach 

As mentioned above, each component of an AO system exhibits certain 

bandwidth limitations restricting the systems capabilities and effectiveness in high speed 

applications.  Such limitations become quite significant in the case of aero-optic 

disturbances where frequencies commonly exceed 1 kHz.  Given the current technology, 

the WFS commonly creates the bottleneck within the system; however each component 

also plays its own role in the overall system response characteristics.  These performance 

limitations are due primarily to update requirements, cutoff frequency, system latency, 

and slew rate limitations as will be expanded upon in the following sections.   

2.3.1 System Update Requirements 

In the conventional AO approach, the feedback control system represents one of 

the bandwidth-limiting steps, or components, in the AO system.  This step has been 
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extensively studied by Tyson [2] and others.  In the end it appears that only ~ 1/10th of 

the residual error can be removed per DM update (usually the clock time of the WFS) to 

maintain system feedback stability.   In other words, typically the system gain is 

approximately 0.1.  Given higher gain values small amounts of error in the correction 

signal may produce an output beam possessing even more distortion than its incoming 

counterpart (as shown by the example depicted in Fig. 1.2), thus resulting in system 

instabilities.  

The aberrating flow field itself sets yet another bandwidth requirement on the AO 

system.  As described by Tyson [2] and re-examined and affirmed specifically for aero-

optic disturbances by Cicchiello and Jumper [7], an aberration must be removed 

approximately ten times per disturbance clearing cycle to restore 80% of its diffraction-

limiting performance, equivalent to a 1 dB correction (dB = -10log10[(Corrected OPDrms / 

Uncorrected OPDrms)]).  Recall that an ideal planar wavefront produces the maximum 

diffraction-limiting performance (i.e., 100% or 0 dB) while a Strehl ratio of 0.8 or higher 

is generally desired [40].  Taken together with the system stability update requirement 

discussed prior, a WFS must operate approximately one hundred times faster than the 

flows aberrating disturbances.  These two bandwidth characteristics for an AO system are 

summarized in Fig. 2.4 given an aberrating flow that initially reduces the Strehl ratio to 

less than 0.1.   The horizontal axis represents the frequency at which the disturbances 

pass through the beams aperture and the vertical axis shows the required WFS framing 

rate.  Three slanted lines provide a means of estimating the required WFS framing rate 

for a specified disturbance bandwidth given three different desired Strehl ratios: 0.8, 0.5, 

or 0.3.   
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Figure 2.4:  Bandwidth requirements for a wavefront sensor based on an 
aberrating flow that initially reduces the Strehl ratio to less than 0.1 and 
control system limitations for the conventional AO approach [8]. 
 

An example is shown in Fig. 2.4 according to the red arrows.  It shows that for the 

conventional AO approach, in which an aberration has a clearing frequency through the 

aperture of 1 kHz, the WFS must frame at 100 kHz in real time in order to restore a Strehl 

ratio from 0.1 up to 0.8.  The fastest real-time wavefront sensors that exist today operate 

at an order of magnitude lower than this.  Even if a real-time wavefront sensor were 

available, other components in the AO system would form a barrier to correcting a 1 kHz 

aberration; yet the aberrations posed by a high-Mach subsonic shear layer are at least 1 

kHz [3, 9, 10, 11]. 

2.3.2 Nonlinear Effects 

Many electronic devices and components such as amplifiers exhibit nonlinear 

characteristics which can significantly affect both its magnitude and phase response.  

Two such nonlinear features are harmonic distortion and slew rate.  Harmonic distortion 

refers to the process of harmonics being added to a signal as it passes through a device 
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due to nonlinear effects.  The output signal being altered or distorted results in a more 

complicated transfer function.  Here the term slew rate is used in its control context rather 

than being mistaken for the motion of a beam through the atmosphere.  Slew rate is 

defined as the maximum rise rate of an output voltage to a step input voltage, which is the 

common use of this term in control theory.  In other words, slew rate is the maximum rate 

of change that a signal can achieve placing limitations on its response characteristics.  

This can lead to nonlinear effects given a sinusoidal input if the slew rate, SR, does not 

meet the following condition: 

fASR 2 ,         (2.8) 

where f refers to input frequency and A is the peak amplitude of the signal.  Amplifiers 

used to transfer the conjugate correction signals to the DM actuators commonly exhibit 

these nonlinear characteristics and as such place certain limitations on the overall system 

response.  Slew rate also affects the ability of a DM to form the desired conjugate 

correction.  These last two statements will be illustrated more fully in the following two 

sections. 

2.3.3 Conjugate Correction Requirements 

In addition to the update requirements and nonlinear effects described above, 

there exist certain requirements on the conjugate correction itself.  The AO system, or 

more specifically the DM, must be capable of producing a waveform correction with a 

minimal amount of error.  Otherwise the applied correction could have a negative effect 

producing an output wavefront containing more distortion than was first present.  The 

ability of the DM to generate the appropriate form or shape depends primarily on the 
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following three factors: the number of actuators comprising the DM, the spacing between 

actuators, and the slew rate (defined previously in Section 2.3.2) limit of the actuators.  

Section 2.4.3 refers to each of these issues when examining the constraints of Notre 

Dame‟s DM.  The following section discusses the effect the limitations introduced above 

have on Notre Dame‟s AO System. 

2.4 Limitations of the Conventional AO Approach 

Notre Dame purchased a conventional AO system eight years prior to the writing 

of this dissertation.  The AO system located in the Hessert laboratory at the University of 

Notre Dame, was developed by Xinetics and consists of two different control loops; a 

DM performs conjugate corrections and a tip/tilt mirror removes the average slope, or tilt, 

across the beam‟s aperture.  Each feedback loop contains various components possessing 

frequency response characteristics crucial to overall system performance.  The Notre 

Dame system consists of four key elements: a Shack-Hartman wavefront sensor, a 

wavefront reconstruction processor, an amplifier and a deformable mirror.  Each 

component has its own set of time delays and bandwidth constraints.  While the data 

presented in this section pertains specifically to the Notre Dame AO System, similar 

bandwidth restrictions also negatively affect other AO systems.  This analysis will serve 

to further underscore the need to address and overcome current bandwidth limitations that 

plague the conventional AO approach. 

Bandwidth limitations concerning several different components of Notre Dame‟s 

AO System will be addressed.  The information and figures presented represent a 
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collection of data obtained through experimental testing and manufacturer testing.  

Limitations relating to the amplifier, DM, and wavefront sensor are analyzed below. 

2.4.1 Amplifier 

In order to characterize the DM amplifier‟s bandwidth limitations, frequency 

response analyses were performed.  Experimental tests were conducted to determine key 

operational features, such as cutoff frequencies, latencies, and slew rate limitations.  A 

more detailed description of the system identification techniques referred to here may be 

found in Appendix A. 

 The conjugate correction feedback loop, as part of Notre Dame‟s AO control 

system, consists of 5 NI-PXI (National Instruments) boards each containing 8 channels 

corresponding to the 37 DM actuators where three channels are unused.  Control signals 

are relayed from each of the NI-PXI board channels through an amplifier which amplifies 

each signal by three times the input voltage.  The amplified signals are then sent directly 

to each of the DM actuators which may be modeled as a capacitor. 

Experimental tests were conducted to determine the frequency response of the 

DM amplifier.  Bode diagrams were constructed depicting the amplifier‟s behavior as a 

function of input frequency.  Sinusoidal input signals ranging in amplitude from 1 Volt to 

8 Volts and ranging in frequency from 100 Hz to 20 kHz were sent into the amplifier.  

The input and output signals were measured simultaneously using a data acquisition 

system with a sampling rate of 500 kHz.  Data was acquired over twenty-five consecutive 

time periods, i.e. 25T where T is the time period associated with the sinusoidal input 

frequency.  Two amplitude measurements and two phase delay measurements were taken 
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from each of the twenty-five time periods resulting in 50 amplitude measurements and 50 

phase delay measurements for each frequency test.  Amplitude was measured as the 

maximum and minimum peak values over a time period and phase delay was measured as 

the phase shift between the input and output signals at the zero cross-over points.  Note 

that amplitude and phase delay measurements were obtained after removing the signal‟s 

mean or DC bias.  Each set of data (50 measurements) was averaged and plotted on a 

frequency response diagram showing magnitude and phase response characteristics 

where the magnitude data was determined by normalizing the output amplitude by the 

averaged input amplitude.  The range of values obtained at each input frequency was 

used to determine the signal‟s uncertainty for each measurement. 

The raw signals were also transformed into the Fourier domain for further 

analysis using Matlab‟s discrete Fourier transform commands.  The output signal‟s 

amplitude and phase delay were determined from the signal‟s Fourier transform at the 

input frequency as a means of verifying the measurements described previously.  The 

frequency spectrum obtained from the Fourier transform was also used to locate any 

harmonics present in the output signal which would indicate harmonic distortion.  Square 

wave inputs were used to study the DM amplifier‟s response to step changes in voltage.  

This data was also used to determine any slew rate limitations. 

The DM Amplifier represents a key component in Notre Dame‟s AO control 

system.  The amplifier is used to transfer the conjugate correction signal to the DM 

actuators.  It provides an amplification of 3X the input voltage resulting in an output 

signal of +/- 30 Volts peak to peak riding on a 70 Volt bias signal, i.e. when the input is 

0.0 Volts the output is 70 Volts.  The amplifier accepts a maximum input signal of +/- 10 



 
 

24 

 

Volts; therefore frequency response testing was conducted using sinusoidal waveforms 

with amplitudes ranging from 1 Volt to 8 Volts.  Input frequencies ranged from 100 Hz to 

20 kHz.  In order to test the amplifier under conditions similar to those experienced 

during normal operation, a 2.2 F capacitor was connected to the output of the amplifier, 

simulating the effects of an individual piezoelectric actuator.  Sinusoidal signals were 

input into the amplifier using a function generator and the output voltage was measured 

across the simulated actuator (capacitor).  The input and output signals were acquired at a 

500 kHz sampling rate.  Figure 2.5 shows the ratio of output to input averaged amplitude 

versus frequency for eight different input amplitudes.  Figure 2.6 shows the 

corresponding averaged phase delays encountered between the input and output signals 

over the same range of input amplitudes and frequencies.   

 

Figure 2.5:  Magnitude response results for Notre Dame‟s DM Amplifier 
determined experimentally. 
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Figure 2.6:  Phase response results for Notre Dame‟s DM Amplifier 
determined experimentally. 
 

As evident from Figs. 2.5 and 2.6, the DM Amplifier exhibits linear 

characteristics to approximately 1 kHz, at which point both magnitude and phase begin to 

significantly fall off for large input amplitudes; the exception to this linear response for 

frequencies below 1 kHz is the linear negative slope on the Fig. 2.6 phase plot.  This is an 

indication of a pure time delay which will be further discussed later. 

Examination of the raw signal provides further insight into the source of the 

amplifier‟s nonlinear response.  Step inputs were applied at four different amplitudes to 

determine any slew rate limitations.  Figure 2.7 shows four different step response tests 

overlaid with one another for both rising (left) and falling (right) edge response, revealing 

a positive slew rate of approximately 0.18 Volts/s and a negative slew rate of 

approximately 0.15 Volts/s.  Note that the output signal has been scaled by a factor of 
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1/3 so as to remove the DM amplifier‟s amplification rate aligning the final values of the 

input and output signals. 

   

Figure 2.7:  Step response tests performed on the DM Amplifier given 
four different input amplitudes: 2, 4, 6, and 8, showing a clear slew rate 
limit of approximately 0.18 Volts/µs (0.06 Volts/µs X3 due to the 
amplifier‟s amplification of 3 times the input signal). 
 

The amplifier‟s slew rate limitations may also be seen in the frequency response 

data shown below in Fig.2.8.  Figure 2.8 (A) represents a case where the slew rate limit 

has not yet been reached, whereas (B) and (C) show two different cases in which the 

output signal experiences nonlinear effects due to slew rate limitations.  For the given 

range of input frequencies tested, the amplifier displayed positive slew rates between 0.15 

and 0.158 Volts/s and negative slew rates between 0.13 and 0.137 Volts/s.  Again, the 

output signals have been scaled by 1/3 to more clearly show the slew rate effects.   
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A B C 

Figure 2.8:  (A). Frequency response tests performed on the DM Amplifier 
showing slew rate limits ranging between 0.13 and 0.16 Volts/µs (after 
rescaled by 3X) given an input amplitude of 2 Volts and a frequency of 4 
kHz, (B). an input amplitude of 4 Volts and a frequency of 5 kHz, and (C). 
an input amplitude of 4 Volts and a frequency of 20 kHz. 
 

Using the data given above, an approximation to the DM amplifier‟s magnitude 

and phase response was derived.  Negligible nonlinear effects were observed in the 

frequency response data given an input amplitude of 1 Volt.  Therefore, a transfer 

function was fit to the +/- 1 Volt peak to peak magnitude response data points shown in 

Fig. 2.5.  The best fit corresponded to a transfer function consisting of a low pass filter 

with a cutoff frequency of approximately 7.5 kHz with an additional pure time delay of 

25 µs.  The response characteristics from this transfer function were then applied in 

conjunction with slew rate limitations, noting that there exists a maximum output 

amplitude restriction given by,  

d
o f

SRA
4max

 ,         (2.9) 

based on the amplifier‟s slew rate, SR, and the input or disturbance frequency, fd.  These 

characteristics were used to estimate or model the magnitude response data measured 

experimentally.  The good agreement between the measured data and the modeled 
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response shown in Fig. 2.9 indicates that the nonlinear effects are due primarily to slew 

rate limitations and the pure time delay referred to above imposed by the amplifier.   

 

Figure 2.9:  Experimental magnitude response data (*‟s) and the modeled 
magnitude response (solid lines) using an estimated transfer function 
along with the amplitude restrictions placed on the output due to the DM 
amplifier‟s slew rate limits. 
 

Due to the triangular output signal shown in Fig. 2.8 (B) and (C) there does exist a 

higher order harmonic at twice the input frequency in some cases.  However, its 

associated power is approximately two orders of magnitude smaller than that of the 

fundamental and therefore only a slight amount of harmonic distortion occurs.   

2.4.2 Deformable Mirror 

The Xinetics DM consists of 37 piezoelectric actuators mounted to the back of a 

flexible membrane.  Seven evenly spaced rows of actuators (separated by 7 mm), with 

each of the three corner actuators removed, makes up an approximate 42 mm diameter 
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circular aperture used for corrections (Fig. 2.10).  Each actuator has a stroke length of +/- 

4 μm given an input signal of +/- 10 Volts.  The dynamic capabilities of the mirror 

depend on the frequency response of the amplifier and actuators discussed above, the 

number of cycles that can be accurately formed across the mirror‟s aperture, as well as 

the bandwidth constraints for applying discrete time control commands to the amplifier 

and DM.  This section studies the effect that each of these limitations has on the AO 

system‟s correction capabilities. 

 

A B 
 

Figure 2.10:  (A). Xinetics DM photograph and (B). 3-D model of the 
mirror and actuators. 
 

Based on the number of actuator rows as well as the spacing between them, the 

DM is limited by the number of full cycles that can be accurately formed across the 

aperture.  Since a bi-quadratic fit represents a good model for the DM‟s shape and given 

that there are only seven rows of actuators, the mirror is capable of constructing one full 

cycle of disturbance very well.  However, as the number of cycles of disturbance across 

the aperture increases so does the error.  Figure 2.11 illustrates the requirements 

necessary to produce an acceptable AO correction based on the number of actuators per 
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disturbance wavelength given various aperture sizes as reported by Duffin [43].  It is 

clear from these results that at least three actuators per disturbance wavelength are 

necessary to achieve any amount of correction.  Furthermore, as the DM aperture size 

increases with respect to the disturbance wavelength the number of actuators needed to 

attain the same amount of correction also increases. 

 
Figure 2.11:  Requirements for the number of actuators needed to apply an 
acceptable correction as reported by Duffin [43]. 
 

In addition to the number of actuators per disturbance wavelength, the slew rate 

limitations discussed previously place another constraint on the amount of correction 

attainable.  Moreover, if the AO system uses discrete time updates to control the DM 

actuators, yet another variable is introduced.  Figures 2.12 show two different simulations 

of an individual actuator‟s “response” given five updates per quarter disturbance 
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wavelength.  The “response” curves shown in Figs. 2.12 represent the voltage patterns 

that would be felt by the piezoelectric actuators while the plots shown in Figs. 2.13 

represent the mirror displacements that would occur if the mirror responded with no time 

delays, overshoots, etc. introduced by the mirrors own response characteristics.  The first 

case (Fig. 2.12 (A)) demonstrates the actuator‟s “response” when the slew rate limit 

given by Eq. (2.8) is satisfied (i.e., the limit has not been exceeded).  In this example the 

actuator rises and falls at the maximum slew rate during each individual update yet is still 

able to achieve the target stroke height over each discrete update period.  The second case 

(Fig. 2.12 (B)) shows the actuator‟s “response” when the slew rate limit given by Eq. 

(2.8) is not satisfied (i.e., the limit has been exceeded).  In this case, the actuator is unable 

to reach the target stroke height during each discrete time period therefore causing the 

actuator to maintain the maximum slew rate from peak to peak.  Note that this simulation 

agrees with the actual experimental data for the amplifier‟s response shown in Fig.2.8 (B) 

and (C). 

A        B 
Figure 2.12:  Simulated time response of an individual actuator plotted 
against the input waveform given discrete time updates where  
(A). SR > 2πfA and (B). where SR < 2πfA. 
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The next logical question is how the “response” of an individual actuator 

translates to the overall wavefront correction capabilities.  Figures 2.13 show three 

different time series of OPD, again not including the mirror‟s own response 

characteristics.  Fig. 2.13 (A) shows the progression in time of a one-dimensional 

aberrating wavefront.  This waveform then becomes the input signal used to produce the 

middle plot given discrete time updates.  Therefore, Fig. 2.13 (B) depicts a time series of 

the DM actuators‟ one-dimensional OPD “response” associated with the wavefront 

shown in Fig. 2.13 (A).  If the DM waveform shown in Fig. 2.13 (B) were used to correct 

for the aberrating wavefront shown in Fig. 2.13(A), Fig. 2.13 (C) represents the resulting 

time series of residual error.  This example does show a significant reduction in OPD.  

However, as would be expected, given a similar analysis of the case shown in Fig. 2.12 

(C) where the slew rate limit has been reached, a far less desirable outcome is produced. 

A B C 
 

Figure 2.13:  Simulated time series of OPDs corresponding to (A). a 
specified wavefront aberration, (B). twice the DM‟s conjugate correction 
given discrete time updates, and (C). the resulting wavefront error where 
SR > 2πfA. 
 

These correction capabilities were quantified using the root-mean-squared of the 

difference between an actuator‟s ideal temporal surface, ideal, and its “actual” temporal 

surface, actual, absent the mirrors own characteristics, described as, 



 
 

33 

 

  2)(1
actualideal

d
rms T

 ,            (2.10) 

where Td is the disturbance time period.  Since the aberrations for this analysis are given 

by sinusoidal functions, the following equation may also be used in replacement of Eq. 

(2.10), 

  2)(1
actualideal

p

residual
rms OPDOPD

A
OPD                 (2.11)         

where Ap represents the mirror‟s aperture and the overbar indicates a time-averaging over 

one disturbance time period, Td.  The same results are produced using either Eq. (2.10) or 

Eq. (2.11) since time-averaging the OPD error at any location along the mirror‟s aperture 

looks the same as one full-disturbance time period elapses. 

Figure 2.14 shows several different sets of simulation results for various ratios of 

slew rate (SR) to 2πfdA.  As indicated by the range of plots shown below, there exists a 

limit on the amount of achievable correction independent of the number of updates per 

disturbance period when the slew rate drops below half of the limit given by Eq. (2.8).  

On the other hand, for slew rates exceeding approximately twice the limit given by Eq. 

(2.8), the mirror‟s correction ability improves only minimally.  Although, in this case 

increasing the number of updates per disturbance cycle does continue to provide 

improvement. 
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Figure 2.14:  Correction restrictions due to the optical disturbance and 
slew rate limitations. 

2.4.3 Wavefront Sensor 

As described previously, wavefront sensing rates are dependent upon both system 

gain requirements, in order to maintain system stability, and the number of full 

corrections needed to attain a specified increase in on-axis intensity.  The ability of the 

conventional AO system to accurately sense and correct a disturbance depends upon 

system latencies, τ2, disturbance frequencies, fd, and update frequencies, fu, as illustrated 

by Duffin‟s analysis [27] shown below in Fig. 2.15.  The horizontal axis represents the 

ratio of update frequency to disturbance frequency while the vertical axis represents the 

correction (dB = -10log10[(Corrected OPDrms / Uncorrected OPDrms)]).  For corrections 

below the 0 dB line, the use of a conventional AO system would actually worsen the 

wavefront aberrations.  It is also clear from Fig. 2.15 that as system latency (τ2) increases 
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system performance declines given a constant disturbance frequency (fd).  It should also 

be noted that the ratio of update frequency to disturbance frequency must be at least three 

for any amount of correction to occur, even when considering the ideal case with no 

system latencies.  There also exists a ratio for a given time delay beyond which 

improvements in system performance are negligible.  Horizontal solid bars are used to 

indicate the asymptote for each curve in Fig. 2.15 [27].  

 

Figure 2.15:  Correction dB versus DM update rate/frequency ratioed to 
the disturbance frequency for various latencies as reported by Duffin [27]. 
 

As an example, a latency of 25 µs associated with Notre Dame‟s DM Amplifier 

alone would require an update rate of approximately 6 kHz given an 800 Hz disturbance 

to achieve a 50% reduction in the residual OPDrms (i.e., -3 dB); this in turn would require 

a 60 kHz wavefront frame rate in real time given a system gain of 0.1.  The Shack-

Hartman wavefront sensor used in Notre Dame‟s AO system only frames at a rate of 1 
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kHz.  Even state-of-the-art wavefront sensors whose framing rates are an order of 

magnitude greater than Notre Dames would be incapable of making this correction.  In 

this case the latency issue of the amplifier alone exceeds the limitations set by current 

technology; therefore an alternative AO approach is necessary.  Moreover, frequencies 

commonly found in high speed aero-optic disturbances may be even greater than 800 Hz 

and the desired increase in system performance is often more than 50%, raising the 

necessary wavefront sensing rate even higher.  While improvements are continually being 

made to technology and time delays reduced, there will always be some component of the 

AO system limiting its bandwidth capabilities.  Therefore, the motivation behind this 

research is to approach the problem from a different perspective.  Rather than trying to 

improve the speed of various system components this research has focused on reducing 

the bandwidth necessary to make real-time corrections. 

2.5 Numerical Model 

A significant portion of this research involves the use of a numerical model to 

simulate a free shear layer, its corresponding velocity fields and evolving thermodynamic 

properties, along with the form of the emerging wavefronts once propagated through the 

flow.  Simulations were conducted to study the optical characteristics of an unforced 

shear layer along with its optical response to forcing.  In addition, the code was used to 

test the effects of real-time AO corrections applied to an emerging aberrated wavefront.  

Developed by Hugo and Jumper [3, 11], and improved by Fitzgerald and Jumper [5, 12], 

this code was first used to develop wavefront sensors and later to discover the physics of 
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the aberrating mechanism in a matched-total-temperature shear layer [5].  It simulates 

two flows of different velocity, but identical total temperature, on either side of a 

stationary splitter plate.  As the flows merge a free shear layer is formed.  The model 

starts by calculating the unsteady velocity field using a discrete vortex method.  A 

thermodynamic overlay is then performed to determine the thermodynamic properties 

from the computed velocity field.  The following sections provide a more detailed 

description of these steps.   

2.5.1 Discrete Vortex Method (DVM) 

Several inviscid and pseudo-inviscid methods have been successfully used to 

model roll-ups in a shear layer caused by the Kelvin-Helmholtz instability mechanism 

[5].  The current study was performed using a pseudo-inviscid, two-dimensional discrete 

vortex method (DVM) developed at Notre Dame [5, 12].  The shear layer is modeled 

using two semi-infinite vortex sheets, solved analytically, on either side of a finite vortex 

sheet solved numerically (computational domain).  A splitter plate is simulated using a 

string of positionally-fixed vortices while the remaining vortices within the 

computational domain are allowed to move and convect based on the induced velocity 

from all other vortices and the overall convective velocity of the flow.  The rotational 

core associated with each discrete vortex is modeled using a temporal growth rate, 

simulating momentum diffusion.  The model also uses vortex insertion and vortex 

merging when the distance between two adjacent vortices exceeds or drops below a 

specified value, respectively to ensure stability [5, 12].  Each vortex is assigned an initial 

strength, dΓ, at the splitter plate given by 
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dlUUd LU )(  , (2.12) 

where dl represents the spacing between adjacent vortices, and UU and UL represent the 

upper and lower stream velocities above and below the splitter plate, respectively.  At 

each discrete point within the computational domain the velocity induced by all 

surrounding point vortices is calculated by 

r
drdU


 2
)( 
  (2.13) 

when r is greater than some critical value, rSingular, and by 

r
r
drdU
Singular
22

)(





  (2.14) 

otherwise, where r is the distance from the center of each vortex to the point of 

evaluation.  Once the overall convection velocity is taken into account and the entire 

velocity field is computed at the given time step, new positions for each vortex at the 

subsequent time step are determined.  A new velocity field is calculated using the 

equations above and the process is repeated. 

2.5.2   Weakly Compressible Model (WCM) 

Once the velocity fields are available from the DVM, another numerical code 

designated the Weakly-Compressible Model (WCM), is used to overlay the 

thermodynamic properties onto each velocity field.  The unsteady Euler equations, 
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are back solved using a four-point central difference scheme to calculate the pressure 

gradients from which the pressure field is computed.  The adiabatic heating/cooling 

equation and the perfect gas law are used to find the initial temperature and density fields.  

These iterations are repeated until the density field converges.  At this point another 

iteration loop is run using the Hilsch approximation, 


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
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1

ad p
)y,x,t(p

)y,x,t(T
)y,x,t(T , (2.16) 

to solve for the temperature variations within the flow field.  The density iteration cycle is 

then repeated followed by the temperature iteration cycle until pressure, density, and 

temperature converge at each time step [5, 12].  The index-of-refraction field, n(t,x,y), is 

determined using the Gladstone-Dale constant from which OPL and OPD are computed 

using Eq. (2.2) and Eq. (2.3).  Once the optical wavefronts are obtained, jitter signals, far 

field diffraction patterns, and Strehl ratios may be computed as described earlier. 

2.5.3 DVM/WCM Experimental Validation 

The results obtained using the DVM and WCM have been found to be in good 

agreement with experimental results.  Good comparison between mean velocity profiles 

from the numerical model and incompressible and weakly-compressible experimental 

shear layers validate the DVM computations (Fig. 2.16 (A)).  Further validation of the 
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DVM simulation results were obtained by comparing the vorticity thickness computed 

using the DVM with the vorticity thickness predicted by literature (Fig. 2.16 (B)) [13].  

The DVM simulated a vorticity thickness growth rate of approximately 0.139, which is 

within 8.6 % of the empirical predicted value [5]. 

A B 

Figure 2.16:  (A). Mean velocity profile comparison between the DVM 
(numerical simulation performed by Fitzgerald), an incompressible shear 
layer (Oster and Wygnanski), and a weakly-compressible shear layer 
(Saminy and Elliot) [5, 12] (B). Vorticity thickness growth rate of a free 
shear layer simulated using the DVM with varying initial core radius 
values [5, 12]. 

  

The results from the WCM were also validated experimentally.  Figure 2.17 

shows a qualitative comparison between a DVM/WCM computed vorticity plot with its 

corresponding Schlieren image shown on the left and an experimental flow visualization 

shown on the right [5, 9, 11, 12].  As reported by Fitzgerald and Jumper [5], the 

DVM/WCM accurately models the large-scale structures present in the flow.  Figure 2.18 

shows the similarities between the pressure wells formed within a vortical structure 

produced numerically by the WCM and experimentally [9].  Although only 2-D, the 

discrete vortex method and Weakly-Compressible Model provides good insight into the 
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underlying shear layer mechanism.  While it does not simulate the entire range of 

turbulent scales in a shear flow, it does predict the large-scale motion and more 

importantly the optical aberrations induced by such a flow very well.  When a laser beam 

is propagated through a turbulent shear layer, the large-scale structures convecting 

downstream ultimately determine the form of the outgoing beam.  This is due primarily 

to the large density deficit within each of the large-scale structures.  Not only does it 

support the curvature allowing such structures to persist downstream, but it is this 

significant density gradient which, along with the local „stagnation‟ or saddle point 

between coherent structures forming a high-pressure region, largely contributes to the 

emerging wavefront‟s aberrations. 

 

Figure 2.17:  Comparison between DVM vorticity plot and Schlieren 
image (left) and an experimental flow visualization image (right) [5, 9, 11, 
12]. 
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Figure 2.18:  Comparison between DVM/WCM pressure well (left) and an 
experimental pressure well (right) [5, 9, 11, 12]. 
 

The DVM/WCM code was used to perform free shear layer simulations given a 

range of upper and lower Mach number flows.  The simulations provide a tool for 

characterizing the optical nature of the shear layer as well as a fast and efficient way of 

analyzing the feasibility of the proposed AO control system.  The following Chapter 

describes the implications that a shear layer has on an optical system in more detail.  It 

uses results obtained from the weakly-compressible model to investigate the relationship 

between a shear layer‟s vorticity thickness and its optical characteristics.  An analysis of 

the shear layer‟s response to forcing is also presented.  The results from several 

simulations, performed using the DVM/WCM model, are summarized providing a means 

of optically characterizing a free shear layer using non-intrusive small aperture laser 

beams. 
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CHAPTER 3:  

SHEAR LAYER CHARACTERIZATION 

3.1 Unforced Shear Layer 

The development of turbulent shear layers, also referred to as mixing layers, has 

been the subject of considerable amounts of investigation throughout the past several 

decades [4, 5, 10, 13, 14, 15, 17, 33, 34, 36].  Shear layers are found in several different 

devices and flow regimes including combustion jet engines, supersonic ejection pumping, 

and separated flows between a free stream flow and recirculation region.  Free shear 

layers also play a critical role in the development of laser transmission systems.  Due to 

the detrimental optical effects caused by density variations within the shear layer through 

which a laser signal is propagated, knowledge of the flow fields structures, topology and 

dynamics is of great importance. 

A free shear flow is characterized as a flow free from boundary conditions.  The 

general form of a shear layer, as depicted in Fig. 3.1, is given by two flows merging after 

initially being separated by a splitter plate.  The upper and lower stream velocities are 

represented by U1 and U2, respectively.  As the flows merge, the velocity gradient 

between the two streams in combination with local instabilities cause shearing to occur 

between fluid elements at the interface increasing vorticity and eventually leading to a 

fully-developed turbulent flow field.  The two streams are characterized as planar flows 
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where the mean velocity in the streamwise direction is considerably larger than the mean 

velocity in the spanwise direction.  Similarly, gradients in the spanwise direction 

significantly outweigh gradients in the streamwise direction.  These conditions may be 

applied to the Navier-Stokes equations to obtain Reynold‟s transport and vorticity 

transport equations specific to a free shear layer flow. 

 

 
 

Figure 3.1:  Vortex contour plot of a numerically simulated free shear 
layer, where UU = 261 m/s and UL = 35 m/s, with dotted lines showing the 
on-average linear growth rate of large-scale structures in the cross-stream 
direction. 
 

It is well known that turbulence contains a wide range of length scales, where the 

largest scales are a characteristic of the mean flow and the smallest scales, also referred to 

as Kolmogorov scales, are the mechanism through which energy is finally dissipated 

[32].  As the flow convects downstream, nonturbulent irrotational fluid in the freestream 
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is entrained into the turbulence through a “gulping” mechanism.  Dimotakis describes 

this process by three separate steps.  Firstly, irrotational fluid near the shear layers 

boundary begins engaging in large-scale motions through the Biot-Savart law.  This step 

is referred to as induction.  The second stage is termed diastrophy and involves the 

introduction of vorticity through the straining of fluid elements as they cascade down 

towards the viscous, or Kolmogorov scales.  Finally, other diffusive processes may take 

place through infusion depending on the type of flow [15].  Due to this continual 

entrainment of fluid, the mean shear layer thickness grows linearly (although not 

symmetrically) with downstream distance as shown by the dotted lines in Fig. 3.1.  This 

linear growth rate is known to be a function of both velocity and density ratios [15, 33].  

The growth rate can be seen to vary with changing upper and lower Mach numbers, 

which (for the matched total-temperature case) leads to variations in the temperature and 

density of each stream.   

Linear stability analysis has also been used extensively to gain insight into the 

initial transition to turbulence.  Small instabilities within the flow interact with the 

surrounding fluid creating random motions eventually leading to fully-developed 

turbulent flow through the Kelvin-Helmholtz instability mechanism.  Linear stability 

theory describes this process as small disturbances upstream in the flow being amplified 

at the shear layers most unstable frequencies or wavelengths.  Monkewitz and Huerre 

[17] showed that the maximum growth rate of a mixing layer more or less scales 

proportionally with velocity ratio by applying a linear stability analysis of both the tanh 

and Blassius profiles.  These results supported prior findings, indicating that a shear 

layers spreading rate is also related to its velocity ratio. 
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3.1.1. Shear Layer Implications 

A turbulent shear layer is an unstable flow susceptible to small perturbations 

which cause the layer to spread and advance into fully-developed turbulence.  The flow is 

irreversible with energy being dissipated through viscous effects at the small scales.  Due 

to their stochastic nature, statistical methods have been commonly used to analyze 

turbulent flows [44].  Such studies have offered much insight into their development 

including the mechanisms through which turbulence is intensified and dissipated.  In 

1974, Brown and Roshko observed an interesting feature about shear flows in 

experimental shadowgraphs taken of a different density mixing layer [13].  In their study, 

as well as in several subsequent studies by other authors [33, 17, 34, 35, 36], large-scale 

spanwise coherent structures have been shown to dominate the flow topology.  These 

structures, also called “Brown-Roshko rollers”, reveal a “quasi-ordered” flow that is not 

completely deterministic or stochastic [10].  These findings unveiled a new way of 

analyzing a free shear layer.   

In addition to the discovery that large-scale structures were an intrinsic property 

of shear layer flows [13], Winant and Browand proposed  that the growth rate of the 

shear layer was not only dependent upon the entrainment process, but also the interaction 

between these structures within the flow [36].  As the structures propagate downstream, 

two or more rollers begin interacting with one another eventually coalescing into a larger 

coherent structure.  This merging mechanism is known as pairing when only two 

structures are involved.  This process subsequently recurs creating larger and larger 

structures with downstream distance.  Several studies have focused on the prediction of 

these pairing locations using a pairing parameter first introduced by Huang and Ho [37].  
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Experimental measurements have shown both pressure and density deficits within these 

large-scale coherent structures.  However, for quite some time pressure fluctuations were 

viewed as negligible.  Using the DVM/WCM code described in Chapter 2, Fitzgerald and 

Jumper [5] were able to shed some light on this flawed notion.  Growth rates and velocity 

profiles obtained using this model showed good agreement with both theoretical 

predictions and experimental data, respectively.  Large-scale coherent structures in 

experimental flow visualizations were also shown to exhibit a similar form and curvature 

as those computed using the weakly-compressible model [9].  Furthermore, the model 

confirmed the presence of significant pressure wells measured experimentally, refuting 

previous claims of negligible static pressure fluctuations within a high speed shear layer 

[5].  It is now acknowledged that these pressure wells are necessary to support the 

considerable amounts of curvature present in a shear layers velocity field.  These results 

have made a significant impact on our understanding of the coherent structures that exist 

in free shear layers. 

Moreover, these pressure wells and density deficits within the large-scale 

structures are the cause of significant optical aberrations induced on a laser beam 

projecting through the flow.  In addition, saddle points in the shear layer produce high 

pressure/density regions between coherent structures causing further aberrations.  For a 

projecting system mounted to the end of an aircraft, the severity of such aberrations 

increases as the beam is directed further backward (i.e., for larger azimuth angles) 

encountering more of the shear layer (refer to Fig. 1.4).  Figure 3.2 illustrates an example 

of the detrimental effect a shear layer has on system performance [27].  Figure 3.2 is an 

early prediction by Dr. Demos Kyrazis of how the Strehl ratio of a large aperture beam 
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on the ABL would be affected based on shear layer optical data from Jumper and Hugo 

[11] and Fitzgerald and Jumper [5] for laser projection through a Mach 0.8/0.1 shear 

layer at Arnoold Engineering Development Center (AEDC).  It shows an estimate of 

Strehl ratio, used to quantify system performance, versus azimuth angle.  For azimuth 

angles between 0 and 90 degrees system performance depreciates by approximately 10%.  

However, once the azimuth angle exceeds 100 degrees dramatic reductions occur.  

Between 100 degrees and 120 degrees system performance reduces from approximately 

90% to approximately 30%, a crippling effect to an AO system.  The emerging optical 

beam becomes virtually, if not completely, ineffective.  As a result, overcoming these 

shear layer implications on an AO system becomes crucial to solving the aero-optic 

mitigation problem. 

 

Figure 3.2:  Demos Kyrazis‟ prediction of Strehl ratio versus azimuth 
angle in degrees. 
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3.1.2. Shear Layer Thickness 

In general, most experimental shear layer studies report their results in terms of 

measures of the shear layer‟s thickness, the most common of which are either vorticity 

thickness, δω, or momentum thickness, , given respectively by 
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These two measures are approximations of the on-average structure size in the vertical or 

cross-stream direction.  Although highly turbulent, a shear layer experiences a linear 

growth rate in terms of its vorticity thickness and momentum thickness due to the pairing 

process undergone by the large-scale vortical structures convecting downstream.  This 

linear growth rate is shown in Fig. 3.1 by the dotted lines bounding the vortex contours. 

Extensive experimental results for the growth rate of shear layers with matched density in 

the two streams at the splitter plate and with convective Mach numbers less than ~0.45 

was conducted by Brown and Roshko [13].  The convective Mach number is defined as  

                where U and a are the free stream velocity and speed of sound, 

respectively and the subscripts ‘U’ and ‘L’ represent the upper and lower streams, 

respectively.  In another study by Brown [14], an analytical prediction for the growth rate 

of a temporally growing shear layers is given by 
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where R = UL/UU, s = L/U, and C = 0.085.  This relation is further supported by 

Dimotakis‟ shear layer growth rate prediction which reduces to Eq. (3.3) when the 

vortical structure size is small compared to position [15]. 

With the goal of developing a relationship between a shear layer‟s optical 

properties and its vorticity thickness, several simulations were performed comparing the 

weakly-compressible model vorticity results to the corresponding predicted growth rate 

given by Eq. (3.3).  Figure 3.3 shows vorticity thickness versus downstream distance for 

the simulated shear layer shown above in Fig. 3.1.  The numerically computed vorticity 

thickness (shown by ▲‟s in Fig. 3.3) has an approximate growth rate of 0.131, closely 

agreeing with the predicted growth rate from Eq. (3.3) of 0.13 (shown by a solid line in 

Fig. 3.2).  These results are similar to those computed by Jumper and Fitzgerald shown 

previously in Fig. 2.16 (B) for varying initial half shear layer thicknesses, i/2.  In each of 

the computations referred to in this paper, a series of approximately 8,000 timesteps was 

run, with approximately 33 s between timesteps.  Simulations were performed using an 

initial vortex core size (initial half shear layer thickness) of 0.01725 meters and a 

rectangular velocity grid spacing in both the x- and y- directions of 0.005 meters.   
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Figure 3.3:  Vorticity thickness versus downstream distance from the 
splitter plate for the simulated shear layer shown in Fig. 3.1 where the ▲‟s 
represent the numerically computed vorticity thickness and the solid line 
represents the predicted vorticity thickness according to Eq. (3.3). 
 

Due to the optical nature of this research it became important to characterize the 

shear layer in terms of its optical characteristics.  The goal was to perform a “system 

identification” of the unforced shear layer in terms of its dominant frequencies and relate 

this back to the commonly used experimental measure of vorticity thickness.  In addition, 

such an optical characterization provides a non-intrusive means of measuring and 

classifying shear layer flow characteristics for future research. 

3.1.3. Optical Characterization 

This section outlines the procedure used to derive another thickness measure in 

terms of the shear layer‟s optical characteristics.  The goal of this analysis was to provide 

a means of characterizing a shear layer‟s optical properties and link those back to the 
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commonly used vorticity thickness measure defined above in section 3.1.2.  An optical 

characterization was performed by numerically propagating several small-aperture laser 

beams perpendicularly through a simulated shear layer at various locations downstream 

from the splitter plate.  When a small-aperture beam is projected through the 

experimental turbulent flow field, its emerging angle, j(x,t), can be recorded at rates 

exceeding 100 kHz.  This time series of angles, referred to as the beam‟s “jitter”, was 

used to determine the natural frequencies present within the shear layer flow.  

Thermodynamic properties, including time-dependant density fields, were computed 

from the series of velocity fields and used to determine the effect of the laser propagating 

through the shear layer.  Jitter signals were obtained from the weakly-compressible 

model by first calculating a time series of OPL and OPD from the density field using 

Eqs. (2.2) and (2.3).  The jitter angles were then computed using Eq. (2.4).  Finally, a 

spectral analysis was conducted to determine the frequency content of the jitter signals.  

Since the beam‟s deflection is caused primarily by the density deficit present in the large-

scale structures followed by the surplus density between structures [5], these signals 

provide information about the coherence lengths of the aberrating structures convecting 

through the beam. 

Figure 3.4 (A) gives the power spectral density (PSD) of the jitter signals at 

several locations downstream from the splitter plate.  A weighted average or “natural 

optical frequency” at each x-location was computed from the PSD‟s using, 
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where  fn represents the “natural” unforced optical frequency in the shear layer at each 

particular x-location and df indicates frequency is the variable of integration [16].  Figure 

3.4 (B) shows a plot of the natural optical frequency versus downstream distance from 

the splitter plate.  The results displayed in Figs. 3.4 (A) and 3.4 (B) were obtained using a 

numerical sample rate of approximately 33 s.  At each x-location, the PSD was 

calculated for a series of 4,096 consecutive timesteps.  Twenty different runs, each 

consisting of 4,096 timesteps, were averaged to obtain the PSD plots shown in Fig.3.4 

(A) for a given set of flow field conditions.  Figure 3.4 (B) shows a 1/x relationship 

between the natural optical frequency, fn, and downstream location, x, where the highest 

frequencies occur closest to the splitter plate corresponding to the smallest large-scale 

structures.  As the structures grow with downstream distance, the corresponding 

frequencies of a small-aperture beam traversing the flow decreases. 

A B 
 

Figure 3.4:  (A). PSD for flow-induced jitter angles at various downstream 
distances from the splitter plate for an unforced shear layer (B). Natural 
optical frequency, fn, versus downstream distance from the splitter plate 
for an unforced shear layer. 
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It should be noted that Eq. (3.4) provides a means of calculating the average 

frequency versus downstream distance based upon numerical data.  Therefore, when 

applying this method to experimental data, great care must be taken in filtering out any 

frequencies not associated with the shear layer dynamics themselves [31]. 

As mentioned above, these frequencies can be related to an average optical 

coherence length by dividing the convection velocity, Uc (in this case 147.87 m/s), by the 

natural optical frequency, fn; 

  
)(
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xf

Ux
n

c
n  .                                                                   (3.5) 

As each coherent vortical structure passes through one of the small-aperture lasers, the 

beam undergoes one full cycle of beam jitter corresponding to one full wavelength of 

optical coherence length.  This means that optical coherence length, as defined in Eq. 

(3.5), is a measure of the statistical, on-average, streamwise size of the large-scale 

vortical structures passing through the laser beam (i.e., spacing between large-scale 

structures).  Figure 3.5 shows a plot of optical coherence length versus downstream 

distance.  As expected, the range of natural optical frequencies and consequently optical 

coherence lengths vary with differing shear layer conditions, corresponding to the 

relationship between a shear layers growth rate and its velocity ratio [17, 18].   

Similar to vorticity thickness, the unforced shear layer structures also experience a 

linear growth rate in terms of optical coherence length.  However, when comparing Fig. 

3.5 to Fig. 3.3, a difference between growth rates is evident.  For the shear layer case 

shown in these two figures, a numerical optical coherence growth rate of 0.37 compared 

to a numerical vorticity thickness growth rate of 0.131 was computed.  Therefore the 
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spacing between structures grows at a faster rate than their “thickness” in the cross-

stream direction. 

 
 

Figure 3.5:  Optical coherence length (meters) versus distance downstream 
from the splitter plate given the shear layer shown in Fig. 3.1. 
 

  Several more shear layer cases were simulated with varying upper and lower 

stream velocities to further investigate this difference between growth rates.   Each case 

was simulated using a rectangular grid with 0.005 meter spacing in the x- and y- 

directions.  Time-averaging was calculated using a sample size of approximately 8,000 

timesteps given an approximate timestep of 33 s.  Each jitter signal was evaluated at a 

single location in space, simulating an “infinitesimal” small-aperture beam.  Time-

averaged vorticity thicknesses and time-averaged optical coherence lengths were 

numerically computed to determine the relationship between these two measures of 
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structure size.  Figures 3.6 (A) and (B) show vorticity thickness versus downstream 

distance for six different cases while Figs. 3.7 (A) and (B) show optical coherence length 

versus downstream distance for the same case studies.  The three sets of simulation 

results shown in Fig. 3.6 (A) and Fig. 3.7 (A) correspond to a convective velocity of 

147.87 m/s, while Fig. 3.6 (B) and Fig. 3.7 (B) correspond to a convective velocity of 

117.5 m/s.  As shown, the structure growth rate for both vorticity thickness and optical 

coherence length varies with differing shear layer Mach numbers.  Given a common 

convective velocity, both vorticity thickness and optical coherence length increase at a 

greater rate as the upper Mach number is increased.  It was also noted that in each case 

the optical coherence length increased at a faster rate than its corresponding vorticity 

thickness.  Further computations were performed to determine a relationship between 

these growth rates. 

 

A B  
Figure 3.6:  (A). Vorticity thickness versus downstream distance for three 
different shear layer cases each with a convective velocity of 
approximately 147.87 m/s (B). Vorticity thickness versus downstream 
distance for three different shear layer cases each with a convective 
velocity of approximately 117.5 m/s. 
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A B 
Figure 3.7:  (A). Optical coherence length versus downstream distance for 
three different shear layer cases each with a convective velocity of 
approximately 147.87 m/s (B). Optical coherence length versus 
downstream distance for three different shear layer cases each with a 
convective velocity of approximately 117.5 m/s. 

   

  An average growth rate for each case shown above was computed and used to 

determine a relationship between vorticity thickness and optical coherence length.  Figure 

3.8 shows a plot of optical coherence length growth rates versus vorticity thickness 

growth rates.  A linear fit was used to determine the factor relating these two shear layer 

measures, where the norm of the residuals was approximately 0.026.  As seen from Fig. 

3.8, the unforced shear layer structures grow at a rate approximately 3.18 times greater in 

the streamwise direction as compared to the normal direction.  Therefore, optical 

coherence length closely defines the measure of vorticity thickness with a factor of 3.18 

being the relationship between the coherence length in the x-direction (related to vortex 

spacing)  and the shear layer thickness in the normal or  y-direction (related to vortex 

size).  It is important to notice that this factor of 3.18 is larger than the factor of 1.5 – 2.0 

found in Ref. [13] describing the relationship between coherent-structure scale size, ω, in 
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a shear layer and the visual shear layer thickness, vis.  Equation (3.4) uses a weighted 

average based upon the energy or power contained in the spectrum of frequencies present 

at each x-location.  This creates an optical response which increases approximately 

linearly with streamwise structure size resulting in a natural optical frequency 

emphasizing the large-scale structures.  Therefore, this difference is attributable to fact 

that the natural optical frequency defined in Eq. (3.4) is essentially a measure of the 

vortex spacing in the x-direction rather than the visual shear layer thickness in the y-

direction, referred to in Ref. [13].  However, the factor of 3.18 does agree with results 

given in Refs. [20] and [13], where it is noted that a shear layer‟s large-scale structures 

are typically spaced a distance approximately three times the shear layer‟s thickness at 

each respective x-location. 

 
  

Figure 3.8:  Averaged optical coherence length growth rates versus 
averaged vorticity thickness growth rates given varying upper and lower 
stream velocities computed numerically. 
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  The results shown in Fig. 3.8 are listed below in Table 3.1 along with their 

respective convective velocities and velocity ratios.  On average, both the optical 

coherence length growth rate and the vorticity thickness growth rate increase as the ratio 

of lower stream velocity to upper stream velocity decreases.  In other words, as the 

difference in velocity between the upper and lower streams increases so do the rates at 

which the large-scale structures grow as well as the spacing between them. 

 

Table 3.1 
 

NUMERICAL AND ANALYTICAL SHEAR 

LAYER CHARACTERISTICS WITH 

CORRESPONDING CONVECTIVE VELOCITIES 

AND VELOCITY RATIOS (s = 1.0) 

Uc (m/s) R ΔΛn/Δx Δδω/Δx 
 

106 0.06 0.42 0.15 

147.9 0.08 0.43 0.15 

147.9 0.13 0.37 0.13 

148.5 0.15 0.32 0.12 

117.5 0.18 0.33 0.12 

127.5 0.19 0.30 0.11 

147.9 0.28 0.25 0.09 

117.5 0.31 0.22 0.09 
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  Although a density ratio, s, of 1.0 has been assumed throughout this numerical 

study, it seems reasonable that the form of the well-established vorticity thickness growth 

rate equation (Eq. (3.3)) [13, 15], would also be relevant for optical coherence length 

growth rates.  Therefore, optical coherence growth rate may be predicted by 

                  

 




































2
1

2
1

1

11

sR

sR
C

x
n                       (3.6) 

where the new constant, CΛ, is equal to 0.27 (this value was obtained by multiplying the 

vorticity thickness constant [13] by the scaling factor 3.18 derived above).  While the 

experimental value of CΛ should also be close to 0.27, since the DVM slightly over 

predicts observed experimental shear layer growth rates one would expect that the value 

of CΛ be slightly different if determined either by experiment or another type of 

numerical method.  As a result, a correction factor of 0.86 was computed based on the 

numerical results given in Table 3.1 and the analytically calculated growth rates using 

Eq. (3.6) (assuming a density ratio of 1.0).  After applying this correction factor to Eq. 

(3.6), the predicted optical coherence length for the previously studied shear layer case 

(Fig. 3.5) was computed and plotted against the numerically computed growth rate.  

Figure 3.9 shows good correspondence between the analytically computed optical 

coherence growth rate of 0.36 and the numerical optical coherence growth rate of 

approximately 0.37.  Note this comparison essentially provides an assessment between 

numerical and experimental optical coherence growth rates since the analytical equation 

(Eq. (3.6)) may be linked back to experimental data reported in Ref. [14]. 
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Figure 3.9:  Natural coherence length versus downstream distance for an 
unforced shear layer with UU = 261.04 m/s and UL = 34.7 m/s. 

   

  For applications in which optical (non-intrusive) measuring techniques become 

more appropriate, optical coherence length provides a means of analyzing and 

characterizing the shear layer‟s flow dynamics.  It also affords a link between commonly 

used thickness characteristics and optical characteristics of a free shear layer.  In addition, 

such a relationship becomes beneficial when analyzing the optical response of a shear 

layer to forcing described in the following section. 

3.2. Forced Shear Layer 

One means of gaining a better appreciation for a shear layer‟s dynamics is to 

study its response to prescribed flow perturbations.  Several studies have shown that 
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forcing a shear layer produces distinct alterations to the flow structures and the pairing 

process within a certain region of the flow [10, 18, 19, 20, 16].  Ho and Huang [10] 

demonstrated the ability to manipulate the shear layers growth rate in which two, three, 

and even four vortices were observed to merge.  A global feedback mechanism in accord 

with the flows local stability was thought to control the amalgamation process.  Oster and 

Wygnanski [18] also state that forcing enhances the coalescence of neighboring vortices, 

increasing the initial growth rate of the layer.  This produces a “regularized” region 

where the Reynolds stress changes sign indicating an extraction of energy from the flow, 

while the fluctuating intensity in the spanwise direction decreases causing the flow to 

become more two-dimensional.  Freud and Wei [19] used a wave-packet model to 

determine whether or not small perturbations may be used to produce a more regular and 

hence quieter flow.  It is shown that the two most energetic POD modes calculated from 

the flow seem to organize themselves or become more regular in the presence of forcing. 

 As described in Section 1.1.2 and expanded upon in Section 2.3, bandwidth 

constraints associated with current conventional AO systems limit, and in many cases 

prevent, the ability to successfully correct for optical aberrations resulting from shear 

layers.  In addition, the disparity between frequencies present within high-speed aero-

optic flows and the bandwidth capabilities of state-of-the-art technology suggests an 

insurmountable challenge in the near future.  In contrast, over the past several years work 

at Notre Dame has made progress towards overcoming the current bandwidth limitations 

by altering the flow field itself in a “predictable” manner.  If a region of “regularized” 

flow could be produced, then a control system may be able to perform predictive AO 

corrections based upon a priori knowledge about the organized large-scale structures.  
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The following section presents regularization results based upon several numerical 

studies, which in turn led to a successful regularization experiment performed at the 

University of Notre Dame for a high-speed shear layer [39, 41]. 

3.2.1. Background of the Forced Shear Layer 

Dating back to the 1800‟s, observations were first made that external excitation 

could influence a flow [46, 47].  In 1857, Count Schaffgotsch performed an experiment 

with a single gas-flame surrounded by a tube.  While standing at some distance away 

from the flame, Schaffgotsch noticed that the flame would “quiver” when he raised his 

voice to a note corresponding with the tube [46].  Shortly after, John Le Conte attended a 

musical performance where he noted a similar acoustic influence to an open flame.  He 

writes, 

“Soon after the music commenced, I observed that the flames in the gas-lit wall 
sconces exhibited pulsations which were exactly synchronous with the audible 
beats . . . It was exceedingly interesting to observe how perfectly even the trills of 
this instrument [violoncello] were reflected on the sheet of flame.  A deaf man 
might have seen the harmony . . . I likewise determined, by experiment, that the 
effects were not produced by jarring or shaking the floor and walls of the room . . 
. but must have been produced by the direct influence of aerial sonorous pulses on 
the jet.” [47] 
 

Afterwards Tyndall performed a series of subsequent experiments further confirming 

these observations [46].  Learning that a flow could be influenced, or furthermore 

controlled, through external excitation was indeed a significant finding.  Since that time 

several studies have been conducted investigating the regularizing effect forcing has on 

shear-layer flows [10, 18, 19, 20, 41, 45].  Several different methods of forcing, including 

free-stream velocity perturbations, acoustic waves, and mechanical vibrations, have been 
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shown to successfully alter a shear layers‟ original state.  In each case, a region of large-

scale structures becomes more regular maintaining a similar shape and size while 

convecting downstream.  The location of this region appears to be dependent on both the 

shear-layer‟s flow conditions and the forcing parameters. 

In a paper written in 1982, Oster and Wygnanski showed the susceptibility of a 

two-dimensional turbulent mixing layer to periodic forcing [18].  While varying both the 

forcing amplitude and forcing frequency they observed three distinct regions of 

development within the forced flow.  Figures 3.10 (A) and (B) give the experimental 

shear layer response to single-frequency forcing reported by Oster and Wygnanski.  As 

shown, the momentum thickness initially grows at a faster rate than the unforced case 

until leveling off over a region of “regularization” where pairing is inhibited.  Finally, the 

shear layer begins growing at a rate similar to the unforced case further downstream. 

A B

Figure 3.10:  (A). Effect of amplitude of oscillation on the shear-layer 
momentum thickness for a trailing-edge flap, 1.0 cm long, located at the 
trailing edge of the splitter plate, forced at 40 Hz, (B). Effect of frequency 
of oscillation on the shear-layer momentum thickness for a trailing-edge 
flap, 1.0 cm long, located at the trailing edge of the splitter plate, forced at 
an amplitude of 1.5 mm [18]. 
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In a later paper, de Zhou and Wygnanski [45] were able to perform hot-wire 

measurements of a forced shear layer to observe more closely the detailed forcing effect 

that gave rise to the flattening of the momentum thickness.  A selected result from that 

paper is shown in Fig. 3.11, for the phase-lock averaged vorticity field of a shear layer 

under single frequency forcing.  On average, Fig. 3.11 shows that the shear layer‟s 

stabilization in growth is the result of “regularizing” the coherent structures in the shear 

layer.   

 
Figure 3.11:  Phase-lock averaged vorticity plots of a low speed shear 
layer under single frequency forcing [45]. 
 

While each of these studies demonstrated an ability to regularize or control a 

shear layers large-scale structures through external excitation for low-speed flows, the 

same effect for high-speed shear layers remained in question.  Since that time, work at 

the University of Notre Dame began to address this area of uncertainty.  In 2000, Hugo 

and Jumper published a paper in which acoustic forcing was used to control a heated jet.  

They were able to improve their conditional-sampling method by producing a flow that 

repeated every other cycle.  Although still a low-speed flow, natural frequencies present 

within the shear layer were on the order of two to three hundred hertz [48].  Later, Duffin 

was able to successfully regularize the same jet through acoustic forcing in a similar 

experiment.  The heated jet was forced at approximately 240 Hz and a large-aperture 

beam traversing the flow was used to make wavefront measurements.  Duffin found that 
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the waveform pattern, while containing the forcing frequency, also contained the 

subharmonic.  Duffin‟s results showed that the waveform pattern was near periodic at 

120 Hz.  The repeatable wavefronts were then used in a manual feed-forward method of 

performing AO corrections [8].  Finally, in 2008 Rennie and Duffin were able to 

regularize a high-speed shear layer through mechanical forcing, confirming the numerical 

results presented in the following section [41].  The success of this experiment was a 

critical piece in establishing the feasibility of the automated alternative AO system 

presented throughout this dissertation. 

3.2.2. Regularization Results 

In Section 3.1.3 it was shown that a shear layer contains a range of optical natural 

frequencies which can be used to define the average optical coherence length or structure 

size in the streamwise direction.  At each location downstream from the splitter plate, the 

shear layer contains a dominant “natural” frequency.  This frequency may be excited, or 

forced, in order to organize the large-scale structures within a region of the flow.  In a 

numerical study performed by Freund et. al. it was shown that the most effective forcing 

of a shear layer is done by displacing the edge of the splitter plate in the direction normal 

to the its surface [19].  In the case of the discrete-vortex code, forcing was simulated by 

inserting the first vortex into the shear layer displaced from the splitter-plate edge in the 

vertical, y, direction by 

ffAd 2sin  (3.7) 
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where A is the forcing amplitude and ff is the forcing frequency.  By forcing the shear 

layer at a selected “natural” frequency, a region of regularization is achieved upstream 

from the point where the forcing frequency is equivalent to the unforced shear layer‟s 

optical natural frequency.  A range of frequencies, each with varying amplitudes, were 

applied to several different shear layer cases in order to establish the response of the 

shear layer to forcing as predicted by the DVM/WCM numerical model.   

Figures 3.12 (A) and (B) show plots of vorticity thickness versus downstream 

distance for a shear layer forced with varying frequencies and amplitudes.  Figures 3.13 

(A) and (B) show optical coherence length versus downstream distance for the same set 

of varying forcing conditions.  In Fig. 3.12 (A) and Fig. 3.13 (A) the shear layer has been 

forced at a constant frequency of 650 Hz while varying the amplitude.  Fig. 3.12 (B) and 

Fig. 3.13 (B) show results for a shear layer forced with varying frequencies ranging from 

525 Hz to 1 kHz while the amplitude remains fixed at 2.5 mm.  The numerical results 

found in both sets of figures (Figs. 3.12 and Figs. 3.13) are for a shear layer with upper 

and lower Mach numbers of 0.79 and 0.11, respectively and a convective velocity of 

147.87 m/s. 

When comparing Figs. 3.12 with Figs. 3.13, it is clear that the information 

displays similar trends.  The obvious effect of forcing is to abruptly increase the shear 

layers growth rate and then “stabilize” its thickness for a region preceding the position 

where the shear layer thickness would have been in the unforced case; at this point the 

forced shear layer becomes more irregular once again growing at a rate similar to the 

unforced shear layer.  The shear layer‟s spreading rate is therefore slightly suspended 

before pairing and continuing to spread again.  Increasing the forcing amplitude moves 
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the sudden thickening of the shear layer, related to the structure roll-up, closer to the 

splitter plate.  Consequently, the flow reaches its full extent of regularization earlier 

extending the region of coherent, predictable structures.  These results agree with 

previous research studies which measure the growth of shear layers under the influence 

of forcing [18, 19, 20].  Although the flow conditions differ, the resulting behavior is 

very similar to the experimental response reported by Oster and Wygnanski (Figs. 3.10 

(A) and (B)) [18].  In both cases, increasing the forcing amplitude resulted in an earlier 

and more robust stabilization of the mixing layer, while decreasing the forcing frequency 

moved the region of regularization further downstream. 

In contrast, Figs. 3.12 and 3.13 differ in that the vorticity thickness shows a flatter 

slope in the “region of regularization” than the optical coherence length.  This is due to 

the fact that as the structures evolve and convect, the spacing between them grows 

slightly in the flow direction while retaining approximately the same thickness in the y-

direction, thus causing the optical coherence length to maintain a slight increase with 

downstream distance in the regularized region.  It is important to note that the forcing 

amplitudes shown in Fig. 3.13 may not be representative of the actual values necessary to 

achieve regularization in an experimental setup.  Due to grid spacing and the initial size 

of vortices, the simulation seems to require larger amplitude values to achieve a well 

regularized response in comparison to forcing experiments that have been performed 

[41].  However, the overall trends, associated with increasing the forcing amplitude and 

frequency, do illustrate a shear layers response to forcing. 
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A   B 

Figure 3.12:  (A). Vorticity thickness versus downstream distance for a 
shear layer with an upper Mach number of 0.79 and lower Mach number 
of 0.11 forced at a range of frequencies with a fixed amplitude of 0.5 mm 
(B). Vorticity thickness versus downstream distance for a shear layer with 
an upper Mach number of 0.79 and lower Mach number of 0.11 forced at 
650 Hz while varying the amplitude. 

 

A B 

Figure 3.13:  (A). Optical coherence length versus downstream distance 
for a shear layer with an upper Mach number of 0.79 and lower Mach 
number of 0.11 forced at a range of frequencies with a fixed amplitude of 
0.5 mm (B). Optical coherence length versus downstream distance for a 
shear layer with an upper Mach number of 0.79 and lower Mach number 
of 0.11 forced at 650 Hz while varying the amplitude. 
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Vorticity contours were also created to provide a more visual means of studying 

the regularizing effect on the shear layers coherent structures.  Figure 3.14 shows three 

realizations of instantaneous vorticity plots given a free shear layer forced at 650 Hz with 

a forcing amplitude of 2.5 mm.  The three vorticity contour plots were captured at equal 

time delays corresponding to the same phase angle with respect to the 650 Hz forcing.   

                 

 
 

Figure 3.14:  Single realizations of vorticity plots for a DVM/WCM 
simulated high-speed shear layer forced at 650 Hz, captured at the same 
phase angles of three successive cycles with respect to the forcing 
frequency. 

 

The fixed phase-angle vorticity plots (shown in Fig. 3.14) were averaged to 

produce the results shown in Fig. 3.15.  A comparison of Fig. 3.14 and Fig. 3.15 reveals 

that on average, as in de Zhou and Wygnaski‟s experiment (Fig. 3.11, [45]), the shear 

layer has been regularized by single frequency forcing; however, phase-lock averaging 

can be deceptive.  It is important to note the decreasing vorticity contours in the 

downstream region of the shear layer shown in Fig. 3.15, also present in Zhou and 

Wygnanski‟s experimental results (Fig. 3.11).  The decrease in contours is not an 

indication of preserving a single vortex, but rather the fact that single frequency forcing 

controls only the roll-up for which the forcing frequency is tailored.  It is clear that the 

first roll-up location has been “locked” by the forcing while in the downstream region, 
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the normal process of pairing and merging continues to progress under the influence of 

the Kelvin-Helmholtz instability [16].   

 
 

Figure 3.15:  Phase-lock averaged vorticity plot for a DVM/WCM 
simulated high-speed shear layer forced at 650 Hz. 

   

  Another way of studying the codes results is to look at a locus of points indicating 

the locations of discrete vortices that define the undulation of the shear layers “contact 

surface”.  Figures 3.16 and 3.17 show two such sets of “shear-layer loci”; Fig. 3.16 shows 

nine successive realizations of loci for the unforced case and Fig. 3.17 shows nine 

successive realizations of loci for the forced case (Mach 0.79/0.11 shear layer forced at 

650 Hz).  Each set of figures have been taken at the same phase angle with respect to the 

forcing frequency of 650 Hz.  The plots extend over the region for which the shear layer 

shows reasonably good control.  An examination of the results shown in Fig. 3.17 reveals 

that the shear layer is extremely well controlled up to the first roll-up, and relatively well 

controlled up to the point where the first vortices begin to merge (second roll-up).  These 

results imply that single-frequency forcing has successfully regularized the shear layer 

out to approximately 0.5 meters with some marginally-well controlled behavior slightly 

beyond 0.6 meters.  These findings agree with the phase-averaged vorticity contours 

shown in Fig. 3.15.  It is also consistent with the progression of vorticity thickness shown 

in Fig. 3.12 for the 650 Hz forced case indicating that the shear layer begins growing 
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again around 0.6 meters.  The regularized spacing of the first roll-up allows for greater 

vorticity accumulation (circulation) contained in the larger, paired vortex creating a 

single structure which eventually merges into an agglomerated vortex consisting of three 

initial vortex structures.  This is followed by the formation of another single vortex, after 

which pairing ensues and the process repeats. 

 

Figure 3.16:  Nine successive cycles of shear layer loci for an unforced 
DVM/WCM simulated high-speed shear layer. 

 

 

Figure 3.17:  Nine successive cycles of shear layer loci for a DVM/WCM 
simulated high-speed shear layer forced at 650 Hz. 
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  The differences between successive frames in Fig. 3.17 are caused by the 

encroachment of the “vortex-merging” phenomenon.  For this particular DVM/WCM 

simulation, it is interesting to note that every third cycle is strikingly similar.  In response 

to this observed three cycle repeat, phase-locked average vorticity plots were created 

from every third cycle of shear layer loci.  Figure 3.18 shows phase-locked average 

vorticity contour plots for the same phase angles as the single realization shear layer loci 

plots displayed above in Fig. 3.17.  Upon comparing the vorticity contours shown in Fig. 

3.15 with those shown in Fig. 3.18 it becomes evident that a three-cycle repeat at 1/3rd the 

forcing frequency does a better job of capturing the actual downstream progression of the 

coherent structures.  But even on a three-cycle repeat, regularization persists only up to 

the point where the forced shear layer matches the unforced shear layer thickness, after 

which pairing and vortex merging causes the shear layer to begin growing again.  After 

performing several DVM/WCM simulations of a forced shear layer with varying upper 

and lower free stream velocities and different forcing frequencies, two- and three-cycle 

repeats were shown to exist in many cases becoming more dominant at the higher Mach 

numbers.  As such, possible approaches for handling harmonics present within the 

regularized flow will be addressed later (Chapter 7). 

 
 

Figure 3.18:  Three phase-locked average vorticity plots at the same phase 
angles as shown in Fig. 3.17 for every third cycle give a DVM/WCM 
simulated high-speed shear layer forced at 650 Hz. 
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  The results displayed above in Figs. 3.12 and 3.13 also agree well with Oster and 

Wygnanski‟s prediction of a mixing layer‟s spatial extent of regularization.  In Ref. [18], 

a regularized region, delineated by an array of quasi-two-dimensional large scale vortices 

that do not interact with one another, is defined by the locations, x, satisfying the 

following inequality, 

      21  x
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where λ is a dimensionless velocity ratio defined as, 
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Given a Mach 0.79/0.11 simulated shear layer shown in Figs. 3.14, 3.15, 3.17, and 3.18, 

where the forcing frequency is equal to 650 Hz, Eq. (3.8) predicts a regularized region 

between 0.3 and 0.6 meters downstream from the splitter plate.  This prediction 

corresponds well with the region of regularized coherent large-scale structures shown by 

the shear layer loci plots in Fig. 3.17 and the phase-locked average vorticity contours in 

Fig. 3.18. 

  Numerical analyses conducted as a part of this research effort also suggested that 

the pairing or merging mechanism was sensitive to two-frequency forcing.  Specifically, 

the phase angle of the fundamental with respect to the subharmonic forcing frequency 

was shown to affect the pairing location further regularizing the shear layer.  These 

results agree with a jet shear layer case studied by Gordeyev and Thomas [50].  Figure 

3.19 shows nine successive cycles at fixed phase delays of a Mach 0.79/0.11 DVM/WCM 

simulated shear layer forced at 650 Hz and 325 Hz where the phase angle between 
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forcing frequencies is 320 degrees.  It is clear from the images shown in Fig. 3.19 that in 

this case a two-cycle repeat exists and that regularization has been extended further 

downstream. 

 

Figure 3.19:  Nine successive realizations of shear layer loci for a 
DVM/WCM simulated high-speed shear layer forced at two frequencies, 
650 Hz and 325 Hz, where the phase delay between frequencies is 320 
degrees. 

 

  Although some amount of regularization may be achieved by forcing the shear 

layer at any of its inherent optical natural frequencies, there seems to exist a smaller 

range of forcing frequencies that are most effective for each shear layer case.  Similar 

conclusions have been reported by Ho and Huang [10] and by Ho and Huerre [20].  Ho 

and Huang describe what they call „collective interaction‟ between vortices, the 

coalescence of several vortices rather than the typical pairing event of two vortex 

structures.  They note the ability to manipulate the merging process of structures within a 

mixing layer with fairly small amounts of forcing.  Ho and Huerre describe amplification 

rates for the range of frequencies present in an experimental mixing layer showing a clear 

point of maximum amplification.  The numerical results presented in this section along 
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with the experimental results found in Refs. [10, 18, 20] indicate that the forcing 

frequency may be chosen based upon the desired region to be regularized.  This selection 

depends on flow conditions for the unforced shear layer.  It was also shown that two- and 

sometimes three-cycle repeats often develop during forcing.  And the influence of these 

harmonics within the flow field seems to prevail more at the higher Mach numbers.    

3.2.3. Bandwidth Reductions 

The purpose of using flow control to force the shear layer is to produce a more 

periodic flow.  By creating a repeating flow pattern the corresponding optical wavefronts 

emerging from the flow become more predictable, effectively reducing the bandwidth 

requirements for an AO system.  Using a priori knowledge of the flows optical 

characteristics, a real-time correction may be “fed forward” in an automated control 

scheme.  An approximation of the cyclically repeating aberrated wavefront may be 

determined given a set of shear layer and forcing conditions.  Phase and amplitude 

adjustments may then be applied to the DM‟s wavefront correction using simple control 

techniques.  A phase-lock-loop control approach, detailed in Chapter 4, has been 

proposed.  It will be used to synchronize the predicted wavefront correction with the 

shear layer‟s actual emerging wavefront. 

The alternative AO control strategy described throughout this dissertation would 

no longer require the use of a WFS, but rather two small aperture laser beams used to 

provide optical feedback information.  Therefore, the bandwidth limiting step (WFS 

capture rate) may be circumvented altogether.  This means the previously uncorrectable 

example described in Section 2.4.3 of a high-speed shear layer whose natural frequencies 
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approach 800 Hz now becomes feasible.  The significant reduction in the bandwidth 

constraint for the AO system represents a momentous breakthrough in the pursuit of 

correcting high-speed aero-optic disturbances. 

It should be noted here that the phase-lock-loop control scheme, as defined in this 

dissertation, is designed to operate in the case where periodic regularization occurs within 

the shear layer.  When the large-scale structures begin experiencing a more dominant 

two- or three- cycle repeat, as shown above in Fig. 3.19 and Fig. 3.17, the AO correction 

constructed from the phase-lock-loop will render less effective.  Since the phase-lock-

loop produces an output signal based upon a single fundamental frequency, it is incapable 

of accounting for any subharmonics present within the emerging optical wavefront.  

However, the phase-lock-loop controller should provide an effective means of 

performing AO corrections on a forced shear layer whose character is dominated by a 

single frequency.  The phase-lock-loop control strategy itself should also afford 

subsequent research efforts, following this dissertation work, a basis for tackling the two- 

or three-cycle repeat condition.  Suggestions for handling these cases are outlined in 

Chapter 7. 

3.3. Summary of Optical Characterization 

The DVM/WCM model was used to study the optical characteristics of the 

unforced and forced free shear layer.  The results reported above demonstrate that an 

optical interrogation of a variable-index-of-refraction shear layer yields similar 

information to other methods of documenting the shear layer‟s characteristics.  Optical 
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coherence length, a statistical measure of the on-average large-scale structure size in the 

streamwise direction showed a linear growth rate of approximately 3.18 times that of the 

vorticity thickness growth rate.  This factor agrees with previously reported vortex 

spacing discussions [13, 20].  Because a linear relationship exists between the shear 

layer‟s vorticity thickness, ω, and its optical coherence length, n, optical measurements 

provide a non-intrusive means of measuring the shear layer‟s local structure spacing in 

the x-direction and could be useful when intrusive ways of measuring thickness are 

difficult or impossible, as in chemically- or thermally-hostile environments (jet-engine 

exhaust, for example).   

In addition, this numerical study demonstrated the feasibility of optically 

regularizing a high-Mach subsonic shear layer.  Results showed that stabilizing the fluid 

mechanics of the shear layer also regularized its optical characteristics.  By mechanically 

forcing the shear layer‟s origin (or vertically displacing the first vortex in the numerical 

shear layer‟s free vortex sheet), a region of more regular large-scale coherent structures 

were formed.  Consequently, the optical wavefront emerging from that region was also 

regularized creating a waveform more amenable to wavefront estimation.  The following 

chapter describes an alternative control method for constructing AO corrections based on 

a phase-lock-loop.  While this control strategy is designed for a regularized shear layer 

containing primarily one fundamental frequency, it may also offer possible avenues for 

addressing subharmonics within the flow field. 
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CHAPTER 4:  

ALTERNATIVE AO CONTROL SYSTEM 

4.1.Control Objective 

One of the primary goals of this research was to develop a means of performing 

real-time AO corrections to an aberrated beam emerging from a high-speed aero-optic 

shear layer.  Since current technology prevents the conventional AO system from being 

capable of such corrections due to bandwidth limitations, the problem was approached 

from a different angle.  Realizing that the necessary bandwidth improvements to system 

components (such as the WFS) posed a seemingly insurmountable task at present, an 

alternative approach was proposed.  This alternative AO approach incorporates flow 

control and a phase-lock-loop controller.  Flow control is used to “regularize” the shear 

layer‟s large-scale structures and consequently it‟s optically aberrating character as 

described in Section 3.2.2.  Real-time corrections are then performed based upon an 

estimation of the aberrating optical wavefront.  Rather than incorporate the bandwidth 

limiting WFS measurements, this technique uses small-aperture jitter signals for 

gathering amplitude and phase feedback information.  The estimated wavefront is 

synchronized with the shear layer‟s actual aberrating wavefront by adjusting the 

amplitude and phase of the estimation.  By predicting the optical character of the shear 

layer‟s emerging wavefront, fewer measurements are necessary thereby reducing the 
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bandwidth requirements placed on the AO system.  Instead of performing real-time 

measurements of the wavefront‟s amplitude, spatial frequency, and temporal frequency at 

capture rates consistent with the stability and update requirements discussed previously in 

Section 2.3.1 and Section 2.4.3, this method uses a priori knowledge of the regularized 

waveform in conjunction with sparse sensing techniques [7].  An estimation of the shear 

layer‟s emerging wavefront may be predicted from the flow‟s optical response 

characteristics (detailed in Section 3.1.3) reducing the amount of information needed to 

construct the appropriate conjugate correction in real-time. 

Figure 4.1 (A) shows a depiction of a large-aperture beam propagating through an 

unforced shear layer.  The aberrations induced on the emerging beam contain high-

frequencies and are largely unpredictable.  Figure 4.1 (B) shows a depiction of a forced 

shear layer whose conjugate correction may be estimated based upon flow conditions and 

forcing parameters.  Once the estimated correction is synchronized with the regularized 

shear layer, the emerging beam will ideally become less aberrated (i.e., residual error will 

decrease) thereby increasing on-axis intensity and improving overall system performance. 

A  B 
 
Figure 4.1:  (A). Depiction of a large-aperture beam propagating through 
an unforced shear layer (B). Depiction of a forced shear layer where an 
estimated conjugate correction has been synchronized with the flows 
structures producing an ideally emerging planar wavefront. 



 
 

81 

 

 While regularizing a shear-layer flow through forcing has been used for several 

decades, combining this technique with a synchronization control strategy represents a 

novel AO control approach introduced at the University of Notre Dame.  In 2005, this 

concept was first examined using a flow-control-based AO experiment performed by 

Duffin [8].  A two-dimensional, planar heated jet was acoustically forced at 240 Hz with 

acoustic waves from a speaker placed approximately 1.0 meter from the jet.  Phase-lock 

wavefronts averaged over one full cycle for the two-cycle repeat (i.e., at the subharmonic 

of the forcing frequency) of the jet‟s response were computed from a time series of 

experimental OPD measurements.  Phase-lock averaged wavefronts were calculated for 

several different phase angles and applied to the DM during an AO correction 

experiment.  The conjugate corrections were manually synchronized to the experimental 

aberrating wavefront.  The experiment proved successful in correcting the optical 

aberrations of the forced heated jet, increasing the time averaged Strehl ratio from 0.64 

without AO corrections (Fig. 4.2 (A)) to 0.93 with AO corrections (Fig. 4.2 (B)).  These 

tests were performed using a wavelength of λ = 0.63 µm. 

A  B 
Figure 4.2:  (A). Time history of Strehl ratio without correction for a 240 
Hz forced heated jet (B). Time history of Strehl ratio with correction for a 
240 Hz forced heated jet (at λ = 0.63 µm) [8]. 
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  Then in July of 2006, a similar experiment was performed on a high-speed 

subsonic shear layer with an upper Mach number of 0.8 [27].  The shear layer was forced 

at 750 Hz and a 3-inch aperture beam was propagated through the flow approximately 0.4 

meters downstream from the splitter plate.  Phase-lock averaged wavefronts were 

computed from a series of measurements taken at phase angles between 0 and 360 

degrees at 30 degree phase increments with respect to the subharmonic.  First the phase-

lock averaged wavefronts were subtracted from the time series of wavefront 

measurements in a post-process analysis to calculate the expected increase.  Finally, the 

phase-lock averaged wavefronts were programmed into the DM and manually 

synchronized with the shear layer aberrations during an AO correction experiment.  Real-

time AO corrections were applied to the 3-inch beam propagating through the forced 

flow.  Wavefront measurements of both the uncorrected and corrected beams were 

recorded and post-processed revealing an increase in time-averaged Strehl ratio from 

approximately 0.14 to 0.66, based on a laser wavelength of 1.0 µm.  These results, as 

reported by Duffin [27], are shown below in Fig. 4.3.  This historic experiment of a 

successful human-in-the-loop AO correction became the basis for developing the 

alterative AO controller presented in this dissertation; the goal being to automate the 

synchronization process without resorting to a “human-in-the-loop”. 
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Figure 4.3:  Post-processed Strehl ratio results for a man-in-the-loop aero-
optic AO correction of a Mach 0.8/0.1 shear layer performed by Daniel 
Duffin in July of 2006 [27]. 

4.2. Phase-Lock-Loops (PLLs) 

Phase-lock-loops (PLLs) are one of the most common feedback control systems 

designed and built by engineers.  The PLL is a common control technique used to 

synchronize its output signal with a reference signal [23, 24].  First developed in the 

1930‟s, PLLs serve a wide range of applications including radios, telephones, televisions, 

and computers.  They are used to perform frequency synthesis, demodulation of 

frequency or phase modulated signals, and carrier recovery processes.  By adjusting its 

frequency the PLL is able to synchronize itself with a reference source or input signal.  A 

simple example, analogous to the operation of a PLL process, is the use of a tuning fork 

to tune an instrument.  The tuning fork provides a standard of pitch acting as a reference 

frequency signal.  The desired note is struck on the instrument while the tension on the 
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string is adjusted.  When the note is “out of tune”, there exists a discrepancy between the 

frequency of the tuning fork and the frequency of the note itself.  The two waves interfere 

with one another creating an audible beat frequency.  As the instrument is tuned and its 

frequency approaches that of the tuning fork the beats become less frequent until finally 

becoming inaudible.  Duffin used this same concept in both his experiments when 

manually phasing the conjugate correction with the shear layer‟s reference wavefront [8, 

27].  This idea provided the foundation for using a PLL to automate the correction 

process. 

The typical PLL is comprised of a phase detector (or multiplier), low pass filter 

and loop filter, and a voltage-controlled oscillator (VCO).  The loop filter provides a 

useful design tool for the control engineer to create the desired system tracking response.  

Second and third order closed loop transfer functions are commonly designed due to their 

stability and tracking characteristics.  Figure 4.4 shows a block diagram depicting the 

basic PLL.  PLLs respond to both frequency and phase variations that exist between the 

reference signal and the local output signal by adjusting the frequency of the VCO until 

the two signals become synchronized.  The VCO operates at a center frequency which 

can be varied based on an externally applied signal.  This provides a means of 

synchronizing the output signal with the reference signal [23, 24]. 

 
 

Figure 4.4:  Block diagram of a basic PLL process.  
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The basic PLL operates similar to the tuning fork example described previously.  

The output signal is compared to the reference signal and a difference in frequency is 

detected producing an error voltage (rather than an audible beat).  The VCO‟s output 

frequency is adjusted accordingly until the error approaches zero, when the PLL is said to 

be phase-locked [24].  There exist several different types of phase detectors, one of which 

is a frequency mixer.  When the reference signal is mixed, or multiplied, with the VCO‟s 

output signal, the resulting signal is comprised of both a baseband component and a 

double harmonic component.  The baseband portion is a function of the phase difference 

between the two input signals and as such contains important information for 

synchronization.  Since the double harmonic portion does not contain any vital 

information it is filtered out isolating the baseband portion.  If the phase difference 

between the original two signals is zero the output will also be zero requiring no change 

to the VCO‟s output.  However, if the two original input signals differ in phase from one 

another, the filtered output signal will maintain a value other than zero.  This value is 

directly related to the phase difference and therefore becomes the input signal controlling 

the VCO once appropriate filtering has taken place.  The VCO then converts this input 

voltage to a clock signal operating at a proportional frequency.  This creates a small 

variation in the VCO‟s output frequency allowing it to “catch up” or “fall back” with 

respect to the reference signal.  Once the two signals are synchronized, the filtered 

baseband signal becomes zero, locking the two signals in phase. 

In order to apply linear control techniques to the PLL, a more conceptual model 

must be used.  Figure 4.5 shows the block diagram for a conceptual PLL model.  A 
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summation block represents the mixing function of the phase detector.  The output phase 

signal or phase-locked signal, Y(s), is subtracted from the reference phase signal, R(s), 

generating an error signal, E(s).  The error is scaled by KPD, representing the gain 

magnitude of the phase detector and passed through a low pass filter, F(s).  The loop 

filter, LF(s), performs any other necessary filtering actions while maintaining closed loop 

system stability.  Finally, the VCO acts as an integrator, where KVCO represents the 

sensitivity constant related to that device.   

 
Figure 4.5:  Block diagram of a conceptual or linearized model of the 
basic PLL. 
 

The closed loop transfer function for the system shown in Fig. 4.5 is given by the 

Laplace transform: 

                       
)()(

)()(
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
 , (4.1) 

where F(s) represents the low pass filter and LF(s) the loop filter function designed by the 

engineer to meet desired response characteristics.  For the given aero-optic application, 

the phase of the shear layer‟s emerging regularized wavefront is the reference source, 

R(s), and the phase of the wavefront estimation model used to control the DM is the 

phase-locked signal, Y(s).  Further details outlining the design of the PLL used in this AO 

controller application follow. 
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4.3. AO Control System Design/Layout 

This section describes the basic setup of the proposed alternative AO system 

while further detailing the controller‟s PLL process.  The alternative AO system will 

consist of a DM, two small aperture position sensing devices, and feed-forward and 

feedback control circuits as shown in Fig. 4.6.   

 
Figure 4.6:  Depiction of the alternative AO system‟s components and 
setup.  
 

The purpose of this system is to perform real-time AO corrections to an aberrating 

wavefront emerging from the forced shear layer using a DM; the ultimate goal being to 
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no WFS is needed to operate the control loop, as in Duffin‟s manual phasing experiment, 

a WFS could be used to directly measure the residual error remaining on the beam.  As 

such, the WFS acts only as a scoring sensor and can operate at very low frequencies for 

this purpose. 

As indicated in the previous chapter, this alternative AO approach uses non-

intrusive small-aperture beams to gather feedback information.  This increases the 

system‟s bandwidth capabilities as compared to the conventional AO system which uses 

a WFS.  A small aperture laser beam associated with a planar wavefront is propagated 

through a shear layer being forced at a frequency, ff, to regularize the vortical structures 

as described in the Section 3.2.  The emerging jitter signal (time varying signal due to the 

aberrating wavefront) passes through a beam splitter, directing part of the incident beam 

onto a position sensing device whose output can then be notch filtered.  Such a method 

has been demonstrated at Notre Dame by M. Rennie for a Mach 0.8/0.1 forced shear 

layer producing a near-sinusoidal signal at the forcing frequency after notch filtering.  

The filtered signal generated by this sensor is then input into an analog feed-forward 

circuit that estimates the amplitude of the aberrated wavefront.  This signal is also used in 

the feedback circuitry to determine the phase difference between wavefronts.  The part of 

the beam which passes through the beam splitter is reflected off the DM and redirected 

by the beam splitter onto another position sensing device producing a signal equivalent to 

the shear layer jitter minus the DM jitter (θsl - θDM) [21].  Assuming the shear layer has 

been regularized and contains a single dominant optical frequency, the emerging 

wavefront will be akin to a traveling sinusoidal wave with an angular frequency given by 

    fsl f 2          (4.2) 
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and a wave number, 

     
c

sl
sl U

k 
           (4.3) 

where the convective velocity, Uc, may be determined by cross-correlating two small 

aperture beams propagating perpendicularly through the flow [22] a distance Δx apart 

with a time delay, τ: 

     





xU c
.          (4.4) 

The shear layer‟s associated OPD will have an assumed form, 

                                     )sin(),( slslslslsl txkAxtOPD   . (4.5) 

It is important to note that the only unknown parameters in Eq. (4.5) are the amplitude, 

Asl, and phase, sl, of the shear layer‟s optical wavefront.  The parameters, ωsl and ksl, are 

determined from the flow and forcing conditions and will be used to drive the DM 

actuators.  The DM‟s estimated conjugate correction will be of the form, 

                                   )sin(),( DMslslDMDM txkAxtOPD   , (4.6) 

assuming the DM membrane can form the desired sinusoidal waveform.  In Eq. (4.5) and 

Eq. (4.6), the subscripts „sl‟ and „DM‟ refer to shear layer and deformable mirror, 

respectively.  The goal is to use estimates of Asl and sl to determine the amplitude, ADM, 

and phase, DM, of the DM such that | OPDDM – OPDsl | is minimized.  This is 

accomplished through a feedback control system using a PLL.  An estimate of the phase 

difference between the shear layer‟s aberrating wavefront and the DM‟s wavefront is 

used to synchronize the two waveforms.  Figure 4.7 shows a block diagram depicting the 

alternative AO control system. 
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Figure 4.7:  Block diagram depicting the alternative AO control system. 
 

Referring back to Eq. (2.4), the jitter angles associated with the shear layer and 

DM may be expressed as, 

                          )cos(),( slsloslslslosl txkkAxt    (4.7) 

and 

                        )cos(),( DMsloslslDMoDM txkkAxt    (4.8) 

where θsl is measured via the first position sensing device (located at the focal distance, 

L, of the lens shown in Fig. 4.6), and  θDM is the jitter angle corresponding to the location 

on the DM where the beam is reflected (x = xo).  The second position sensing device 

measures the jitter angle of a small aperture beam propagated through the shear layer and 

reflected off of the DM producing a signal equivalent to the difference between θsl and 

θDM.  This signal is subtracted from the shear layer jitter signal to recover θDM.  The shear 

layer jitter signal, θsl, is then passed through a quarter wave lag filter.  This filter has a 

unit gain and applies a π/2 phase lag at the frequency, ωsl.  In other words the resulting 
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signal may be described using a sine function rather than the original cosine function.  

The phase shifted signal, βsl, is then multiplied with θDM in a mixing circuit to generate 

the output, 

 ).sin()cos( slsloslslslDMsloslslDMM txkkAtxkkAS    (4.9) 

Using a trigonometric identity Eq. (4.9) may be expressed as the sum of two sinusoids 

given by, 

).sin()22sin( 22

22

DMsl
kAA

DMslslosl
kAA

M
slslDMslslDM txkS       (4.10) 

Therefore, the mixed signal, SM, is composed of a DC bias whose magnitude is 

proportional to the sine of the phase difference between the DM‟s waveform and the 

shear layer‟s aberrated wavefront.  The mixed signal also contains a harmonic term at 

twice the shear layer‟s angular frequency, 2ωsl.  As described in the previous section, the 

double harmonic term is removed using an active low pass filter.  As a result the filtered 

signal, consisting of a baseband component, has a significantly lower bandwidth than the 

original jitter signals.   

 For small angles, DMsl   , the filtered signal may be approximated by 

)(
2

2

DMsl
slslDM

DC
kAAS   .       (4.11) 

Thus, the phase difference may be extracted by rearranging Eq. (4.11) to produce 

                                        2

2)(
slslDM

DC
DMsl kAA

S
  . (4.12) 

A loop filter is then used to obtain a desired system response before the signal is finally 

applied to the VCO‟s input. 
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 The amplitude of the estimated wavefront, Asl, used to control the DM is obtained 

via a separate feed-forward amplitude estimator circuit.  The shear layer‟s jitter signal, 

measured by the first position sensing device (refer to Fig. 4.6 and Fig. 4.7), serves as the 

input.  The “sinusoidal” jitter signal is sent through a True RMS-to-DC Converter chip.  

The chip computes the true root-mean-square value of the AC input signal generating a 

DC output equivalent to 

2).( inout VavgV  . (4.13) 

where Vin represents the input signal (the shear layer‟s jitter signal in this case) and avg. 

indicates an average magnitude or amplitude.  The resulting DC signal is passed through 

an amplifier circuit used for calibration, applying the appropriate gain to the signal.  The 

final output represents the amplitude of the shear layer‟s regularized jitter signal.  This 

signal is used to apply amplitude adjustments to the wavefront estimation model as well 

as to provide the amplitude information necessary in the PLL‟s analog phase error 

computation (Eq. 4.12). 

4.4. Compensator Analysis 

A PLL controller was designed to synchronize the DM‟s conjugate correction 

with the regularized aberrating wavefront emerging from a forced shear layer.  As 

depicted in Fig. 4.6, the jitter signal from a small-aperture beam projected through the 

flow acts as the PLL‟s reference source used for phase-locking.  The response 

characteristics of the phase-locking process are dependent upon the control parameters 

used in the control system.  System response, stability, and robustness are all key issues 
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that must be considered when designing an appropriate compensator for this AO control 

system, where the compensator is described by the transfer function: 

                                       
s

sLsFKKsG FVCOPD
C

)()()(  . (4.14) 

The compensator contains two different filters designed to achieve a set of specified 

criteria; the predetermined filter function, F(s), is used to filter out the double harmonic 

described in the previous section and the loop filter, LF(s), is chosen to produce a desired 

closed-loop system response.  A set of design criteria was chosen to aid in the design 

selection of the compensator parameters.  Specifically, tracking error, phase margin, 

settling time, percent overshoot, and absolute error were analyzed in the design process 

of the proposed alternative AO controller. 

4.4.1. Tracking Error 

One of the primary control objectives for this application is to have zero steady-

state error given a step change in the phase or frequency of an incoming reference signal.  

In other words, the PLL is designed to track both step and ramp phase inputs with zero 

tracking error.  Consider a sinusoidal signal with frequency, ω, and phase shift, , where 

the frequency is a function of time and the phase shift is constant, 

  ))(sin()(   ttt .      (4.15) 

The argument of the sinusoidal function given in Eq. (4.15) may also be expressed as a 

general phase angle varying with respect to time given by, 

       ttt )()( .       (4.16) 

By taking the time derivative of the time-varying phase angle θ(t), 
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      
dt
dttt

dt
d 

  )()(       (4.17) 

it becomes clear that the frequency of a sinusoidal signal is directly related to its time-

varying phase angle.  More specifically, a step change in frequency is equivalent to a 

steady ramp change in the signals phase given zero initial conditions.  Knowing this, 

consider the general feedback system depicted in Fig. 4.8. 

 
 

Figure 4.8:  Block diagram depicting a general feedback control loop. 
 

Using block diagram transformations and reduction techniques [29, 42] the error signal 

may be defined as 
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The open-loop transfer function will be expressed in the following general form 
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

 ,     (4.19) 

where K is the gain constant, zi and pj are the zero‟s and pole‟s of the open-loop system 

respectively, m represents the number of zeros, n represents the number of left-half plane 

poles, and q represents the number of poles on the imaginary axis.  The final value 

theorem, 

)(lim)(lim
0

ssEtee
stss


       (4.20) 

was used to determine the steady-state error, ess, of the system.  Given a ramp input 
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2
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s

sR  ,       (4.21) 

the steady-state error simplifies to         
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      (4.22) 

Therefore, ess → 0 when   


)()(lim
0

sHssG
s

.  This can only occur if q ≥ 2 which 

means there must be at least two poles on the imaginary axis, requiring a double 

integrator be present in the open-loop transfer function.  The presence of a double 

integral (poles at zero) ensures that the system is capable of asymptotically tracking step 

and ramp changes in phase with zero tracking error.  However, due to the instability that 

arises from this type of function in the closed-loop form, a minimum phase zero must 

also be included to maintain closed-loop system stability.   

Since the VCO is modeled as a single integrator, 

s
K

sV VCO)(        (4.23) 

one of the filters must additionally contain an integrator to ensure zero steady-state error 

in the presence of a ramp input.  The purpose of the low-pass filter function is to 

attenuate the double harmonic present after mixing along with higher order noise.  A first 

order low-pass filter was chosen to achieve this task described by the transfer function   

                                               
p

pPD

s
K

sF





)( , (4.24) 
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where ωp represents the pole location (also referred to as the filter‟s cutoff frequency), 

and KPD is the overall gain constant for the phase detector (mixer and low-pass filter 

combination).  Thus, the loop filter must contain both a pole at zero and a minimum 

phase zero to satisfy the requirements discussed above.  Its transfer function is given by, 

                                        
z

zLF
F s

sKsL


 )()( 
 , (4.25) 

where KLF is the gain constant and ωz represents the location of the minimum phase zero.  

Since both the low-pass filter and the loop filter are first degree transfer functions, unity 

feedback results in a third-order PLL whose closed-loop transfer function is defined as 
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and whose open-loop transfer function is 
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 2)()()( , (4.27) 

where VCOLFPD KKKK  , representing the overall open-loop gain constant.   

The two PLL components with design flexibility are the low-pass filter and the 

loop filter; the low pass filter is modeled based upon the expected reference frequency 

while the loop filter is designed to meet specific closed-loop response characteristics.  

The PLL AO controller described here was designed to accommodate input frequencies 

ranging from approximately 600 Hz to 1200 Hz; therefore the low-pass filter‟s open-loop 

pole was placed at approximately 80 Hz (or 500 rad/s).  The pole placement was selected 

in order to adequately attenuate the double harmonic while largely retaining the form of 
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the DC component.  The following sections outline the design process based upon several 

common metrics used to assess the system‟s response characteristics: phase margin, 

settling time, percent overshoot, and absolute error.  The analysis was conducted using 

the transfer functions given in Eq. (4.26) and Eq. (4.27), where ωp ≈ 500 rad/s, in order to 

determine the minimum phase zero placement, ωz, as well as the overall gain constant, 

K'. 

4.4.2.  Phase Margin 

Phase margin provides a measure of a systems relative stability defined as the 

difference in phase between the system‟s output and -180° when the loop gain is unity.  It 

is a commonly used metric when analyzing a closed loop control system.  Larger positive 

values of phase margin correspond to a more stable system where the output has fewer 

tendencies to oscillate in response to an input, such as a step input.  Phase margin may be 

easily determined from a Bode plot by evaluating the system‟s phase angle at the unity 

magnitude point, 1)( ujGH  .  The phase angle for the open-loop system given in Eq. 

(4.27) is, 

        
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
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
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

zp

pzjGH .        (4.28) 

Phase margin is calculated by evaluating Eq. (4.28) at the cross-over frequency, ωu, and 

comparing the resulting phase angle to -180°.  Figure 4.9 shows phase margin measured 

in degrees versus the minimum phase zero placement (ωz) for several different K' values.  

The matlab code used to create the results shown in Fig. 4.9 may be found in Appendix 

B.  
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It is clear from the results shown in Fig. 4.9 that there exists an optimal range for 

the minimum zero placement corresponding to each K' value based upon relative 

stability.  It should also be noted that placing the minimum phase zero beyond the 

predetermined low-pass filter cutoff frequency, such that pz   , has no stabilizing 

effect independent of the overall gain constant, K'.  While this phase margin investigation 

affords a necessary first step in selecting ωz and K', the following analyses provide a 

more thorough basis in the design selection process. 

 
Figure 4.9:  Phase margin (degrees) verses the placement of the loop 
function‟s minimum phase zero (ωz) given a range of overall gain constant 
values (K'). 

4.4.3.  Settling Time 

The second metric used to analyze the performance of the PLL controller was 

settling time (Ts), defined as the time required for a system‟s output to remain within a 

certain percentage of the desired response [42].  A step input was applied to the PLL 
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controller for each combination of control parameters (ωz and K') studied in Section 

4.4.2.  The system response was examined and compared to the unit step input to 

determine settling time.  The results shown in Fig. 4.10 represent the settling time taken 

for each system to remain within 1% of the final value.  In all six cases of K' values, there 

exists a threshold of approximately 0.015 seconds, below which the settling time never 

reduces.  In each case, the results show a range of ωz values for which the settling times 

remain at or near this threshold before rapidly increasing past a certain breaking point.  

Regardless of the K' value, when the minimum phase zero exceeds the low-pass filters 

cutoff frequency (500 rad/s for this particular study) the settling time approaches infinity.  

This corroborates with the phase margin results, indicating instability where the output 

response never decays to its desired value. 

 
Figure 4.10:  Settling time (Ts) given a unit step input verses the placement 
of the loop function‟s minimum phase zero (ωz) given a range of overall 
gain constant values (K'); the settling time is given by the time it takes the 
output to remain within 1% of its final value. 
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 Since the PLL controller is also being designed to accommodate ramp changes in 

phase, it is necessary to assess the system‟s ramp response.  For this investigation the 

PLL output was simulated given a ramp input, defined as ttu )( .  The absolute error 

between the ramp input and the system output was examined and a settling time 

computed.  Due to lesser absolute error values, settling time was calculated based on a 

0.1% limit.  Therefore the results in Fig. 4.11 show settling time, defined as the amount 

of time taken before the output remains within 0.1% of its final value, verses minimum 

phase zero placement for a range of gain constants.   

 
Figure 4.11:  Settling time (Ts) given a ramp input verses the placement of 
the loop function‟s minimum phase zero (ωz) given a range of overall gain 
constant values (K'); the settling time is given by the time it takes the 
output to remain within 0.1% of its final value. 

 
 

While Fig. 4.11 indicates little to zero settling time (based on the selected 0.1% 

limit) as ωz approaches 10-6 for each K' case, there exists considerable amounts of 
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oscillation within these regions.  It is important to consider both the phase margin results 

shown in Fig. 4.9 along with the settling times given in Fig. 4.11 to obtain a more 

complete picture of the ramp response.  Although the settling time given a ramp input is 

small over some areas of each curve, marginal stability may produce an extremely 

oscillatory response.  Matlab code used to create these plots may be found in Appendix 

B. 

4.4.4.  Percent Overshoot 

While settling time provides some very useful information concerning the PLL‟s 

response, the extent of oscillation remains uncertain at this point.  Thus, percent 

overshoot was computed to create a clearer picture of the overall system response.  

Percent overshoot is the maximum percentage by which the output exceeds the 

response‟s final value [42].  Figure 4.12 shows the percent overshoot corresponding to 

the settling times shown in Fig. 4.10.  These results reveal the PLL‟s tendency to oscillate 

for ωz values both above and below a certain range of more stable frequencies.  As the 

overall gain constant K' increases so do the system‟s oscillations.  Together, the results 

shown in Figs. 4.10 and 4.12 illustrate the character of the PLL‟s output given a unit step 

input.  For low ωz frequencies, the system has a significant oscillatory response that 

settles down quickly.  For high ωz frequencies, the system also responds with large 

oscillations which take considerable more time to dampen out.  Once the value of ωz 

exceeds a value at or near the low-pass filter‟s cutoff frequency, the system response 

becomes completely unstable without decay.  In each case shown in Fig. 4.12, there 
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exists a range of “optimal” ωz frequencies in which the response maintains the least 

amount of oscillation.  Matlab code used to create this plot may be found in Appendix B. 

 
Figure 4.12:  Percent overshoot versus the placement of the loop 
function‟s minimum phase zero (ωz) given a range of overall gain constant 
values (K'). 

4.4.5.  Integral Error 

Integral error was the final performance index evaluated in this compensator 

analysis.  Both ITAE (integral of time multiplied by absolute error) defined as, 


T

dttetITAE
0

)(         (4.29) 

and ISE (integral of the square of the error) defined as, 


T

dtteISE
0

2 )(          (4.30) 
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were computed as measures of the system‟s error accumulated over time [42].  For both 

calculations, error was measured as the difference between the system output and the unit 

step input.  The upper limit, T, was a chosen finite time exceeding the settling time for 

each case study.  Figure 4.13 shows the computed ITAE results as a function of minimum 

phase zero placement, and Fig. 4.14 shows the computed ISE results as a function of 

minimum phase zero placement.  (Matlab code used to create these plots may be found in 

Appendix B.)   

 

 
Figure 4.13:  ITAE performance criterion versus the placement of the loop 
function‟s minimum phase zero (ωz) given a range of overall gain constant 
values (K'). 
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Figure 4.14:  ISE performance criterion versus the placement of the loop 
function‟s minimum phase zero (ωz) given a range of overall gain constant 
values (K'). 

 
 

In both cases the integrated error increases with increasing ωz values suggesting 

that smaller ωz values are the most desirable.  While placing the minimum phase zero 

close to the real axis does in fact minimize the integrated error, such a selection may not 

ultimately be the best choice.  Furthermore, it may result in a marginally stable or 

unstable system.  Consequently, the analyses presented in Sections 4.4.2 – 4.4.5 must be 

examined collectively when selecting the most appropriate control parameters.  The 

chosen values are given in the following section along with the controller‟s simulated 

response.   
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4.4.6.  PLL Design Summary 

The analyses reported in Sections 4.4.2 – 4.4.5 were assessed collectively when 

selecting the control parameter values for ωz and K'.  The goal was to minimize settling 

time, percent overshoot, and integrated error while maximizing the amount of phase 

margin.  After evaluating system response characteristics and system stability, the PLL 

control parameters were chosen; an overall gain constant (K') of 10,000 and a minimum 

phase zero frequency (ωz) of 55 rad/s was selected.  The open-loop controller is given by 

         
 50055

55000,000,5)()()( 2 




ss
ssGsHsG C ,     (4.31) 

recalling the low-pass filter frequency of 500 rad/s, determined previously.  These values 

result in a phase margin of approximately 53 degrees at 179 rad/s, depicted in the open-

loop bode diagram shown below in Fig. 4.15.  By placing the minimum phase zero at a 

frequency of 55 rad/s, the open-loop phase increases to -127 degrees at the unity gain 

bandwidth providing stability to an otherwise unstable system.  While the primary aim of 

this parameter selection process was to create a control system that responded to step and 

ramp inputs in a minimal amount of time while maintaining closed-loop system stability, 

the effects of percent overshoot and integrated error were also taken into consideration.  

By selecting this gain constant and minimum phase zero combination, the percent 

overshoot was reduced to less than 25 % and the ITAE index and ISE index were kept 

below approximately 0.0003 and0.00 4, respectively.   
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Figure 4.15:  Bode diagram for the finalized open-loop controller given in 
Eq. (4.31). 

 
 

In order to accommodate both step and ramp changes in phase, a second order 

PLL controller was designed for this application.  This required two integrators in the 

controller‟s forward path.  As such, a minimum phase zero was necessary to ensure 

system stability.  In addition, a first-order low-pass filter was used in the design adding a 

left-half plane pole to the transfer function as well.  By keeping the filter first-order this 

resulted in a second order PLL.  One of the benefits of designing a second order PLL as 

oppose to a higher order model is that parameters designed to ensure stability of the 

linearized model also apply to the actual nonlinear PLL [24].  The responsiveness of the 

finalized controller can best be seen from the simulated step and ramp responses shown 

below in Figs. 4.16.  These figures show the response error verses time given a unit step 

input (Fig. 4.16 (A)) and a ramp input (Fig. 4.16 (B)).  As shown, for the step and ramp 
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inputs, the output settles to within 1% and 0.01% of their final values in less than 0.05 

seconds, respectively, and the PLL controller responds with less than 25 % overshoot 

given a step input. 

 

A 
 

B 
Figure 4.16:  (A). Finalized PLL controller‟s simulated response error 
verses time given a unit step input  (B). Finalized PLL controller‟s 
simulated response error verses time given a ramp input. 

4.5. PLL AO Simulation Results 

The finalized PLL controller was modeled in Matlab and used to analyze the 

control system response given a simulated shear layer.  The discrete vortex method and 

Weakly Compressible Model described in Section 2.5 were used to simulate a forced 

shear layer and its emerging optical wavefront.  The results presented in this section 

involve three different high-speed simulated shear layer cases with upper Mach numbers 

ranging from approximately 0.55 to 0.8 and lower Mach numbers ranging from 

approximately 0.1 to 0.2.  In each case forcing was applied to regularize the shear layer‟s 
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large-scale vortical structures within a certain range of downstream distances.  The PLL 

controller described above was simulated and used to apply AO corrections to the shear 

layer‟s regularized wavefront.  OPD error and Strehl Ratio were computed, providing a 

means of assessing this new alternative control technique. 

These preliminary simulations were conducted to investigate the PLL controller‟s 

effectiveness when used in a high-speed shear layer application.  While these tests were 

not experimental, the Weakly-Compressible Model‟s ability to predict the large-scale 

structures within the flow field [5, 9, 12, 31] provide a good means of initially assessing 

the alternative AO controller.  Before performing the AO simulation, a succession of 

optical wavefronts and a time series of Strehl ratios were computed using the Weakly-

Compressible Model prior to forcing.  This provided a point of reference by which to 

compare the final AO corrections.  Once the benchmark results were computed, the 

simulated shear layers were forced and AO corrections applied using the PLL controller 

described in this chapter.  A 633 nm wavelength beam was used in each of the following 

four simulations discussed in this section. 

4.5.1.  Simulation Case Study #1 

The first simulation involved a high speed shear layer with upper and lower Mach 

numbers of approximately 0.55 and 0.17, respectively.  Forcing was applied at 1100 Hz.  

Wavefronts were computed by simulating a 0.15 meter aperture optical beam propagating 

through the flow centered 0.38 meters downstream from the point of origin.  Figure 4.17 

shows six consecutive numerical wavefronts taken approximately 0.00015 seconds apart, 

prior to both forcing and AO corrections.   
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Figure 4.17:  Six successive numerical wavefronts computed for an 
unforced shear layer with upper and lower Mach numbers of 
approximately 0.55 and 0.17, respectively. 
 

Figure 4.18 shows a similar set of consecutive wavefronts after forcing is applied.  

The solid curves in Fig. 4.18 represent the regularized wavefronts emerging from the 

forced shear layer and the dashed curves represent the DM waveform used to apply 

conjugate corrections to the regularized aberrating wavefronts.  The numerical results 

shown in Fig. 4.18 represent six consecutive wavefronts after which phase-locking has 

occurred.  The good agreement between the simulated forced shear layer‟s wavefronts 

and the PLL controller‟s simulated correction can best be seen by the wavefront error 

curves shown in Fig. 4.19. 

 
 



 
 

110 

 

 
Figure 4.18:  Six successive numerical wavefronts computed for an 1100 
Hz forced shear layer (solid curves) with upper and lower Mach numbers 
of approximately 0.55 and 0.17, respectively along with the controller‟s 
six corresponding conjugate corrections (dashed curves). 

  

The two curves shown above in Fig. 4.18 (the solid curves represent the forced 

shear layer‟s numerical wavefronts, and the dashed curves represent the DM‟s conjugate 

correction) were subtracted from one another producing the simulated residual wavefront 

errors shown in Fig. 4.19.  The spacing between wavefronts in all three figures (Fig. 4.17, 

Fig. 4.18, and Fig. 4.19) is equivalent to one sixth the forcing wavelength; therefore, the 

six successive wavefronts represent data from one full cycle of forcing. 
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Figure 4.19:  Six successive numerical wavefronts computed for an 1100 
Hz forced shear layer with upper and lower Mach numbers of 
approximately 0.55 and 0.17, respectively, after AO corrections have been 
applied using the proposed PLL controller (i.e., residual wavefront error). 

  

Comparing the wavefronts from Fig. 4.17 with those from Fig. 4.19 reveals a 

significant amount of wavefront reduction.  The time-averaged root-mean-squared OPD 

error reduces from approximately 0.037 µm in the unforced case to 0.021 µm after 

numerical AO corrections are applied to the forced case (time-averaging for the second 

case was computed after phase-locking occurred).  It should be noted in Fig. 4.19 that the 

residual OPD error might further be improved by removing tilt (see later results).  A time 

series of Strehl ratios was also computed to evaluate the controller‟s effectiveness.  A one 

dimensional far field diffraction pattern was constructed at each time step and the Strehl 

ratio computed from the center intensity value.  Figure 4.20 shows Strehl ratio verses 

time prior to both forcing and AO corrections.  The time-averaged Strehl ratio for the 

given duration is approximately 0.85.  While this value is fairly high, it is clear from Fig. 

4.20 that the instantaneous Strehl ratio frequently drops below 0.7.     
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Figure 4.20:  Strehl ratio verses time for the unforced shear layer with 
upper and lower Mach numbers of approximately 0.55 and 0.17, 
respectively. 
 

AO corrections were applied to this simulated shear layer in order to further 

improve upon the Strehl ratio results shown above (Fig. 4.20).  Figure 4.21 shows both 

the controller‟s phase response verses time and the corresponding Strehl ratio verses time 

during the process of applying AO corrections.  It is clear from Fig. 4.21 (A) that phase-

locking occurs after approximately 0.023 seconds.  At this point the PLL has adjusted for 

the original 140 degree phase difference between the shear layer‟s wavefront and the 

conjugate correction.  Note that prior to phase-locking the Strehl ratio is significantly 

lower than the unforced case (Fig. 4.21 (B)) due to additive error occurring initially.  As 

the AO controller‟s conjugate correction phase-locks with the shear layer‟s emerging 



 
 

113 

 

wavefront, the Strehl ratio improves significantly resulting in a time-averaged Strehl ratio 

of approximately 0.96 once phase-locked.   

A 

B 
Figure 4.21:  (A).  PLL controller‟s phase response verses time given an 
initial step phase error of approximately 140 degrees  (B). Strehl ratio 
verses time while AO corrections are being applied to an 1100 Hz forced 
shear layer with upper and lower Mach numbers of approximately 0.55 
and 0.17, respectively. 

 
 

By further removing tip/tilt, as is typically done via a separate control loop, the 

time-averaged Strehl ratio improves even further to approximately 0.99 producing an 

overall increase of 16.5% (refer to Fig. 4.22).  For lower Mach number flows, such as the 

one studied in this section, tip/tilt removes most of the subharmonics creating favorable 

results.  However, in higher Mach flows subharmonics become more dominant such that 

an alternative method of creating the conjugate correction may be necessary. 
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Figure 4.22:  Strehl ratio verses time after tip/tilt has been removed given 
the results shown above in Fig. 4.21 (B).   

 
 

One-dimensional far-field patterns were also created for each case study to 

provide a more visual means of assessing the applied correction.  The electric field was 

computed numerically based on Eq. (2.5) from the residual wavefront error for the one-

dimensional case.  The electric field was squared and scaled producing an intensity 

pattern normalized to one.  A series of intensity patterns were created from the residual 

error corresponding to four different timesteps.  Figure 4.23 shows the one-dimensional 

intensity patterns for the first case studied in this section.  An ideal one-dimensional 

intensity pattern given a perfectly planar wavefront is also shown in each figure by a 

dashed curve serving as a reference.  The upper left figure corresponds to 0.0025 seconds 

(refer to Fig. 4.22) where the Strehl ratio is approximately 0.311.  The upper right figure 

corresponds to 0.005 seconds and a Strehl ratio of approximately 0.497.  The lower left 



 
 

115 

 

and lower right figures correspond to 0.04 and 0.045 seconds with respective Strehl ratios 

of approximately 0.969 and 0.996.  Once phase-locking is achieved, approximately 0.018 

seconds after the simulation begins, the time-averaged tip/tilt removed Strehl ratio 

approaches 0.99 as seen from the two lower intensity patterns shown below in Fig.4.23. 

 
Figure 4.23:  A series of four one-dimensional intensity patterns 
constructed from residual wavefront errors induced by a Mach 0.55/0.17 
numerical shear layer (refer to Fig. 4.19) at times 0.0025 seconds (upper 
left), 0.005 seconds (upper right), 0.04 seconds (lower left), and 0.045 
seconds (lower right).  

4.5.2.  Simulation Case Study #2 

The second simulated high-speed shear layer had an upper Mach number of 

approximately 0.7 and a lower Mach number of approximately 0.2.  A 0.15 meter 

aperture beam was numerically propagated through the shear layer approximately 0.35 

meters downstream from the point of origin.  Six consecutively spaced wavefronts shown 

below in Fig. 4.24 represent the OPD error present in the unforced case.  A time-averaged 
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root-mean-squared OPD error of approximately 0.068 µm was computed.  The alternative 

AO approach was then employed.  The shear layer was forced at 1200 Hz and corrections 

were applied using the simulated PLL controller.  Figure 4.25 shows both the forced 

shear layer‟s regularized wavefronts (solid curves) and the PLL controller‟s conjugate 

corrections (dashed curves).  The resulting residual wavefront errors shown in Fig. 4.26 

represent the difference between the regularized wavefronts and the conjugate 

corrections.  Once the numerical AO corrections were applied and phase-locking 

occurred, the time-averaged root-mean-squared OPD error reduced to approximately 

0.038 µm. 

 

 
Figure 4.24:  Six successive numerical wavefronts computed for an 
unforced shear layer with upper and lower Mach numbers of 
approximately 0.7 and 0.2, respectively. 
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Figure 4.25:  Six successive numerical wavefronts computed for a 1200 
Hz forced shear layer (solid curves) with upper and lower Mach numbers 
of approximately 0.7 and 0.2, respectively along with the controller‟s six 
corresponding conjugate corrections (dashed curves). 
 

 
Figure 4.26:  Six successive numerical wavefronts computed for a 1200 
Hz forced shear layer with upper and lower Mach numbers of 
approximately 0.7 and 0.2, respectively, after AO corrections have been 
applied using the proposed PLL controller (i.e., residual wavefront error). 
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A time series of Strehl ratios was also computed for the unforced case as shown 

below in Fig. 4.27.  Prior to forcing, the time-averaged Strehl ratio was approximately 

0.63 consistently dropping below 0.2.  After regularizing the large-scale structures within 

the indicated range of downstream distances, corrections were applied.  An original phase 

error between the shear layer‟s emerging regularized wavefront and the conjugate 

correction was approximately 102 degrees.  As shown in Fig. 4.28 (A), phase-locking 

occurred after approximately 0.015 seconds producing a time-averaged Strehl ratio of 

0.87 (Fig. 4.28 (B)).  Once tip/tilt was removed from each wavefront the Strehl ratio 

improved further to approximately 0.96 as seen in Fig. 4.29.  This represents a 52 % 

increase in average Strehl ratio while the instantaneous value no longer drops below 

approximately 0.75. 

 
Figure 4.27:  Strehl ratio verses time for the unforced shear layer with 
upper and lower Mach numbers of approximately 0.7 and 0.2, 
respectively. 
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A 

B 
Figure 4.28:  (A).  PLL controller‟s phase response verses time given an 
initial step phase error of approximately 102 degrees (B). Strehl ratio 
verses time while AO corrections are being applied to a 1200 Hz forced 
shear layer with upper and lower Mach numbers of approximately 0.7 and 
0.2, respectively. 

 
 

 
Figure 4.29:  Strehl ratio verses time after tip/tilt has been removed given 
the results shown above in Fig. 4.28 (B).   
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 One-dimensional far-field intensity patterns were constructed from the residual 

wavefront error (refer to Fig. 4.25) post AO corrections and tip/tilt removal.  Four 

intensity patterns are shown below in Fig. 4.30 at times 0.0015 seconds (upper left), 

0.0025 seconds (upper right), 0.02 seconds (lower left), and 0.025 seconds (lower right).  

The Strehl ratios corresponding to each of these figures are 0.082, 0.432, 0.907, and 

0.961, respectively.  As before, the ideal one-dimensional intensity pattern is shown by 

the dashed curves in each figure.  It is clear from these intensity patterns that a significant 

amount of correction is achieved after phase-locking occurs, approximately 0.015 

seconds after the simulation begins. 

 
Figure 4.30:  A series of four one-dimensional intensity patterns 
constructed from residual wavefront errors induced by a Mach 0.7/0.2 
numerical shear layer (refer to Fig. 4.25) at times 0.0015 seconds (upper 
left), 0.0025 seconds (upper right), 0.02 seconds (lower left), and 0.025 
seconds (lower right).  
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4.5.3.  Simulation Case Study #3 

The third simulation involved a high speed shear layer with upper and lower 

Mach numbers of 0.79 and 0.11, respectively.  A 0.12 meter aperture beam was 

numerically propagated through the shear layer approximately 0.38 meters downstream 

from its point of origin.  Initial wavefront measurements were computed for the unforced 

case and are shown below in Fig. 4.31.  After completing the preliminary calculations, 

forcing was applied to the simulated shear layer at 700 Hz and another set of wavefronts 

were computed.  Figure 4.32 shows six consecutive wavefronts over one full cycle of 

forcing.  The solid curves represent the forced shear layer‟s emerging wavefront while 

the dashed curves represent the PLL controller‟s conjugate correction.  It is important to 

note two key features in these figures.  First, the regularized wavefronts experience OPD 

values considerably higher than those produced in the previous two simulation studies.  

Secondly, the regularized wavefronts for this particular case are not nearly as sinusoidal 

in nature.  These aspects render the PLL controller less effective.  As a result, the residual 

wavefront error shown in Fig. 4.33 is higher than the previous cases due in part to 

subharmonics present within the regularized flow.  Removing tip/tilt does provide further 

improvement; however in a case such as this where harmonics are more dominant a 

conjugate correction based solely on the fundamental forcing frequency is not sufficient.  

Suggestions to address these issues are presented in Chapter 7. 
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Figure 4.31:  Six successive numerical wavefronts computed for an 
unforced shear layer with upper and lower Mach numbers of 
approximately 0.79 and 0.1, respectively. 

 
 

 
Figure 4.32:  Six successive numerical wavefronts computed for a 700 Hz 
forced shear layer (solid curves) with upper and lower Mach numbers of 
approximately 0.79 and 0.1, respectively along with the controller‟s six 
corresponding conjugate corrections (dashed curves). 
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Figure 4.33:  Six successive numerical wavefronts computed for a 700 Hz 
forced shear layer with upper and lower Mach numbers of approximately 
0.79 and 0.1, respectively, after AO corrections have been applied using 
the proposed PLL controller (i.e., residual wavefront error). 

 

 Strehl ratios were also computed prior to and after AO corrections were applied.  

Figure 4.34 shows Strehl ratio verses time for the numerical unforced shear layer studied 

here.  The time-averaged Strehl ratio for the unforced case is approximately 0.13.  Once 

numerical AO corrections are applied and phase-locking occurs the Strehl ratio does 

show some improvement.  Figure 4.35 shows both Strehl ratio verses time (Fig. 4.35 (A)) 

and the corresponding phase response verses time for the PLL controller (Fig. 4.35 (B)) 

during the AO correction process.  As shown, phase-locking occurs after approximately 

0.015 seconds at which point the time-averaged Strehl ratio improves to approximately 

0.37.  Once tip/tilt is removed the time-averaged Strehl ratio improves to approximately 

0.64 (Fig. 4.36).   
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Figure 4.34:  Strehl ratio verses time for the unforced shear layer with 
upper and lower Mach numbers of approximately 0.79 and 0.1, 
respectively. 

 
 

A 

B 
Figure 4.35:  (A).  PLL controller‟s phase response verses time given an 
initial step phase error of approximately 94 degrees (B). Strehl ratio verses 
time while AO corrections are being applied to a 700 Hz forced shear 
layer with upper and lower Mach numbers of approximately 0.79 and 0.1, 
respectively. 



 
 

125 

 

 
Figure 4.36:  Strehl ratio verses time after tip/tilt has been removed given 
the results shown above in Fig. 4.35 (B).   
 

One-dimensional far-field intensity patterns were again constructed from the 

residual wavefront error (refer to Fig. 4.33) post AO corrections and tip/tilt removal.  The 

four intensity patterns shown below in Fig. 4.37 correspond to times 0.002 seconds 

(upper left), 0.01 seconds (upper right), 0.015 seconds (lower left), and 0.025 seconds 

(lower right).  The Strehl ratios at each of these instances are 0.042, 0.421, 0.009, and 

0.798, respectively.  As before, the ideal one-dimensional intensity pattern is shown by a 

dashed curve in each figure.   
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Figure 4.37:  A series of four one-dimensional intensity patterns 
constructed from residual wavefront errors induced by a Mach 0.79/0.11 
numerical shear layer (refer to Fig. 4.36) at times 0.002 seconds (upper 
left), 0.01 seconds (upper right), 0.015 seconds (lower left), and 0.025 
seconds (lower right).  

 

While the PLL controller is able to achieve phase-lock with the shear layer‟s 

aberrating wavefront in this case, the resulting Strehl ratio continues to experience less 

than desirable drops below 0.1.  These drops in Strehl ratio seem to occur periodically as 

a result of subharmonics present within the flow field (refer to Fig. 4.36).  Since the 

alternative AO controller is based upon a single frequency wavefront correction, 

subharmonics such as those found in this case inhibit the controller‟s ability to produce 

consistent results.  As stated earlier, the success of the alternative AO control method 

relies highly on the shear layer‟s susceptibility to regularization.  More specifically, 

favorable results occur when the emerging wavefront is both highly regular and 

sinusoidal in form, containing little to no harmonics.  However, the advantages of the 



 
 

127 

 

PLL approach introduced in this dissertation may still be exploited in such high-speed 

shear layer cases where subharmonics become more dominant.  In these instances, it may 

be possible to construct a conjugate correction containing more than one frequency while 

still using a PLL controller for phase-locking purposes.  This recommendation would be 

very similar to the man-in-the-loop experiment conducted by Duffin [27] at the 

University of Notre Dame.  Only instead of manually phasing the wavefronts, a PLL 

controller would be used to phase-lock the forcing signal with the fundamental or a 

subharmonic signal contained in the DM‟s conjugate correction.  This idea is discussed 

further in Chapter 7 (Section 7.2).  It should also be noted that maintaining lesser OPD 

values upon regularization is advantageous.  If possible it is recommended to force the 

shear layer with higher forcing frequencies, in an effort to minimize the size of the 

regularized large-scale structures while keeping the region of regularization close to the 

shear layer‟s point of origin.   

4.5.4.  Ramp Response Simulation 

 In addition to studying the PLL controller‟s step response to phase errors, a ramp 

change in phase between the conjugate correction and the shear layer‟s regularized 

wavefront was also investigated.  A Mach 0.7/0.2 shear layer was forced at 1200 Hz, 

while the AO PLL controller was simulated with an operating frequency of 1150 Hz.  

This created a constant 50 Hz frequency difference between the conjugate correction and 

the shear layer‟s emerging wavefront corresponding to a ramp changing phase (refer to 

Eq. (4.17)).  Figure 4.38 (A) shows the PLL‟s phase response verses time as the 

controller compensates for a ramp change in phase along with an initial constant phase 
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error.  As shown in Fig. 4.38 (B), once the controller locks onto the ramp changing phase 

the corresponding Strehl ratio improves resulting in a time-averaged Strehl ratio of 

approximately 0.82.   

A 

B 
Figure 4.38:  (A). Controller‟s phase response to a ramp change in phase 
corresponding to a 50 Hz frequency difference (B). Strehl ratio verses time 
as the controller compensates for phase errors given a Mach 0.7/Mach 0.2 
shear layer forced at 1200 Hz.   

4.5.5.  Simulation Summary 

The results shown above throughout Section 4.5 clearly demonstrate the 

feasibility and potential benefits of using the alternative AO approach and PLL controller 

proposed in this dissertation.  By combining shear layer regularization with a PLL control 

strategy, an otherwise seemingly insurmountable bandwidth limitation may be 

circumvented.  In creating a regularized shear layer and consequently its emerging 

wavefront whose form is highly periodic, a PLL controller may be used to synchronize a 

sinusoidal wavefront estimation with the shear layer.  For cases that involve harmonics or 
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whose form varies slightly from a pure sinusoid, an alternative estimation model might be 

employed while still utilizing the PLL control strategy presented throughout this 

dissertation to achieve phase-lock between wavefronts. 

After reviewing the successful simulations reported in Section 4.5, the PLL AO 

controller described above was constructed electronically.  The following chapter 

(Chapter 5) details the controller‟s individual circuitry components and transfer functions 

along with the overall analog PLL circuit.  Finally, Chapter 6 describes experimental 

results obtained from testing the PLL controller and Chapter 7 provides concluding 

remarks and further recommendations. 
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CHAPTER 5:  

ALTERNATIVE AO CONTROLLER CIRCUITRY 

5.1.  Analog AO Controller Circuit 

This chapter describes the analog circuitry used to create the AO controller 

outlined in Chapter 4.  The controller consists of two main components, the PLL circuit 

and the amplitude estimator circuit.  The PLL circuit can be further separated into its 

phase detector, loop filter, and voltage-controlled oscillator components.  Figure 5.1 

displays a schematic of the overall AO controller circuitry.  The shear layer jitter signal 

acts as the reference source.  The signal is first scaled to produce an output amplitude of 

approximately two.  Then the signal is input into the phase detector circuitry.  This 

reference signal is multiplied with the PLL output after the PLL signal has been phase-

lagged by approximately 90°.  It should be noted that the 90° phase-shift circuit shown 

below in Fig. 5.1 is for an 800 Hz input signal and must be designed based upon the input 

frequency.  However, when the PLL circuit is applied to the final AO controller for wind 

tunnel testing the phase-shift circuit will be omitted since the measured jitter signal 

(reference signal) is a derivative of the DM actuator‟s driving signal.   

Once the two signals are mixed (or multiplied) the resulting output is passed 

through a low-pass filter circuit to detect their phase difference.  Next, the loop filter acts 

as a regulator ensuring zero tracking error for both step and ramp phase changes while 
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maintaining closed-loop system stability.  The loop filter‟s output represents the phase 

adjustment needed to begin synchronizing the two wavefronts.  This voltage signal is 

summed with the waveform generators FM bias signal; the voltage required for the 

waveform generator to operate at its center frequency.  Finally, the output is inverted 

serving as the waveform generators FM sweep input.  The VCO produces a sinusoidal 

output signal whose amplitude is scaled to unity before closing the PLL‟s feedback loop. 

A separate loop is used to estimate the appropriate amplitude for the conjugate 

correction.  The amplitude of the shear layer‟s jitter signal is approximated using a RMS-

to-DC converter chip.  The output is scaled by a correction factor closely approximating 

the shear layer jitter signals actual amplitude.  This signal is then multiplied with the 

VCO output, whose amplitude is roughly unity after being scaled itself.  The final output 

represents a sinusoidal voltage signal whose amplitude and phase are continually being 

adjusted to match the shear layer‟s jitter signal until phase-locking occurs. 

The PLL‟s phase-locked output may be used to control the DM in a real-time AO 

correction.  Once the output has been scaled appropriately, a series of phase-shifter 

circuits represent a possible means of constructing the two-dimensional conjugate 

correction from the one-dimensional PLL output.  The following sections describe each 

circuitry component in more detail.  Further specifications pertaining to each major 

component or chip, shown below in Fig. 5.1, can be found in Appendix C.  Detailed data 

sheets may also be referenced at each of the manufacturer‟s website for more information 

and circuitry examples. 

 



 
 

Figure 5.1: Schematic showing the overall circuitry for the AO controller. 
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5.2. PLL Circuit 

As mentioned previously, the PLL circuit is comprised of three main components: 

the phase detector circuit, the loop filter circuit, and the voltage-controlled oscillator 

circuit.  Each piece plays a critical role in the overall performance of the PLL controller.  

The phase detector is used to determine the phase difference between the reference input 

and the PLL output.  The loop filter is the component with the most design flexibility, 

constructed to achieve certain response characteristics.  In this case the loop filter was 

designed to ensure zero tracking error given a step or ramp input while maintaining 

closed-loop system stability.  The voltage-controlled oscillator circuit produces an 

oscillatory output based upon its center frequency and the loop filter‟s output: a voltage 

signal related to phase error.  A more thorough description of the circuitry and 

corresponding transfer functions follows. 

5.2.1.  Scaling Reference and Feedback Signals 

In an effort to isolate the PLL control from the amplitude estimator control, both 

the reference signal (shear layer jitter signal) and the feedback signal (PLL output) are 

scaled before being fed into the phase detector.  Recall that two terms are produced upon 

mixing the two sinusoidal input signals: a double harmonic and DC component whose 

amplitude is approximately equivalent to half the product of the incoming signal‟s 

amplitudes (Eq. (4.10)).  Therefore, by scaling the PLL output amplitude to unity and the 

reference signal amplitude to approximately 2, the mixed signals DC component will 

more accurately represent the unknown phase difference.   
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While the PLLs output may be scaled by a constant using a basic op amp inverter 

amplification circuit, the reference signal must be scaled by a value that may vary.  

Consequently, a four-quadrant multiplier/divider chip (AD734) is used to perform this 

operation.  Figure 5.2 shows the circuit connections for the AD734 used as a three-

variable multiplier/divider with a fixed scale factor of approximately 2.   

 

 
 

Figure 5.2:  Circuit diagram of the four-quadrant multiplier/divider 
connections (AD734). 
 

For the connections shown in Fig. 5.2, the output from the AD734 is given by, 

  
  2

21

2121 Z
UU

YYXXW 



 .        (5.1) 

where the X2 (pin 2), Y2 (pin 7), U1 (non-inverting input of the op amp connected to pin 

3), and Z2 (pin 10) inputs have all been grounded.  For the dissertation application 

depicted in Fig. 5.1, the shear layer jitter signal represents the X1 input, a scale factor 

approximately equal to 2 is applied to the Y1 input, and the shear layer‟s approximated 
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amplitude (output from the amplitude estimator circuitry) is connected to the U2 input.  

As a result the output amplitude maintains an approximate value of 2 accounting for the 

factor found in Eq. (4.10) and Eq. (4.12).  Further specifications for the AD734 chip 

shown in Fig. 5.2 can be found in Appendix C.5. 

5.2.2.  Phase Detector Circuitry 

Phase detection is achieved through a simple multiplication and low-pass filtering 

combination.  A four-quadrant multiplication chip (AD633) has the capability of 

receiving four different inputs.  The difference between pin 1 and pin 2 is multiplied with 

the difference between pin 3 and pin 4.  The product generated from this chip has a scale 

factor of 10 Volts; therefore the gain of the phase detector, KPD, is 1/10.  The AD633 chip 

also has the capability of adding two or more multiplier outputs through a summing node, 

although not used for this specific application.  The transfer function for the AD633 

multiplication chip is given by, 

   ZYYXXW 



10

2121         (5.2) 

where X1 is the input for pin 1, X2 is the input for pin 2, Y1 is the input for pin 3, Y2 is the 

input for pin 4, Z is the input for pin 6, and W is the output from pin 7. 

For the PLL testing discussed in Section 6.1, the scaled PLL output (directly 

related to the DM‟s conjugate correction) is connected to pin 1 and the scaled shear 

layer‟s jitter signal (or function generator signal) is connected to pin 3.  For the proposed 

high-speed AO correction experiments following the completion of this dissertation 

(outlined in Section 6.2), the shear layer‟s jitter signal will be connected to both pin 1 and 
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pin 3, while the other jitter signal (representing the difference between the shear layer 

jitter and the DM jitter) will be connected to pin 2.  The product generated from the 

multiplication chip is sent through a low-pass filter designed to attenuate both the double 

harmonic and any higher order noise.  The result is to isolate the signal‟s DC component 

which is directly related to the phase difference between inputs.  An active low-pass filter 

with a cutoff frequency of approximately 500 rad/s (80 Hz) was created using a low-noise 

operational amplifier (NE5534A).  Figure 5.3 shows a circuit diagram of the low-pass 

filter. 

 
 

Figure 5.3:  Circuit diagram of the phase detector‟s low-pass filter. 
 
 
 The overall transfer function for this circuit is given by, 












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       (5.3) 

where RLPF1 is a 10 kΩ resistor, RLPF2 is a 100 kΩ resistor, and CLPF is a 22 nF capacitor.  

These values were selected based on the compensator analysis described in Section 4.4.6.  

It should be noted that these resistor values produce a low-pass filter gain constant of 

approximately 10.  This was designed to accommodate for the multiplier chip‟s gain 

constant of 1/10, therefore resulting in an overall unity gain constant for the entire phase 
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detector circuit.  Key specifications for the four-quadrant multiplier chip (AD633) and 

the low-noise operational amplifier (NE5534A) can be found in Appendix C.1 and 

Appendix C.2, respectively. 

5.2.3.  Loop Filter Circuitry 

As discussed in Section 4.4.1, the loop filter must contain both a pole at zero 

(integrator) and a minimum phase zero in order to meet the specified design 

requirements.  This was achieved using a low-noise operational amplifier (NE5534A) in 

combination with a capacitor and two resistors.  Figure 5.4 shows the circuit diagram for 

the loop filter whose transfer function is given by, 

     






 
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LFLF
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CsR
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1

21
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.        (5.4) 

Resistor and capacitor values were chosen based upon the design summary described in 

Section 4.4.6.  The resistor values for RLF1 and RLF2 are approximately 150 kΩ and 180 

kΩ, respectively, while a 100 nF capacitor was chosen for CLF.  These values result in an 

overall gain constant for the loop filter of approximately 67. 

 
 

Figure 5.4:  Circuit diagram of the loop filter containing both a pole at 
zero and a minimum phase zero. 
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5.2.4.  Voltage-Controlled Oscillator Circuitry 

The voltage-controlled oscillator (VCO) represents the final step in the PLL 

process.  It produces an oscillatory response based upon its center frequency and a sweep 

input.  The VCO uses a phase input to adjust its output frequency, therefore acting as an 

integrator in the circuit.  The gain constant of the VCO corresponds to its sensitivity; a 

value referring to the change in instantaneous frequency as a function of the change in 

input amplitude (FM Sweep input) such that 

dv
dKVCO


 .                    (5.5) 

A precision waveform generator (NTE864) chip capable of producing sinusoidal 

waveforms with high accuracy was purchased for this task.  The center frequency is 

selected externally using a combination of resistors and capacitors while frequency 

modulation and sweeping is accomplished through an external voltage signal (FM Sweep 

input).  Figure 5.5 shows a diagram of the waveform generator circuit connections. 

 

 
 

Figure 5.5:  NTE864 waveform generator circuit connections for the PLL 
application described in this dissertation. 
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 A series of experimental tests were performed at varying center frequency values 

in order to determine the gain constant for this particular waveform generator chip.  

Different combinations of resistor values (RA and RB) and capacitor value (C) were used 

to create varying center frequencies where the center frequency of the VCO is given by 

       
RC

fc
33.0

          (5.6) 

where R=RA=RB.  The resistors, RA and RB, were selected with equivalent values to 

achieve a 50% duty cycle.  In order to determine the center operating frequency, the VCO 

was initially tested using each combination of resistors and capacitor, with pin 7 (FM 

Bias) and pin 8 (FM Sweep) directly connected.  A series of subsequent tests were 

performed in which pin 7 was left with no connection and a range of input voltages was 

applied to pin 8.  The VCO‟s output frequency was recorded for each input voltage.  The 

change in output frequency was plotted as a function of change in input voltage.  Finally, 

the VCO‟s sensitivity was determined by examining the slope of the line created for each 

set of resistor/capacitor combination.  Figure 5.6 shows the VCO‟s sensitivity verses 

center operating frequency.  Recalling that the sensitivity refers to the VCO gain 

constant, the curve shown in Fig. 5.6 may be described by the following equation: 

cVCO fK 205.0 .        (5.7) 

In other words when the VCO has a center operating frequency of 830 Hz, the gain 

constant, KVCO, is approximately 170. 
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Figure 5.6:  Voltage-controlled oscillator (NTE864) sensitivity verses its 
center operating frequency obtained through experimental testing. 

 

 The following resistor and capacitor values were used for the function generator 

testing described and reported in Section 6.1.  Resistor values of approximately 12 kΩ 

were chosen for RA and RB, similar to the test circuits shown in the NTE864 data sheet 

(the data sheet may be found at the manufacturer‟s website referred to in Appendix C.3).  

A 33 nF capacitor was used for C producing a center operating frequency of 

approximately 830 Hz (Eq. (5.6)); the combination of resistor and capacitor values 

produce a specific FM Bias voltage signal which regulates the chip‟s operating 

frequency.  The FM Bias signal is summed with the PLL‟s phase error signal (output 

from the loop filter discussed previously) through an op amp summation circuit where 

RS1, RS2, and RS3 are each 100 kΩ resistors and ROM is a 33kΩ resistor.  Finally, the signal 

is inverted before being used as the FM Sweep input.  This was achieved using a basic op 

amp inverter with unity gain where RA5 and RA6 are each 10 kΩ resistors (refer back to 

Fig. 5.1). 
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The VCO‟s oscillating output has an amplitude equivalent to approximately 0.22 

times the supply voltage, VS.  Testing reported throughout this dissertation, specifically in 

Section 6.1, was conducted using a supply of +/- 12 Volts.  Therefore, the VCO‟s output 

maintained an amplitude of approximately 3.3 Volts.  In order to create an output whose 

amplitude approaches unity, the VCO‟s output is scaled by a factor of 
SV22.0

1 , 

approximately equivalent to 0.38 for these tests.  This was achieved using 100 kΩ and 39 

kΩ resistors for RA3 and RA4, respectively (refer to Fig. 5.1).  Key specifications for 

NTE864 may be found in Appendix C.3. 

5.3. Amplitude Estimator Circuit 

A separate control loop is used to estimate the appropriate amplitude for the 

conjugate correction.  The jitter signal emerging from the regularized shear layer is sent 

through a True RMS-to-DC Converter chip (AD536A).  The chip produces a DC output 

equivalent to the true root-mean-square of the incoming AC signal; given a sinusoidal 

input this equates to approximately 0.707 times the signal‟s amplitude.  Consequently, 

the output from AD536A is scaled by approximately 1.414 generating an estimate of the 

original signal‟s amplitude.  This scaling is achieved using a basic op amp inverting 

amplifier circuit shown below in Fig. 5.7 where RA1 and RA2 are 70.8 kΩ and 100 kΩ 

resistors, respectively.  It should be noted that when the PLL circuit is used to construct 

the conjugate correction sent to the DM for real-time wavefront corrections an additional 

scaling factor of 2
1

slk must be added due to the relationship between an optical wavefront 

(OPD) and its corresponding jitter signal (refer back to Eq. (2.4) and Eq. (4.7)).   
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Once the amplitude is estimated, the DC signal is multiplied with the scaled VCO 

output (whose amplitude should be approximately 1) using an AD633 analog multiplier 

chip introduced previously.  Due to the 10
1 scale factor associated with AD633, a final 

amplification must be performed where RA7 and RA8 are 10 kΩ and 100 kΩ resistors, 

respectively.  The resulting output now resembles the initial reference signal, or shear 

layer jitter signal, in both phase and amplitude.  Figure 5.7 shows a circuit diagram of the 

RMS-to-DC Converter connections as well as the scaling and multiplication circuitry 

discussed above.  Further specifications for AD536A may be found in Appendix C.4. 

 
 
Figure 5.7:  Amplitude estimator circuitry including the RMS-to-DC 
Converter (AD536A) circuit connections. 
 

When applying this circuit to future experimental tests in which the DM will be 

used to perform AO corrections, resistors RA7 and RA8 must be modified appropriately.  

Before the phase-locked output may be sent to the DM, the signal must be amplified by 

the proper scale factor compensating for the following: the AD633 10
1 scale factor, the 
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DM amplifier‟s 3X amplification factor, and the DM‟s voltage to stroke conversion (+/- 

10 Volts to +/- 4 μm).  The scaled phase-locked output may then be used to control the 

DM actuators used to create the appropriate conjugate correction. 

5.4. DM Waveform Construction 

For the high-speed shear layer AO correction experiments following the 

completing of this dissertation, the PLL‟s single output signal must be used to construct a 

two-dimensional conjugate correction.  Assuming the shear layer has been regularized, its 

emerging optical wavefront acts like a traveling sinusoidal waveform (see further 

discussion in Chapter 7).  The seven rows of actuators composing the DM will be used to 

create this traveling sinusoid.  The center row will be controlled by the PLL‟s phase-

locked output since the shear layer‟s jitter signal (PLL reference signal) is measured at 

the same center location.  Each of the remaining six rows of actuators will also be 

controlled by this signal after being appropriately phase-shifted.  The phase-shift between 

consecutive rows should be equivalent to 

      slk ,         (5.8) 

where δ represents the physical spacing between actuators rows (7 mm multiplied by the 

magnitude change due to the telescope) and ksl refers to the regularized wavefront‟s wave 

number (Eq. 4.3).   

A series of simple analog phase-shift circuits is suggested to create the additional 

six signals as shown in Fig. 5.8; however, it may be advantageous to explore a more 

accurate solution in subsequent work supporting this dissertation research.  One such 
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recommendation would be to drive the DM with a predetermined waveform, possibly 

containing a subharmonic similar to the experimental testing performed by Duffin [27], 

while achieving synchronization using the PLL‟s phase-locked output (see Chapter 7 for 

further discussion). 

 

Figure 5.8:  Single phase-shift circuit suggested to create the signals used 
to control the remaining six rows of actuators on the DM. 
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CHAPTER 6:  

ALTERNATIVE AO CONTROLLER EXPERIMENTS 

6.1.  Function Generator “Jitter” Testing 

After testing the individual circuit components described in Chapter 5, the 

alternative AO controller was constructed on a prototype board pictured below in Fig. 

6.1.  Upon completion of the PLL circuit, a series of experimental tests were performed 

using a function generator as the reference input.  The purpose of these experiments was 

to test the PLL‟s phase-locking capability and evaluate the amplitude estimator circuit 

response.  The following sections outline the experimental procedure used in testing and 

describe the results obtained. 

 

Figure 6.1:  Photograph of the alternative AO controller prototype board 
circuitry. 
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6.1.1.  Experimental Setup 

The experimental testing described in this section was performed using a GW 

Dual Tracking Laboratory DC Power Supply set to +/- 12 Volts operating in series.  A 

function generator provided the reference input allowing for variable input frequency and 

amplitude during testing.  The function generator signal was connected to the reference 

input, identified as the „Shear Layer Jitter Input Signal‟ in Fig. 5.1.  A two channel 

oscilloscope was used to monitor the input reference signal in conjunction with the PLL‟s 

phase-locked output signal.  Channel 1 was connected to the „Shear Layer Jitter Input 

Signal‟ and served as the trigger for testing.  Channel 2 was connected to the „Phase-

Locked/Amplitude Adjusted Output Signal‟ (see Fig. 5.1).  A data acquisition system was 

used to record several signals within the circuit including the Shear Layer Jitter Input 

Signal, the scaled Shear Layer Jitter Input Signal, the Phase-Locked/Amplitude Adjusted 

PLL Output Signal, the scaled PLL output signal, and the amplitude estimation output.  

Once the experiment was set up, power was supplied to the prototype circuit board 

commencing each experimental test and data was recorded.   

A series of experimental tests were performed in order to examine the alternative 

AO controller‟s response to input variations in both phase and amplitude.  Upon 

powering the AO controller, an unknown phase difference exists between the function 

generator‟s sinusoidal input and the VCO‟s sinusoidal output.  In addition to any initial 

constant phase error, ramp changes in phase were also investigated.  A constant 

frequency difference between the function generator‟s input signal and the PLL‟s 

operating frequency represents a steady change in phase over time.  The results presented 

in Section 6.1.2 demonstrate the PLL‟s ability to track such phase differences.  The AO 
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controller‟s ability to compensate for amplitude fluctuations was also examined.  

Throughout several tests, the function generator‟s input amplitude was varied abruptly in 

order to assess the ability of the amplitude estimator circuit to track changes in amplitude.  

These test results may be found below in Section 6.1.3. 

As described in the previous chapter, the PLL circuit tested here was designed 

with a center operating frequency of approximately 830 Hz.  Thus, function generator 

testing was conducted using a range of frequencies at or near the circuits operating 

frequency while input amplitudes ranged from 0.5 Volts up to 5 Volts.  The following 

experimental data was obtained using a six channel data acquisition system.  Data was 

recorded at a rate of 200 kHz over a period of 5 seconds for each test.  Power was 

supplied to the circuit board shortly after acquiring began.  Figure 6.2 shows a picture of 

the experimental setup described above. 

 
 

Figure 6.2:  Photograph of the experimental setup for the function 
generator testing performed on the AO controller circuit. 
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6.1.2.  Phase Response Results 

A series of experimental tests were conducted to assess the PLL controller‟s 

phase-locking capability.  Input reference frequencies, representing the shear layers 

regularized jitter frequencies, ranged from 500 Hz up to 1500 Hz.  Several tests were 

performed at each input frequency using a variety of amplitudes.  Data was collected at a 

rate of 200 kHz over a period of 5 seconds.  The sixth channel from the data acquisition 

system was connected to the power supply‟s positive supply voltage providing a 

reference signal for determining the commencement of each test.  Consistent phase-

locking results were observed for frequencies between approximately 700 Hz and 1200 

Hz representing the PLL‟s capture range given this particular operating frequency.  

Phase-locking outside of this frequency range remained inconsistent.   

The following results display the phase-locking data obtained over a series of 

experimental tests.  The figures show phase error, expressed in Volts, as a function of 

time.  Each set of data corresponds to a given reference frequency and input amplitude.  

The analog signals were acquired simultaneously during testing and post-processed to 

determine phase error.  A matlab code was written to evaluate the phase difference 

between signals based upon the rising cross-over locations.  Since the two signals do not 

always maintain the same frequency with one another the resulting phase error does not 

always appear to vary smoothly. 

In addition, it should be noted that since the 90° phase-shift circuit (referred to in 

Section 5.1) was constructed specifically for an 800 Hz operating frequency, any 

departures from that frequency result in small amounts of phase error after phase-lock has 

occurred.  However, when the PLL circuit is applied to the final high-speed aero-optic 
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experiments the 90° phase-shift circuit will be eliminated since the PLL‟s output will 

ultimately be used to control the DM wavefront, a derivative of the input jitter signal (Eq. 

(2.4)).  Thus once removed, the steady-state phase errors shown below should no longer 

be present. 

The first set of phase results are shown in Fig. 6.3.  The reference frequency and 

amplitude provided by the function generator for this test were 700 Hz and 4 Volts, 

respectively.  Phase-locking occurs after approximately 0.09 seconds and although a 

negative 10 degree steady-state error exists upon phase-locking this should be eliminated 

once the phase-shift circuit has been removed.  Similar results were obtained for this 

reference frequency given input amplitudes ranging from 0.5Volts to 5 Volts. 

 
Figure 6.3:  Phase error (degrees) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 700 Hz 
and 4 Volts, respectively with an operating frequency of approximately 
830 Hz. 
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 The second set of results shown below is for a reference frequency and amplitude 

of 800 Hz and 1 Volt, respectively.  In this case phase-locking occurs after approximately 

0.05 seconds with very little steady-state error as shown in Fig. 6.4.  This makes sense 

since the function generator‟s reference frequency is very near the PLL‟s operating 

frequency of 830 Hz.  Similar phase error results were obtained for input amplitudes 

ranging from 0.5 Volts to 5 Volts. 

 
Figure 6.4:  Phase error (degrees) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 800 Hz 
and 1 Volt, respectively with an operating frequency of approximately 830 
Hz. 

 

 The results shown in Fig. 6.5 are for a reference frequency and amplitude of 900 

Hz and 5 Volts, respectively.  Phase-locking occurs after approximately 0.04 seconds.  

Since the reference frequency is greater than the PLL‟s operating frequency, the phase-
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shift circuit induces a positive steady-state phase error of approximately 7 degrees on the 

PLL‟s output signal.  Figure 6.6 shows the phase-locking results given a reference 

frequency and amplitude of 1000 Hz and 0.5 Volts, respectively.  Phase-lock is achieved 

in less than 0.03 seconds with approximately 9 degrees of steady-state phase error.  Once 

again, similar phase error results were obtained for input amplitudes ranging from 0.5 

Volts up to 5 Volts in both cases.  The phase responses shown in Figs. 6.3, 6.4, 6.5, and 

6.6 demonstrate the PLL‟s tracking ability within the capture range.  In all four cases 

phase-locking is achieved within 0.1 seconds or less. 

 
Figure 6.5:  Phase error (degrees) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 900 Hz 
and 5 Volts, respectively with an operating frequency of approximately 
830 Hz. 
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Figure 6.6:  Phase error (degrees) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 1000 Hz 
and 0.5 Volts, respectively with an operating frequency of approximately 
830 Hz. 

 

 The results shown below in Fig. 6.7 demonstrate one set of data recorded outside 

the PLL‟s capture range.  For this experiment the function generator‟s reference signal 

had a frequency of 1300 Hz and an amplitude of 2 Volts.  As shown by the recurring 

fluctuations in phase difference between the two signals over the given time interval, 

phase-locking is not achieved in this case. 
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Figure 6.7:  Phase error (degrees) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 1300 Hz 
and 2 Volts, respectively with an operating frequency of approximately 
830 Hz. 
 

6.1.3.  Amplitude Response Results 

The amplitude response of the alternative AO controller was also examined 

experimentally.  During each experiment the output from the amplitude estimator circuit 

was measured and compared to the function generator‟s input amplitude.  The amplitude 

estimator output represents the jitter signal‟s amplitude calculated via the control circuit.  

Amplitude response results for each of the four phase-locking tests reported in Section 

6.1.2 are shown in Figs. 6.8 – 6.11.  The first case had a reference frequency of 700 Hz 

and an input amplitude of 4 Volts.  The control circuit approximated the appropriate 

amplitude within 0.4 seconds as shown below in Fig. 6.8.   
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Figure 6.8:  Amplitude error (Volts) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 700 Hz 
and 4 Volts, respectively with an operating frequency of approximately 
830 Hz. 

 
 Three more cases are shown below in Figs. 6.9 – 6.11.  The amplitude results 

displayed in all four figures (Figs. 6.8-6.11) correspond to the phase error experiments 

reported in Figs. 6.3-6.6, respectively.  In all four case studies the final amplitude is 

estimated within 0.4 seconds or less of the circuit power turning on.  The small amounts 

of error shown in each case are due primarily to the inexact nature of the basic op amp 

inverting amplifier used to scale the RMS-to-DC Converter‟s output (Section 5.3).  The 

ratio of resistor values, RA1 and RA2 (see Fig. 5.7), along with the precision of the RMS-

to-DC Converter chip control the accuracy of this estimation.  The controller‟s ability to 

track amplitude changes during testing was also investigated by manually varying the 

function generator‟s input amplitude.  The output signal showed good tracking ability to 

any sudden amplitude variations. 
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Figure 6.9:  Amplitude error (Volts) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 800 Hz 
and 1 Volt, respectively with an operating frequency of approximately 830 
Hz. 

 

 
Figure 6.10:  Amplitude error (Volts) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 900 Hz 
and 5 Volts, respectively with an operating frequency of approximately 
830 Hz. 
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Figure 6.11:  Amplitude error (Volts) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 1000 Hz 
and 0.5 Volts, respectively with an operating frequency of approximately 
830 Hz. 

6.1.4.  Jitter Error 

This section provides a visual comparison between each set of jitter signals 

investigated above along with their respective jitter error over a specified time interval.  

The first experiment shown below in Fig. 6.12 and Fig. 6.13 was conducted using a 700 

Hz sinusoidal signal whose input amplitude was 4 Volts.  The analog input signal was 

produced using a function generator and is represented by the dashed curve shown in Fig. 

6.12.  The solid curve displays the PLL‟s output signal after both amplitude estimation 

and phase synchronization has been achieved.  Figure 6.13 was produced by subtracting 

the PLL output from the function generator input.  The solid curve represents the jitter 

error present after synchronization.  While the initial jitter signal‟s amplitude was 
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approximately 4 Volts, maximum jitter error was reduced to less than 0.7 Volts.  Recall 

that the PLL‟s center operating frequency for these experimental tests was approximately 

830 Hz which results in increased phase error with larger variances from the input 

frequency due to the phase shift circuit; however, as discussed earlier the phase error 

induced by the phase-shift op amp circuit should all but be eliminated when this 

component is removed for the ultimate high-speed shear layer wavefront experiments. 

 
 

Figure 6.12:  Measured jitter signal (Volts) verses time (seconds) for a 
PLL experimental test given a reference frequency and amplitude of 700 
Hz and 4 Volts, respectively after amplitude and phase synchronization 
has been achieved.  The dashed curve represents the function generator‟s 

input signal and the solid curve represents the measured PLL output 
signal. 
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Figure 6.13:  Computed jitter error (Volts) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 700 Hz 
and 4 Volts, respectively after amplitude and phase synchronization has 
been achieved. 

 

 Figures 6.14 – 6.19 show similar results to those shown above.  In each case the 

jitter signals and jitter error are shown after amplitude and phase synchronization has 

occurred.  It is clear from the figures that the best results were obtained given an input 

frequency of 800 Hz which is expected since this frequency most closely resembles the 

PLL‟s operating frequency of 830 Hz.  In this experiment the maximum jitter error 

reduces to approximately 0.1 Volts.  When the input amplitude is increased to 5 Volts, 

given an input frequency of 800 Hz, the jitter error still remains less than 0.5 Volts. 
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Figure 6.14:  Measured jitter signal (Volts) verses time (seconds) for a 
PLL experimental test given a reference frequency and amplitude of 800 
Hz and 1 Volt, respectively after amplitude and phase synchronization has 
been achieved.  The dashed curve represents the function generator‟s input 
signal and the solid curve represents the measured PLL output signal. 
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Figure 6.15:  Computed jitter error (Volts) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 800 Hz 
and 1 Volt, respectively after amplitude and phase synchronization has 
been achieved. 
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Figure 6.16:  Measured jitter signal (Volts) verses time (seconds) for a 
PLL experimental test given a reference frequency and amplitude of 900 
Hz and 5 Volts, respectively after amplitude and phase synchronization 
has been achieved.  The dashed curve represents the function generator‟s 

input signal and the solid curve represents the measured PLL output 
signal. 
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Figure 6.17:  Computed jitter error (Volts) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 900 Hz 
and 5 Volts, respectively after amplitude and phase synchronization has 
been achieved. 
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Figure 6.18:  Measured jitter signal (Volts) verses time (seconds) for a 
PLL experimental test given a reference frequency and amplitude of 1000 
Hz and 0.5 Volts, respectively after amplitude and phase synchronization 
has been achieved.  The dashed curve represents the function generator‟s 

input signal and the solid curve represents the measured PLL output 
signal. 
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Figure 6.19:  Computed jitter error (Volts) verses time (seconds) for a PLL 
experimental test given a reference frequency and amplitude of 1000 Hz 
and 0.5 Volts, respectively after amplitude and phase synchronization has 
been achieved. 

 

6.1.5.  Summary of PLL Experiments 

In summary, analog experimental tests were performed to investigate the PLL 

circuit‟s ability to track amplitude and phase variations of an incoming sinusoidal signal.  

The PLL circuit was designed with a center operating frequency of approximately 830 

Hz, which can be modified by changing a few resistor and capacitor values.  A function 

generator was used to produce a sinusoidal input signal representing the shear layer jitter 

signal that will eventually be measured using a small-aperture position sensing device in 

the ultimate high-speed shear layer experiment.  A data acquisition system acquired the 
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analog signals during testing at a rate of 200 kHz.  Phase and amplitude response data 

was collected and reported above in Sections 6.1.2 and 6.1.3, respectively.  Finally, jitter 

error was computed from the “jitter” signals themselves and shown in Section 6.1.4.   

For the given center operating frequency of 830 Hz, a capture range between 

approximately 700 Hz and 1200 Hz was established.  Phase-locking consistently occurred 

between 0.03 and 0.1 seconds after testing was initiated.  The amplitude estimation 

response commonly took approximately 0.4 seconds or less.  While maximum jitter error 

reached values close to 0.5 Volts in some cases due to the error induced by the phase-

shift circuit, actual “jitter” errors should be closer to 0.05 Volts after accounting for this 

induced phase error.  Overall, these results are very promising.  Taken in combination 

with Duffin‟s manual phase-locking wavefront experiments [8, 27], the alternative AO 

approach appears to be a feasible and innovative way of overcoming the bandwidth 

limitations inhibiting current AO systems. 

It should also be noted that any latency associated with individual components of 

the AO system, as discussed in Chapter 2, are irrelevant using this alternative approach.  

This is because the mirror‟s phasing and amplitude adjustments are a result of the 

reference and compensated beams being mixed in real time.  The actual phase delay 

between the DM input signal and the DM‟s response is accounted for by the compensated 

signal.  The exact phase delay induced by the DM amplifier on the input signal is 

therefore irrelevant.  In a conventional AO system, these latencies make correction 

ineffective or even damaging as discussed in Chapter 2. 
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6.2. Proposed High-Speed Shear Layer Small-Aperture Jitter Test 

Several wind tunnel experiments must be performed in follow-on work to 

completely evaluate the PLL circuit and alternative AO controller.  The first test outlined 

here will be designed to further assess the PLL‟s tracking capabilities of both amplitude 

and phase variations, a continuation of the experimental tests discussed above.  Similar to 

the tests reported in Section 6.1, the PLL‟s response to changes in amplitude and phase of 

an incoming jitter signal will be investigated.  However, in this set of experiments, an 

actual small-aperture laser beam will be projected through the high-speed shear layer.  

The emerging jitter signal will be measured using a small-aperture position sensing 

device and filtered as discussed earlier.  Then the filtered, near-sinusoidal signal will be 

applied to the PLL circuit.  The goal of these tests will be to evaluate the PLL‟s ability to 

track phase and amplitude variations of an actual incoming jitter signal emerging from a 

forced high-speed shear layer.  When evaluating the results of these tests, two important 

items should be considered; first the effect of having an input signal whose form is no 

longer dominated by a single harmonic sinusoid, and second the effect of noise present 

on the input signal induced by the boundary layer within the wind tunnel, mechanical 

vibrations, and other aspects of the experiment.   

This small-aperture jitter experiment will require the use of a high-speed wind 

tunnel, optical bench, and PLL controller.  A high-speed free shear layer will be 

generated using a transonic in-draft, wind-tunnel located in Notre Dame‟s Hessert 

Laboratory.  This facility consists of an inlet nozzle, test section with viewing windows to 

allow for propagation of the laser beam, diffuser section, and vacuum pumps.  High- and 

low-speed flows are fed through the inlet nozzle separated by a splitter plate.  Once the 
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two flows merge a free shear layer forms within the test section.  Voice-coil actuators 

affixed to the edge of the splitter plate will be used to incorporate flow control, 

regularizing a region of the large-scale structures as discussed in Section 3.2 of this 

dissertation.  A small-aperture laser beam will be propagated up through the regularized 

region of the forced shear layer and then directed back onto an optical bench where a 

small-aperture position sensing device will be used to acquire the resulting jitter signal.  

Once filtered, the analog signal produced from the position sensing device will serve as 

the PLL‟s reference input.  Both the shear layer‟s jitter signal and the PLL‟s phase-locked 

output will be recorded via a data acquisition system during testing.  Post-processing will 

be used to assess the PLL‟s tracking response to both amplitude and phase.  AO 

corrections should first be tested using only a fast steering mirror to determine if the jitter 

signal alone can be properly compensated similar to the experimental circuitry tests 

described earlier. 

Full AO correction capabilities of this alternative method may be further analyzed 

by post-processing wavefronts created from the phase-locked PLL output.  An estimation 

of residual error could be computed by comparing post-processed wavefronts to 

wavefront measurements taken of a large-aperture bean projected through the regularized 

shear layer.  This could serve as a preliminary investigation to the following high-speed 

shear layer AO correction experiment described below in Section 6.3. 
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6.3. Proposed High-Speed Shear Layer AO Correction Experiment 

Once phase-locking has been successfully demonstrated in the small-aperture 

jitter experiments discussed previously (Section 6.2), the final high-speed shear layer AO 

correction experiment can be conducted.  The goal of this experiment will be to test and 

demonstrate system performance capabilities of the alternative AO control system 

presented throughout this dissertation.  Similar to the experiments presented in the 

previous section, a transonic in-draft, wind-tunnel located in Notre Dame‟s Hessert 

Laboratory will be used to create a free shear layer.  Again, voice-coil actuators affixed to 

the edge of the splitter plate will be used to mechanically force the shear layer‟s origin in 

an effort to regularize a downstream region of the flow.  A small aperture laser beam 

along with a large aperture beam will be propagated through the test section within the 

region of regularization.  The small aperture laser beam will again be measured via a 

small-aperture position sensing device and its filtered signal will serve as the PLL‟s 

reference input signal.  Real-time AO corrections will be applied to the large aperture 

laser beam using Notre Dame‟s deformable mirror controlled by the alternative AO 

controller.  Two-dimensional wavefront measurements will be acquired using a WFS of 

the large aperture beam before and after AO corrections have been applied as a means of 

evaluating the system‟s performance. 

Before conducting this high-speed shear layer AO experiment, a few 

modifications must be made to the PLL circuit shown in Fig. 5.1.  First, since the PLL 

output will be used to generate a two-dimensional wavefront characterizing the DM‟s 

conjugate correction, the 90° phase-shift circuit must be removed.  This will cause the 

PLL output to be locked 90° out of phase with the reference input signal.  The basis for 
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this necessary phase lag originates from the definition of jitter (Eq. (2.4)).  The reference 

input corresponds to the shear layer jitter while the PLL output characterizes the optical 

wavefront, therefore the two signals must be 90° out of phase in order to create the proper 

conjugate correction.   

Secondly, a method of phase-shifting the PLL output signal must be devised to 

produce the desired DM waveform.  A series of operational amplifier phase-shift circuits, 

as described in Section 5.4, is proposed as an initial approach to create the two-

dimensional wavefront extended across the aperture in the off-axis direction (each row of 

actuators will carry the same control signal); however, other possibilities should be 

explored such as digital phase-shift options, RF-Lambda phase shifters, etc.  Finally, the 

op amp inverting amplifier circuit shown in Fig. 5.7 must be modified to account for the 

amplification factor of the DM amplifier and the DM‟s voltage to stroke conversion. 

Once successful AO corrections have been demonstrated for forcing frequencies 

at or near the given PLL operating frequency, subsequent shear layer cases may be 

examined.  The waveform generator circuit may be modified to create varying center 

operating frequencies by adjusting the resistor and capacitor values shown in Fig. 5.5.  

This series of AO wind tunnel testing will constitute a final validation of the alternative 

AO control method proposed in this dissertation. 
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CHAPTER 7:  

CONCLUSIONS AND RECOMMENDATIONS 

Optical wavefront aberrations induced by variations in a flow field‟s index-of-

refraction field cause significant performance reductions to an AO system making use of 

such an optical signal.  Conventional AO systems are currently being used to successfully 

correct for atmospheric disturbances; however, they are bandwidth limited in the case of 

aero-optic disturbances.  Due to high frequencies present within a free shear layer, 

commonly exceeding 1 kHz, the current AO system is inhibited by its ability to close the 

loop within the necessary timeframe.  Over the past several years Notre Dame has been 

working towards a solution to this previously underestimated problem.   

The research reported in this dissertation, in concert with the high-speed AO 

testing completed and documented by Duffin in 2009 [27], signifies a significant 

breakthrough in the area of aero-optics.  The goal of this research was to automate the 

manual phasing process in Duffin‟s experiments.  More specifically, to develop an 

alternative AO approach using a combination of flow control to regularize the shear 

layer‟s large-scale structures and a PLL controller to synchronize an estimated waveform 

with the shear layer‟s emerging wavefront.   
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7.1.  Contributions 

The first phase of this research involved a numerical investigation.  A discrete 

vortex method along with a Weakly-Compressible model developed by Fitzgerald [5, 

12], was used to simulate a high-speed free shear layer.  The well known linear growth 

rate of a free shear layer, commonly characterized by vorticity thickness measurements, 

was examined from a different angle through an optical analysis.  A series of small-

aperture beams numerically propagated perpendicularly through the shear layer were 

used to generate a new measure of growth based upon the induced jitter.  The new shear 

layer measure introduced in this dissertation, defined by Eq. (3.4) and Eq. (3.5), is called 

optical coherence length [16, 49].  Similar to vorticity thickness, it reveals a linear growth 

rate with downstream distance exhibited by an unforced free shear layer.  However, the 

difference being that optical coherence length measures large-scale structure size in the 

streamwise direction rather than the cross-stream direction.  It was also shown that the 

large-scale coherent structures which dominate a free shear layer flow grow at a more 

rapid rate in the streamwise direction compared to the cross-stream direction [49].  It was 

found that the growth rates differed by a factor of approximately 3.18 in agreement with 

previous work [13, 20]. 

The numerical simulations performed for this research also revealed a dominant 

natural frequency present within the flow field at each downstream location.  These 

natural optical frequencies, related to optical coherence length, were shown to be directly 

related to the shear layer‟s most susceptible forcing frequency for a given location.  

Numerical simulations reported in this dissertation were also used to illustrate a shear 

layer‟s susceptibility to forcing.  Numerical findings corroborated experimental tests 
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conducted at the University of Notre Dame [39, 41] and provided a better understanding 

of a shear layer‟s range of effective forcing frequencies. 

The second and most significant contribution of this research was the 

development of an alternative AO controller that will replace the “person-in-the-loop” in 

Duffin‟s AO experiment [27].  Upon confirming the shear layer‟s periodic structure when 

forcing is applied, a PLL control strategy was proposed.  Through wavefront 

regularization, a small-aperture laser beam may be used as a reference signal with which 

to phase-lock.  The major achievement made by this approach is to effectively remove 

the need for a two-dimensional wavefront sensor thereby reducing the required system 

bandwidth.  Instead of the hundred fold update requirement presently constraining current 

AO systems, the issue now becomes one of phase-locking two one-dimensional jitter 

signals.  Another benefit of the alternative AO approach presented in this dissertation is 

the fact that time delays associated with individual mechanical components within the 

control loop will be accounted for during the phase-locking process. 

Basic control techniques were used to design a filter function for the PLL 

controller.  The PLL generates an output signal whose frequency and phase is 

synchronized with the shear layer‟s large-scale vortical structures.  The phase-locked 

output will be used to estimate a conjugate correction applied to the DM.  The next 

logical research phase, as a follow-on to this work, would be to investigate and develop a 

means of constructing the proper conjugate waveform based upon the PLL output signal.  

Once the conjugate correction is formed, the wavefront must be broken down into 

individual analog signals which will be sent through the DM amplifier directly to the DM 
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actuators themselves.  Recommendations for this process are outlined in the following 

section. 

7.2.  Recommendations 

The following recommendations are intended to help facilitate the completion of 

the proposed alternative AO controller.  In order to carry on the research presented 

throughout this dissertation and create a controller that will eventually be used in a high-

speed aircraft experiment, a series of wind tunnel tests must be performed in addition to 

the finalization of the controller circuitry.  This section includes some recommendations 

for those experimental tests as well as ways of handling harmonics which turn out to be 

more dominant in some of the higher speed shear layer cases. 

 

7.2.1.  High-Speed Shear Layer Experiments 

A series of high-speed shear layer experiments are recommended to aid in the 

completion and verification of the proposed alternative AO controller.  These 

experiments include both small-aperture beam testing and large-aperture beam testing.  

Before the AO controller is finalized, as per the recommendations found in Section 7.2.2, 

the PLL circuit should be tested under the actual high-speed shear layer conditions.  The 

sinusoidal function generator input (refer to Chapter 6) will be replaced by an actual 

shear layer jitter signal.  A small-aperture beam propagating perpendicularly through the 

regularized region of the forced shear layer will be measured using a position sensing 

device.  After appropriately filtered, the measured shear layer jitter signal will serve as 
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the PLL input.  An experimental overview of the setup and procedure is described in 

Section 6.2.  The purpose of this experiment will be to test the PLL circuit‟s ability to 

perform phase-locking under less than ideal conditions where the reference input is not a 

simple single-frequency sinusoid and may also contain additional noise.  A subsequent 

set of tests will then be performed using Notre Dame‟s fast steering mirror (tip/tilt mirror) 

to apply one-dimensional tip/tilt corrections to the shear layer‟s regularized jitter signal. 

The second set of experimental tests should be performed after the small-aperture 

testing has been completed and the alternative AO controller has been finalized.  In this 

high-speed shear layer experiment, real-time AO corrections will be applied to a large-

aperture beam while a small-aperture beam is used as the PLL‟s reference input.  

Wavefront measurements of the large-aperture beam will be recorded using a WFS with 

and without corrections as a means of scoring.  A general description of the wind tunnel 

testing facility and suggested experimental setup may be found in Section 6.3. 

 

7.2.2.  Finalizing the Alternative AO Controller 

The last step necessary to finalize the proposed alternative AO controller is to 

apply the appropriate conjugate correction to a DM based upon the PLL output signal.  

This waveform will ultimately be used to perform high-speed shear layer AO corrections 

to a large-aperture beam propagating through a regularized region of the flow field.  The 

PLL output will be used to create seven signals corresponding to each of the DM‟s seven 

rows of actuators.  Together the signals will represent a traveling sinusoidal waveform 

used to perform conjugate corrections.  As described in Section 5.4, a series of op amp 
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phase-lag circuits could provide a sufficient means of generating the seven input signals.  

In addition, it is recommended that digital options be explored.  This may include, but 

should not be limited to, digital phase-shifters and RF-Lambda phase shifters.  A digital 

phase-shift circuit may be a more reliable method of phase-lagging; however, the 

frequency of this particular application may prove to be limiting.  Once preliminary 

testing has been completed and a method of constructing the DM waveform has been 

selected, it must be integrated with the PLL circuit presented in this dissertation.  

Resistors, RA7 and RA8, in the op amp inverting amplifier shown in Fig. 5.1, must be 

adjusted to provide the appropriate scaling.  In addition to the amplitude estimation 

factor, the op amp circuit must account for both the DM amplifier‟s 3X amplification 

constant and the DM‟s conversion factor from input voltage to actuator stroke length (+/- 

10 Volts to +/- 4 µm), as well as any factor associated with the phase-lag circuitry chosen 

above. 

It should also be noted that the DM waveform is based upon both the free shear 

layer‟s convection velocity and the forcing frequency as described in Section 4.3.  In 

other words the structure of the conjugate correction changes as the wind tunnel 

conditions vary.  Thus, a process of constructing the DM wavefront that will adapt or 

adjust to testing conditions would be beneficial.  A second small aperture beam 

propagating through the test section a small distance downstream from the original shear 

layer jitter signal could provide a means of computing the convection velocity.  The two 

jitter signals could be cross-correlated with one another to recover the time delay between 

signals.  The convection velocity could then be computed according to Eq. (4.4) based 

upon the established time delay and the known horizontal spacing between beams.  
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Finally, the phase shift between adjacent rows of actuators could be computed according 

to Eq. (4.3) and Eq. (5.8). 

One final recommendation for the AO controller is to consider replacing the 

current resistors RA and RB, in the waveform generator circuit (refer to Fig. 5.5), with 

potentiometers.  This may allow the user a simpler means of adjusting the VCO center 

operating frequency for varying testing conditions. 

7.2.3.  Handling Harmonics within the Regularized Wavefronts 

Both numerical [16, 49] and experimental [27, 41] results seem to indicate that 

harmonics other than the fundamental forcing frequency become more dominant within 

the shear layer flow field at higher Mach numbers.  In lower speed cases, where forcing 

produces a regularized region primarily dominated by a single frequency, the alternative 

AO approach proposed in this dissertation should prove to be successful.  However, in 

some regularized shear layers, often occurring in higher Mach number flows, the 

wavefronts contain one or more harmonics largely contributing to its overall form.  In 

these cases, a different method of constructing the conjugate correction may be 

necessary.  Rather than a purely sinusoidal conjugate correction governed by a single 

frequency, a more complex waveform may be required. 

Harmonics that influence the optical wavefront‟s character will also affect the 

shape of the measured shear layer jitter signal itself.  This could render the alternative AO 

controller described in this dissertation less effective.  The current PLL circuit outputs a 

sinusoidal signal at a single frequency without any harmonics.  This signal is used to 

construct the conjugate correction based on a traveling sinusoid.  If unaltered, the absence 
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of harmonics may result in discrepancies between the conjugate correction and the shear 

layer‟s actual emerging wavefront.  If the regularized shear layer‟s large-scale structures 

contain dominant frequencies other than the fundamental forcing frequency, a more 

substantial amount of wavefront error results.  Therefore, it may become necessary to 

construct the DM‟s conjugate correction by different means in these cases.  One possible 

solution may be to construct the conjugate correction using a POD (proper orthogonal 

decomposition) analysis.  An investigation by Duffin [27] suggests that most of the 

energy contained within the flow is described by the first three modes.  Duffin also notes 

that the modal temporal coefficients, used to reconstruct the optical wavefronts, vary 

slightly from one realization to the next [27].  Therefore, reconstruction based on an 

average of several temporal coefficients for the first few modes may provide a good 

wavefront approximation.  It may also be possible to design a separate control loop 

assigned the task of continually updating the time averaged temporal coefficients via 

wavefront slope measurements.  In this case synchronization may still be achievable 

through a PLL control loop.  As mentioned above the wavefront reconstruction, or some 

variation of it, may be phase-locked with the forcing signal while a simple phase-lag 

circuit could be added to the controller if a constant phase error existed between signals. 
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APPENDIX A: 

SYSTEM IDENTIFICATION 

A.1.  Constructing an Uncertainty Model 

System identification, the process of constructing a model based on experimental 

data, measurements, and observations, is an important aspect of this research effort.  The 

alternative AO control system developed for this research consists of several different 

components including optical sensors, mirrors, electrical circuitry, etc.  It becomes 

necessary to model system response characteristics for some of the individual 

components in order to properly analyze and design the AO controller.  The system 

identification procedure described here is based on robust control theory.  A component 

is modeled using an unstructured multiplicative uncertainty model given by, 

)]()[()( sIsGsG o          (A.1) 

where Go represents the nominal plant and Δ the uncertainty associated with the actual 

plant, or model, G.  The average magnitude and phase response data is plotted versus 

input frequency, where each averaged data point contains an associated range of values 

corresponding to its uncertainty.  The nominal plant, Go, can then be determined by 

finding a transfer function which most closely models the average magnitude and phase 

response characteristics. 
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In order to access the uncertainty of both magnitude and phase in conjunction 

with one another, phasor notation must be used.  Therefore, a Nyquist plot is generated 

from the nominal plant‟s transfer function.  Uncertainty regions are constructed using the 

maximum and minimum values of both magnitude and phase from the experimentally-

measured data for a given input frequency.  Uncertainty circles are then constructed, 

centered along the nominal plant‟s Nyquist plot and encompassing each corresponding 

uncertainty region.  Given the multiplicative model expressed in Eq. (A.1), the radius of 

each circle corresponds to the magnitude of the nominal plant multiplied by the 

uncertainty as shown in Fig. A.1.  Therefore, the uncertainty may be determined by 

multiplying the radius values for each respective input frequency by the inverse of the 

nominal plant‟s magnitude.   

 

 
 

Figure A.1:  Example of a Nyquist plot given a multiplicative uncertainty 
model. 
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Over bounding the uncertainty with a stable proper rational transfer function is 

one method of modeling system uncertainty [28, 29].  In this approach, a multiplicative 

bound, W(s), is constructed such that 

     11 




W  ,                  (A.2) 

where the H norm is the supremum of the maximum singular value of a complex valued 

matrix, or in this case a single complex valued function.  This type of model accounts for 

uncertainties within the plant and provides a useful form for further robust control 

analysis [28, 29].  The following section uses the uncertainty model described here to 

model the DM Amplifier‟s frequency response. 

A.2.  DM Amplifier 

One specific electrical component often creating the primary bandwidth limitation 

within a circuit is the amplifier.  The DM Amplifier is one of the key components in 

Notre Dame‟s current AO system used to transfer the conjugate correction signal to the 

DM actuators.  It amplifies each input signal by three times its input voltage while 

maintaining a 70 volt bias (i.e., when the input is 0.0 Volts, the output is 70 Volts).  The 

amplifier accepts a maximum input signal of +/- 10 Volts, resulting in an output signal 

with maximum fluctuations of +/- 30 Volts centered on the bias.   

Frequency response measurements were taken to identify and construct a transfer 

function as well as determine corresponding bandwidth limitations for Notre Dame‟s DM 

amplifier using the uncertainty model discussed above in Section A.1.  Testing was 

conducted using sinusoidal input waveforms with amplitudes ranging from 1 Volt to 8 
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Volts.  Input frequencies ranged from 100 Hz to 20 kHz.  In order to test the amplifier 

under conditions similar to those experienced during normal operation, a 2.2 F capacitor 

was connected to the output of the amplifier, simulating the effects of an individual 

piezoelectric actuator.  The sinusoidal signals were input into the amplifier using a 

function generator and the output voltage was measured across the simulated actuator 

(capacitor) using a data acquisition system.  The input and output signals were acquired 

at a 500 kHz sampling rate.  Figure A.2 shows the ratio of output to input amplitude 

versus frequency for eight different input amplitudes.  Figure A.3 shows the 

corresponding phase delays encountered between the input and output signals over the 

same range of input amplitudes and frequencies.   

 

 

Figure A.2:  Experimental magnitude response for the DM Amplifier. 

Amplifier Magnitude Response

-20

-15

-10

-5

0

5

10

15

100 1000 10000 100000

Frequency (Hz)

2
0
lo

g
(M

)

+/- 1 Volt Peak to Peak +/- 2 Volt Peak to Peak

+/- 3 Volt Peak to Peak +/- 4 Volt Peak to Peak

+/- 5 Volt Peak to Peak +/- 6 Volt Peak to Peak

+/- 7 Volt Peak to Peak +/- 8 Volt Peak to Peak



 
 

182 

 

 

 

Figure A.3:  Experimental phase response for the DM Amplifier. 
 

 

As is evident from Fig. A.2 and Fig. A.3, the DM Amplifier exhibits linear 

characteristics to approximately 1 kHz, at which point both the magnitude and phase 

begin to significantly fall off for large input amplitudes.  Although the magnitude 

response seems to be linear for frequencies below 1 kHz, the linear negative slope in the 

Fig. A.3 phase plot between 100 Hz and 1 kHz suggests that the amplifier operates with a 

pure time delay. 

The experimental magnitude and phase data shown in Figs. A.2 and A.3 were 

averaged and a transfer function was fit to the set of nominal data points.  Figure A.4 
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displays the averaged magnitude and phase data (x‟s in Fig. A.4) for the DM amplifier 

along with the bode plot for the associated nominal plant (solid line in Fig. A.4) given by, 

  
)3000(2

)3000(22.3)(







s
sGo .       (A.3) 

A low pass filter with a cutoff frequency of 3 kHz was first determined to be the best fit 

for the averaged magnitude data.  The larger phase delays observed in the averaged data 

at higher frequencies was modeled using the uncertainty analysis described previously in 

Section A.1. 

 

 

Figure A.4:  Averaged magnitude and phase response data points for the 
DM Amplifier plotted against the bode diagram for its associated nominal 
plant. 
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The next step involved modeling the measurement uncertainty [28, 29].  Although 

the nominal plant, shown above in Fig. A.4, seems to model the averaged magnitude data 

points very well, there remains a certain amount of uncertainty between the averaged data 

points and actual system response.  Consequently, a Nyquist plot was generated for the 

nominal plant to access the frequency response of both the magnitude and phase data in 

combination.  Figure A.5 shows the Nyquist plot for the nominal plant, Go, given in Eq. 

(A.3). 

 

Figure A.5:  Nyquist plot for the nominal plant given in Eq. (A.3) (solid 
black curve) along with the uncertainty circles bounding the regions of 
magnitude and phase (dashed curves) for each input frequency. 

 
 

The range of experimental values associated with each data point for varying 

input amplitudes have been swept out by dotted lines.  Circles were constructed, centered 

along the nominal plant‟s Nyquist plot and encompassing the corresponding uncertainty 
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regions.  These circles represent the amount of uncertainty present at a given frequency 

for the DM Amplifier.  As described in the preceding section, the radius of each circle 

represents the magnitude of the nominal plant multiplied by the uncertainty at a given 

frequency, |Go(jω)Δ(jω)|.  Given the nominal plant described in Eq. (A.3) and the radius 

values of the uncertainty circles shown in Fig. A.5, the uncertainty of the amplifier was 

determined and plotted versus input frequency.   

 

 
Figure A.6:  Gain-magnitude plot of the stable rational transfer function, 
W(s), over bounding the uncertainty values obtained from Fig. A.5 (circle 
radii). 

 
 

Figure A.6 is a plot of the uncertainty values along with the gain-magnitude 

response for the following transfer function, 
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representing the multiplicative bound.  The DM Amplifier may therefore be 

conservatively modeled as,  

 )(1
)3000(2
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 ,               (A.5) 

where 
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APPENDIX B: 

MATHEMATICAL CODE FOR NUMERICAL ANALYSES 

A significant portion of the research conducted for this dissertation consisted of 

numerical analyses and computations.  A two-dimensional free shear layer was simulated 

using the DVM and WCM codes referred to in Chapter 2, Section 2.5.  The DVM and 

WCM fortran codes were developed by E. Fitzgerald, a former Notre Dame graduate 

student, and may be found in Ref. [12].  Several matlab codes were written as a part of 

this dissertation work in order to perform jitter computations and frequency analyses, as 

well as to evaluate control parameters and performance.  The following sections include 

several matlab codes central in the completion of this dissertation. 

B.1.  Beam Jitter and Spectral Analysis 

The mathematical code found in Section B.1.1 was used to compute jitter angles 

for several small-aperture beams propagating perpendicularly through a DVM/WCM free 

shear layer at various downstream locations.  A frequency analysis was then performed 

on the jitter signal at each downstream location.  The code found in Section B.1.2 

computes the PSD of each signal and then calculates a weighted average based on 

frequency.  The weighted average is used to determine optical natural frequency, a term 

introduced and defined in Chapter 3 of this dissertation (Eq. (3.5)). 
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B.1.1.  Jitter Computations 

%------------------------------------------------------------- 

%  Alice Nightingale 

%  May 24, 2005 

%  This program loads the OPD data and the Vortex position data 

%  to compute jitter angles versus time at several locations 

%  downstream from the shear layer's origin.  It also performs 

%  a PSD analysis of the jitter signal at a selected location. 

%------------------------------------------------------------- 

 

clear all; 

format long; 

 

dir='C:\Users\Guest2\Desktop\ANightingale\MatlabFiles\Uc_147A\unforced\

'; 

%dir='/home/anightingale/research/'; 

 

% Input parameters % 

uupper=261.04; % m/s 

ulower=34.7; % m/s 

r=0.01725;  % m - vortex core radius 

rk=3.5; 

udpv=(uupper+ulower)/2; 

dt=(r/rk)/udpv;     % time step 

 

first_file=2100; 

last_file=2799; 

j=1; 

 

for ifile=first_file:last_file; 

     

    if ifile>2099 && ifile<=2109 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_E0',int2str(ifile-2100),'.txt']); 

 

    elseif ifile>2109 && ifile<=2199 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_E',int2str(ifile-2100),'.txt']); 

         

    elseif ifile>2199 && ifile<=2209 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_F0',int2str(ifile-2200),'.txt']); 

 

    elseif ifile>2209 && ifile<=2299 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_F',int2str(ifile-2200),'.txt']); 

     

    elseif ifile>2299 && ifile<=2309 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_G0',int2str(ifile-2300),'.txt']); 

 

    elseif ifile>2309 && ifile<=2399 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_G',int2str(ifile-2300),'.txt']); 
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    elseif ifile>2399 && ifile<=2409 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_H0',int2str(ifile-2400),'.txt']); 

         

    elseif ifile>2409 && ifile<=2499 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_H',int2str(ifile-2400),'.txt']); 

             

    elseif ifile>2499 && ifile<=2509 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_I0',int2str(ifile-2500),'.txt']); 

         

    elseif ifile>2509 && ifile<=2599 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_I',int2str(ifile-2500),'.txt']); 

         

    elseif ifile>2599 && ifile<=2609 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_J0',int2str(ifile-2600),'.txt']); 

         

    elseif ifile>2609 && ifile<=2699 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_J',int2str(ifile-2600),'.txt']); 

                    

    elseif ifile>2699 && ifile<=2709 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_K0',int2str(ifile-2700),'.txt']); 

         

    elseif ifile>2709 && ifile<=2799 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_K',int2str(ifile-2700),'.txt']); 

    end 

 

    N=size(A,1); 

    OPD=A(:,2); 

    x=A(:,1); 

    dx=x(2)-x(1); 

            

    % Interpolating between data points 

    h=dx/10; 

    xx=x(1):h:x(N); 

    opd_fit=spline(x,OPD,xx); 

    

    [r,NN]=size(opd_fit); 

     

    % Jitter Calculation % 

    for k = 1:(NN-1) 

        Theta(j,k) = atan(-(opd_fit(k+1)-opd_fit(k))/h); 

        dist(k) = (xx(k+1)+xx(k))/2; 

    end 

     

    time(j)=dt*j;  

    j=j+1; 

end 
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save(['/afs/nd.edu/user22/aduesing/research/Jitter_Data/r01725m_Uc147_8

7/x1_120cm/Jitter_unf.mat'],'time','Theta'); 

B.1.2.  Power Spectral Density Analysis of Jitter Signals 

%-------------------------------------------------------% 

%  Alice Nightingale                                    % 

%  August 6, 2004                                       % 

%  The following program uses Discrete Fourier          % 

%  Transform to perform a spectrum analysis for the     % 

%  jitter angle output developed from the DVM code and  % 

%  plots the optical natural frequency versus downstream% 

%  distance.                                            % 

%-------------------------------------------------------% 

 

clear all; 

format long; 

 

%dir='H:\research\Jitter_Data\'; 

dir='/afs/nd.edu/user22/aduesing/research/Jitter_Data/'; 

 

load([dir,'Unforced_sl/r01725m_Uc147_87/x1_120cm/Jitter_unf.mat']); 

 

% Input parameters % 

uupper=261.04; % m/s 

ulower=34.7;  % m/s 

r=0.01725;     % m - vortex core radius 

rk=3.5; 

udpv=(uupper+ulower)/2; % Convective velocity 

dt=(r/rk)/udpv;         % Time step 

 

for j=1:19              % Selecting data at specified position from the 

splitter plate 

 

    [N,p]=size(Theta);      % Number of data points, number of columns 

(distance from splitter plate) 

    T=time(N)-time(1);      % Total sampling time 

    y1=Theta(:,j);           

 

    ndp=512; 

    N_interval=37; 

    %N_interval=25;          % Number of time intervals % 

    %ndp=(N)/N_interval;     % Number of data points per interval % 

 

    % Loop to determine the mean average fft magnitude curves % 

    for i=1:N_interval*2-1 

     

        y_interval=y1((i-1)*ndp/2+1:(i+1)*ndp/2); 

        time_interval=time((i-1)*ndp/2+1:(i+1)*ndp/2); 

        [NN,pp]=size(y_interval); 

        TT=time_interval(NN)-time_interval(1); 

        Y_fft=fft(y_interval); 
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        Y_fft(1)=[]; 

        P(:,i)=((Y_fft(1:(NN/2)-1)).*conj(Y_fft(1:(NN/2)-1))/((NN/2)-

1));      

    end 

 

    mean_P=mean(P'); 

    freq=(1/TT)*(1:(NN/2)-1);     

 

    % Calculating a weighted average natural frequency at each x 

location % 

    d0=0.215;                   % Starting distance from splitter plate 

for calculations 

    d(j)=d0 + 0.04*(j-1);       % Locations away from splitter plate 

where numerical beam jitter calculations take place 

 

    weighted_freq=mean_P.*freq; 

    num=sum(weighted_freq); 

    den=sum(mean_P); 

    f_avg(j)=num/den; 

end 

 

% Plotting the average natural frequency squared % 

 

figure('PaperUnits','centimeter','PaperPosition',[0 0 10 10]); 

%axes('XMinorTick','on','YMinorTick','on'); 

plot(d,udpv./f_avg,'ko'); 

title('Progression of Dominant Natural frequency'); 

xlabel('Distance from splitter plate (m)'); 

ylabel('\Lambda_{n} (m)'); 

xlim([0,1]);ylim([0,0.4]); 

legend('\delta_i /2 = 17.25 mm') 

str1(1) = {'\Delta \Lambda_n = 0.42'}; 

str1(2) = {'x-x_o'}; 

text(0.7,0.1,str1); 

 

%print -djpeg linear_nat_freq 

B.2.  Compensator Analysis 

 The control parameters which compose the third order PLL controller discussed 

throughout this dissertation were selected based upon four main measures of merit; phase 

margin, settling time, percent overshoot, and integral error.  The matlab code used in 

these analyses may be found below.  The first code, shown in Section B.2.1, determines 

phase margin based upon varying PLL control parameters.  The codes found in Section 

B.2.2 and B.2.3, were used to assess response characteristics given a step and ramp input, 
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respectively.  Finally, Section B.2.4 contains the matlab code used to compute the 

integral of time multiplied by absolute error (ITAE) and the integral of the square of the 

error (ISE) for varying control parameters. 

B.2.1.  Phase Margin 

%----------------------------- 

%  Alice Nightingale 

%  Sept. 13, 2009 

%  Phase Margin investigation 

%  for a 3rd order PLL design 

%  while varying the minimum 

%  phase zero placement. 

%------------------------------ 

 

clear all; 

format long; 

 

% Low-pass filter cutoff frequency based on input frequency 

wp = 500; 

 

% Values for K prime (K_PD * K_LF * K_VCO) 

Kpr = [10e-4, 10e-2, 10e0, 10e2, 10e4, 10e6]; 

 

% Varying minimum phase zero placement 

wz = logspace(-8,6,149); 

 

figure(1) 

% Phase Margin Calculation for varying zero locations 

for ii = 1:length(Kpr) 

     

    for jj = 1:length(wz) 

         

        % Open-Loop Transfer function 

        GH_num=[Kpr(ii)*wp Kpr(ii)*wp*wz(jj)]; 

        GH_den=[wz(jj) wz(jj)*wp 0 0]; 

        GH=tf(GH_num,GH_den);                   

        [Gm(ii,jj),Pm(ii,jj),Wgm(ii,jj),Wpm(ii,jj)] = margin(GH); 

         

%         wu = Kpr(ii)/wz(jj); 

%         if wz(jj) > Kpr(ii) 

%             wu = Kpr(ii)^(0.5); 

%         end 

%          

%         PM(ii,jj) = atan((-wu*(wz(jj) - wp))/(wp*wz(jj) + wu^2)); 

                

    end 

 

    % Plotting the Phase Margin versus minimum phase zero placement for 
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    % varying K' values 

     

    semilogx(wz, Pm(ii,:)) 

    xlabel('\omega_z'),ylabel('Phase Margin (deg)'); 

    xlim([wz(1),wz(length(wz))]); 

    grid on; 

    hold on; 

  

end 

 

%save('PhaseMargin.mat','Kpr','wz','PM'); 

B.2.2.  Settling Time and Percent Overshoot Given a Step Input 

%--------------------------------------- 

%  Alice Nightingale 

%  Sept. 15, 2009 

%  This file computes the settling time  

%  and percent overshoot given a step  

%  input for a range of K' values and  

%  omega_z values. 

%---------------------------------------- 

 

clear all; 

format long; 

 

% Low-pass filter cutoff frequency based on input frequency 

wp = 500; 

 

% Values for K prime (K_PD * K_LF * K_VCO) 

Kpr = [0.0001, 0.01, 1, 100, 10000, 1000000]; 

 

% Varying minimum phase zero placement 

wz = logspace(-8,6,83); 

 

% Defining time intervals 

dt = 0.0001; 

Tfinal = 10; 

time=[0:dt:Tfinal]'; 

 

% Defining settling time limit (within 0.1% of the final value) 

limit = 0.01; 

 

figure(1) 

%Calculating step and ramp responses 

for ii = 1:length(Kpr) 

     

    for jj = 1:length(wz) 

        

        % Transfer functions 

        GH_num=[Kpr(ii)*wp Kpr(ii)*wp*wz(jj)]; 

        GH_den=[wz(jj) wz(jj)*wp 0 0]; 
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        GH=tf(GH_num,GH_den);           % open-loop Transfer function 

        CL_sys=feedback(GH,1);          % closed-loop Transfer function 

         

        u_step = ones(size(time));          % Step Input 

        Y1 = step(CL_sys,time);             % Step Response 

         

        % Computing percent overshoot 

        PO(ii,jj) = ((max(Y1) - 1)/1)*100;  % Percent overshoot 

        if max(Y1) < 1 

            PO(ii,jj) = 0; 

        end 

         

        % Computing Settling Time 

        e_step = Y1 - u_step;               % Step response error 

        Test_step = abs(e_step) <= limit*ones(size(time)); 

         

        stop_test1 = 0; 

        if sum(Test_step) ~= 0 

             

            for kk = 1:length(time) 

             

                Flag = length(time)+ 1 - kk; 

             

                if sum(Test_step(kk:length(time)))==Flag&&stop_test1==0 

                    Ts_step(ii,jj) = time(kk); 

                    stop_test1 = 1;    

                end    

            end     

        end 

         

        if stop_test1 == 0 

            Ts_step(ii,jj) = Tfinal*10; 

        end    

    end 

     

    semilogx(wz, Ts_step(ii,:)); 

    xlabel('\omega_z'),ylabel('Settling Time (sec)'); 

    xlim([wz(1),wz(length(wz))]); 

    ylim([0, Tfinal]); 

    grid on; 

    hold on; 

end 

 

%save('SettlingTime_step.mat','Kpr','wz','Ts_step'); 

B.2.3.  Settling Time and Peak Value Given a Ramp Input 

%---------------------------------------------- 

% Alice Nightingale 

% Sept. 15 2009 

% Computes settling time given a ramp input 

%---------------------------------------------- 
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clear all; 

format long; 

 

% Low-pass filter cutoff frequency based on input frequency 

wp = 500; 

 

%Kpr = [10e-4, 10e-2, 10e-1, 10e0, 10e1, 10e2, 10e4, 10e6]; 

%wz = [10e-8, 40e-8, 10e-7, 40e-7, 10e-6, 40e-6, 10e-5, 40e-5, 10e-4, 

       40e-4, 10e-3, 40e-3, 10e-2, 40e-2, 10e-1, 40e-1, 10e0, 40e0,         

       10e1, 40e1,10e2, 10e3, 10e4, 10e5, 10e6]; 

 

Kpr = 10e2; 

wz = 20e0; 

%wz = [10e-1, 20e-1, 30e-1, 40e-1 50e-1, 60e-1, 70e-1, 80e-1, 90e-1]; 

 

 

% Defining time intervals 

dt = 0.00001; 

Tfinal = 0.5; 

time=[0:dt:Tfinal]'; 

 

% Defining settling time limit (within 0.1% of the final value) 

limit = 0.001; 

 

for ii = 1:length(wz) 

     

    %Calculating step and ramp responses 

    % Transfer functions 

    GH_num=[Kpr*wp Kpr*wp*wz(ii)]; 

    GH_den=[wz(ii) wz(ii)*wp 0 0]; 

 

    GH=tf(GH_num,GH_den);               % open-loop Transfer function 

    CL_sys=feedback(GH,1);              % closed-loop Transfer function 

    

    u_ramp=time;                        % Ramp Input 

    [Y2,T2]=lsim(CL_sys,u_ramp,time);   % Ramp Response 

        

    % Computing Settling Time 

    e_ramp = Y2 - u_ramp;               % Ramp response error 

    Test_ramp = abs(e_ramp) <= limit*ones(size(time)); 

     

    % Computing peak value of error 

    PVe(ii) = max(abs(e_ramp));         % Peak Value of error 

          

    for kk = 1:length(time) 

             

        Flag = length(time)+ 1 - kk; 

             

        if sum(Test_ramp(kk:length(time))) == Flag 

            Ts_ramp(ii) = time(kk); 

            break;    

        end          

    end 

end 
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plot(time, e_ramp); 

B.2.4.  Integral Error 

%----------------------------------- 

%  Alice Nightingale 

%  Sept. 15, 2009 

%  This file computes the ITAE index  

%  and ISE index given a step input. 

%----------------------------------- 

 

clear all; 

format long; 

 

% Low-pass filter cutoff frequency based on input frequency 

wp = 500; 

 

% Values for K prime (K_PD * K_LF * K_VCO) 

%Kpr = [0.0001, 0.01, 1, 100, 10000, 1000000]; 

Kpr = 0.0001; 

 

% Varying minimum phase zero placement 

%wz = logspace(-8,6,70); 

wz = [10e-7, 30e-7, 10e-6, 30e-6, 10e-5]; 

%wz = [ 30e-5, 10e-4, 30e-4, 10e-3, 30e-3, 10e-2, 30e-2]; 

 

% Defining time intervals 

dt = 0.000001; 

Tfinal = 10; 

time=[0:dt:Tfinal]'; 

 

%Calculating step and ramp responses 

for ii = 1:length(Kpr) 

     

    for jj = 1:length(wz) 

         

        % Transfer functions 

        GH_num=[Kpr(ii)*wp Kpr(ii)*wp*wz(jj)]; 

        GH_den=[wz(jj) wz(jj)*wp 0 0]; 

 

        GH=tf(GH_num,GH_den);           % open-loop Transfer function 

        CL_sys=feedback(GH,1);          % closed-loop Transfer function 

         

        u_step = ones(size(time));          % Step Input 

        Y1 = step(CL_sys,time);             % Step Response 

         

        % Computing Integral errors given a step input 

        e_step = Y1 - u_step;               % Step response error   

        ITAE_step(ii,jj) = dt*sum(time.*abs(e_step)); % ITAE index 

        ISE_step(ii,jj) = dt*sum(e_step.^2);          % ISE index 

         

    end 

end 
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% Plotting the ITAE index 

figure(2) 

for mm = 1:length(Kpr) 

     

    loglog(wz, ITAE_step(mm,:)); 

    xlabel('\omega_z'),ylabel('ITAE index'); 

    xlim([wz(1),wz(length(wz))]); 

    grid on; 

    hold on; 

    

end 

 

% Plotting the ISE index 

figure(3) 

for mm = 1:length(Kpr) 

     

    loglog(wz, ISE_step(mm,:)); 

    xlabel('\omega_z'),ylabel('ISE index'); 

    xlim([wz(1),wz(length(wz))]); 

    grid on; 

    hold on; 

    

end 

 

save('ITAE_Step.mat','Kpr','wz','ITAE_step'); 

save('ISE_Step.mat','Kpr','wz','ISE_step'); 

B.3.  Finalized PLL Analysis 

 
 The following matlab code creates a bode diagram, root locus, step and ramp 

response plots for the third order PLL controller designed and described in this 

dissertation. 

 

%--------------------------------------- 

%  Alice Nightingale 

%  Sept. 14, 2009 

%  This file plots the root locus, gain  

%  and phase margin, step response and  

%  ramp response for a specific 3rd order 

%  PLL controller. 

%---------------------------------------- 

 

clear all; 
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format long; 

 

% Check Phase Margin Calculation by evaluating system's bode plot for 

% various omega_z values. 

Kpr = 10000;     % 10e2 = 10^3 = 1000 

wp=500; 

wz = 55;        % 20e0 = 2*10^1 = 20 

 

% Transfer function 

GH_num=[Kpr*wp Kpr*wp*wz]; 

GH_den=[wz wz*wp 0 0]; 

GH=tf(GH_num,GH_den)            % Open-loop TF 

CL_sys=feedback(GH,1);          % Closed-loop TF 

 

% figure(5) 

% rlocus(GH) 

 

figure('PaperUnits','centimeter','PaperPosition',[0 0 8 4]) 

margin(GH) 

grid on; 

 

time1=[0:0.001:0.5]; 

u1=ones(size(time1)); 

[Y1,T1]=lsim(CL_sys,u1,time1); 

error1 = Y1 - u1'; 

 

figure(7) 

subplot(2,1,1),plot(time1,error1,'r'); 

xlabel('Time (sec)'),ylabel('Step Response Error'); 

grid on; 

 

time2=[0:0.001:0.5]; 

u2=10*time2; 

[Y2,T2]=lsim(CL_sys,u2,time2); 

error2 = Y2 - u2'; 

subplot(2,1,2),plot(time2,error2,'r'); 

%ylim([-0.01, 0.01]); 

xlabel('Time (sec)'),ylabel('Ramp Response Error'); 

grid on; 

 

% figure(8) 

% bode(CL_sys) 

% grid on; 
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B.4.  AO Controller Simulations 

 The following matlab code performs conjugate corrections to a beam emerging 

from the DVM/WCM free shear layer by numerically approximating the PLL controller 

designed for this dissertation.   

 

%--------------------------------------------------------------- 

%  Alice Nightingale 

%  June 22, 2004 

%  This program simulates a closed loop controller that adjusts 

%  the amplitude and phase of a sinusoidal wave with the goal of 

%  syncing the sine wave to the numerical OPD waveform. 

%--------------------------------------------------------------- 

 

clear all; 

format long; 

 

% dir='/afs/nd.edu/user22/aduesing/research/PLL/Uc_147B/1200Hz/'; 

dir='C:\Users\Guest2\Desktop\ANightingale\MatlabFiles\Uc_147A\700Hz\'; 

 

% Input parameters % 

%  uupper=258.4; % m/s 

%  ulower=40.8; % m/s 

 

% Uc_117B       

% uupper=180; 

% ulower=55; 

 

% Uc_117_5C      

% uupper=210; 

% ulower=25; 

 

% Uc_147A                       

 uupper=261.04; % m/s 

 ulower=34.7; % m/s 

 

% Uc_147_87B                   

% uupper=231;     % m/s 

% ulower=64.74;   % m/s 

 

r=0.01725;  % m - vortex core radius 

rk=3.5; 

udpv=(uupper+ulower)/2; 

dt=(r/rk)/udpv;     % time step 

 

% Choose position between 0.25m and 0.94m % 

location = 0.38;    % meters 

aperture = 0.12;    % meters 

lambda=0.633e-6;    % meters 
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Length=1;           % distance between position sensing device and 

shear layer (meters) 

L=101; 

t_final=0.1; 

degree=4;           % degree of polynomial fit 

 

% Initial waveform parameters % 

A_DM(1) = 0.5e-06; 

Ff = 700;                   % wave speed 

omega_sl = 2*pi*Ff; 

k_sl = (2*pi*Ff)/udpv;       % wave freq 

phase(1) = 0; 

delta_phi(1)=0; 

Period = round((1/Ff)/dt); 

 

% Amplitude Feedforward control parameters % 

RC1 = 0.0055;   % RC circuit used to determine amplitude of full 

rectified wave  

RC2 = 0.0085; 

Ka = 0.2;       % Amplitude proportional gain constant 

 

% Third order PLL control parameters 

RC=0.002; 

Ko=1000; 

R1C=0.026; 

R2C=0.011; 

 

Kp=Ko*R2C/R1C; 

Ki=Ko/R1C; 

 

Th0(1)=0; 

Th0_dot(1)=0; 

 

A_sl(1) = A_DM(1); 

Sm_out(1) = 0; 

TT2(1)=0; 

tau=1/(4*Ff*dt); 

shift=round(tau); 

dtau=tau-shift; 

 

% % Transvers coordinates of the sourse 

% xs=0; 

% ys=0; 

% Ro=10000;     % Distance from source to aperture 

%  

% % Grid points in the aperture plane (must be same length as 

OPD_ap2(j,:)) 

% N_OPDap=91; 

% xy_pr_o=0.09; 

% dx_pr=xy_pr_o/((N_OPDap-1)/2); 

% dy_pr=dx_pr; 

% [x_pr,y_pr]=meshgrid([-xy_pr_o:dx_pr:xy_pr_o],[-

xy_pr_o:dy_pr:xy_pr_o]); 

%  

% % Grid points in the observation plane 
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% x_ob=-20:0.5:20; 

% y_ob=-20:0.5:20; 

% [X,Y]=meshgrid(x_ob,y_ob); 

% Ro_pr=2000000;   % Distance from aperture to observation plane 

%  

% % Derived Parameters % 

% Nx=size(X,2); 

% Ny=size(Y,2); 

% k_laser=(2*pi)/lambda; 

%  

% alpha=-xs/Ro;       % Direction cosine from source to aperture 

% beta=-ys/Ro;        % Direction cosine from source to aperture 

% alpha_pr=x_ob/Ro_pr;   % Dir. cosine from ap. to observation plane 

% beta_pr=y_ob/Ro_pr;    % Dir. cosine from ap. to observation plane 

%  

% u=(alpha-alpha_pr); 

% v=(beta-beta_pr); 

%  

% % Calculating the field numerically % 

% Eo=exp(-i*k_laser*Ro)/Ro; 

%  

% % Defining the Trasmission Function at the aperture% 

% radius=0.05; 

%  

% for jj=1:size(x_pr,2) 

%     for kk=1:size(y_pr,2) 

%         if abs(x_pr(jj,kk))>radius 

%             tr(jj,kk)=0; 

%         elseif y_pr(jj,kk)>=0 && y_pr(jj,kk)<=sqrt(radius^2-

x_pr(jj,kk)^2) 

%             tr(jj,kk)=1; 

%         elseif y_pr(jj,kk)<0 && y_pr(jj,kk)>=-sqrt(radius^2-

x_pr(jj,kk)^2) 

%             tr(jj,kk)=1;  

%         else 

%             tr(jj,kk)=0; 

%         end 

%     end 

% end 

 

f_file=1616; 

l_file=2799; 

j=1; 

m=0; 

 

for ifile=f_file:l_file; 

     

    if ifile<=999 

        % % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_',int2str(ifile),'.txt']); 

         

    elseif ifile>999 && ifile<=1009 

        % % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_:0',int2str(ifile-1000),'.txt']); 
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    elseif ifile>1009 && ifile<=1099 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_:',int2str(ifile-1000),'.txt']); 

 

    elseif ifile>1099 && ifile<=1109 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_;0',int2str(ifile-1100),'.txt']); 

 

    elseif ifile>1109 && ifile<=1199 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_;',int2str(ifile-1100),'.txt']); 

 

    elseif ifile>1199 && ifile<=1209 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_<0',int2str(ifile-1200),'.txt']); 

 

    elseif ifile>1209 && ifile<=1299 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_<',int2str(ifile-1200),'.txt']); 

 

    elseif ifile>1299 && ifile<=1309 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_=0',int2str(ifile-1300),'.txt']); 

 

    elseif ifile>1309 && ifile<=1399 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_=',int2str(ifile-1300),'.txt']); 

 

    elseif ifile>1399 && ifile<=1409 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_ee0',int2str(ifile-

1400),'.txt']); 

 

    elseif ifile>1409 && ifile<=1499 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_ee',int2str(ifile-1400),'.txt']); 

  

    elseif ifile>1499 && ifile<=1509 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_ff0',int2str(ifile-

1500),'.txt']); 

 

    elseif ifile>1509 && ifile<=1599 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_ff',int2str(ifile-1500),'.txt']); 

 

    elseif ifile>1599 && ifile<=1609 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_@0',int2str(ifile-1600),'.txt']); 

 

    elseif ifile>1609 && ifile<=1699 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_@',int2str(ifile-1600),'.txt']); 

 

    elseif ifile>1699 && ifile<=1709 
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        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_A0',int2str(ifile-1700),'.txt']); 

 

    elseif ifile>1709 && ifile<=1799 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_A',int2str(ifile-1700),'.txt']); 

 

    elseif ifile>1799 && ifile<=1809 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_B0',int2str(ifile-1800),'.txt']); 

 

    elseif ifile>1809 && ifile<=1899 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_B',int2str(ifile-1800),'.txt']); 

 

    elseif ifile>1899 && ifile<=1909 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_C0',int2str(ifile-1900),'.txt']); 

 

    elseif ifile>1909 && ifile<=1999 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_C',int2str(ifile-1900),'.txt']); 

 

    elseif ifile>1999 && ifile<=2009 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_D0',int2str(ifile-2000),'.txt']); 

 

    elseif ifile>2009 && ifile<=2099 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_D',int2str(ifile-2000),'.txt']); 

 

    elseif ifile>2099 && ifile<=2109 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_E0',int2str(ifile-2100),'.txt']); 

 

    elseif ifile>2109 && ifile<=2199 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_E',int2str(ifile-2100),'.txt']); 

         

    elseif ifile>2199 && ifile<=2209 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_F0',int2str(ifile-2200),'.txt']); 

 

    elseif ifile>2209 && ifile<=2299 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_F',int2str(ifile-2200),'.txt']); 

         

    elseif ifile>2299 && ifile<=2309 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_G0',int2str(ifile-2300),'.txt']); 

 

    elseif ifile>2309 && ifile<=2399 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_G',int2str(ifile-2300),'.txt']); 
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    elseif ifile>2399 && ifile<=2409 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_H0',int2str(ifile-2400),'.txt']); 

         

    elseif ifile>2409 && ifile<=2499 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_H',int2str(ifile-2400),'.txt']); 

         

    elseif ifile>2499 && ifile<=2509 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_I0',int2str(ifile-2500),'.txt']); 

         

    elseif ifile>2509 && ifile<=2599 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_I',int2str(ifile-2500),'.txt']); 

         

    elseif ifile>2599 && ifile<=2609 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_J0',int2str(ifile-2600),'.txt']); 

         

    elseif ifile>2609 && ifile<=2699 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_J',int2str(ifile-2600),'.txt']); 

         

    elseif ifile>2699 && ifile<=2709 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_K0',int2str(ifile-2700),'.txt']); 

         

    elseif ifile>2709 && ifile<=2799 

        % Vort=load([dir,'Vortmap_',int2str(ifile),'.txt']); 

        A=load([dir,'OPDcmp4PVT0_Hess_K',int2str(ifile-2700),'.txt']); 

         

    end 

     

    N=size(A,1); 

    OPD=A(:,2); 

    x=A(:,1); 

    dx=x(2)-x(1); 

    time(j)=dt*j; 

     

    % Interpolating between data points % 

    h=0.001; 

    xx=x(1):h:x(N); 

    yy=spline(x,OPD,xx); 

    position=round((location-xx(1))/h + 1); 

    loc1 = position - round((aperture/2)/h); 

    loc2 = position + round((aperture/2)/h); 

    N_aperture = loc2 - loc1; 

     

    OPD_ap(j,:) = yy(loc1:loc2); 

    OPD_ap(j,:) = OPD_ap(j,:) - mean(OPD_ap(j,:)); 

    xx_ap = xx(loc1:loc2); 

    OPD_ideal=0; 

     

    % Functions driving each of the 7 rows of actuators (Predicting the  
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    % optical wavefront) 

    time(j)=(j-1)*dt; 

    OPD_DM(j,:) = A_DM(j)*sin(k_sl.*xx_ap-omega_sl*time(j) - phase(j)); 

    x_DM = [xx_ap(1),xx_ap(1+N_aperture/6),xx_ap(1+2*N_aperture/6), 

xx_ap(1+3*N_aperture/6), xx_ap(1+4*N_aperture/6), 

xx_ap(1+5*N_aperture/6), xx_ap(1+6*N_aperture/6)]; 

 

%     f1 = A_DM(j)*sin(k_sl*x_DM(1) - omega_sl*time(j) - phase(j)); 

%     f2 = A_DM(j)*sin(k_sl*x_DM(2) - omega_sl*time(j) - phase(j)); 

%     f3 = A_DM(j)*sin(k_sl*x_DM(3) - omega_sl*time(j) - phase(j)); 

%     f4 = A_DM(j)*sin(k_sl*x_DM(4) - omega_sl*time(j) - phase(j)); 

%     f5 = A_DM(j)*sin(k_sl*x_DM(5) - omega_sl*time(j) - phase(j)); 

%     f6 = A_DM(j)*sin(k_sl*x_DM(6) - omega_sl*time(j) - phase(j)); 

%     f7 = A_DM(j)*sin(k_sl*x_DM(7) - omega_sl*time(j) - phase(j)); 

%      

%     % Actuator Positions % 

%     act1x = [x_DM(1), x_DM(1)]; 

%     act1y = [-1e-06, f1]; 

%     act2x = [x_DM(2), x_DM(2)]; 

%     act2y = [-1e-06, f2]; 

%     act3x = [x_DM(3), x_DM(3)]; 

%     act3y = [-1e-06, f3]; 

%     act4x = [x_DM(4), x_DM(4)]; 

%     act4y = [-1e-06, f4]; 

%     act5x = [x_DM(5), x_DM(5)]; 

%     act5y = [-1e-06, f5]; 

%     act6x = [x_DM(6), x_DM(6)]; 

%     act6y = [-1e-06, f6]; 

%     act7x = [x_DM(7), x_DM(7)]; 

%     act7y = [-1e-06, f7]; 

%      

%     % Shape of the deformable mirror % 

%     f = [f1,f2,f3,f4,f5,f6,f7]; 

%     coef = polyfit(x_DM,f,degree); 

%     p = polyval(coef,xx_ap); 

     

    % Jitter and OPD error % 

    %OPD_error(j,:) = OPD_ap2(j,:) - p; 

    OPD_error(j,:) = OPD_ap(j,:) - OPD_DM(j,:); 

    Jitt_error(j) = -atan(((OPD_error(j,N_aperture/2+2)-

OPD_error(j,N_aperture/2+1))/h + (OPD_error(j,N_aperture/2+1)-

OPD_error(j,N_aperture/2))/h)/2);         

 

    % Measurement from the small aperture position sensing device 

    Jitt_sl(j) = -atan(((OPD_ap(j,N_aperture/2+2)-

OPD_ap(j,N_aperture/2+1))/h + (OPD_ap(j,N_aperture/2+1)-

OPD_ap(j,N_aperture/2))/h)/2); 

    Pos_sen_device = Length*Jitt_sl(j); 

    Jitt_DM(j) = -Jitt_error(j) + Jitt_sl(j); 

     

    % Calculating the amplitude of the actual OPD waveform 

    ThAmp(j) = -Jitt_sl(j)/k_sl; 

    A_fwr(j) = abs(ThAmp(j)); 

        

    if j <= 2*tau 
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        A_DM(j+1) = A_DM(j); 

        A_sl(j+1) = A_sl(j); 

        phase(j+1) = phase(j); 

         

    else 

         

        m=m+1; 

         

        % Applying phase shift to Jitt_sl and performing Signal mixing 

   % to determine phase difference 

        Jitt_ps(m) = Jitt_sl(j-shift) + sign(dtau)*dtau*(Jitt_sl(j-

(shift+sign(dtau))) - Jitt_sl(j-shift)); 

        Sm(m) = Jitt_ps(m)*Jitt_DM(j)/(k_sl^2); 

         

        % Frequency content of mixing signal % 

        [pp,NN]=size(Sm); 

        TT(m)=(m-1)*dt; 

        Y_fft=fft(Sm); 

        PSD=(Y_fft.*conj(Y_fft))/NN; 

        freq=(1/TT(m))*(0:ceil(NN/2)-1); 

         

        % Rectifier and Capacitor circuit 

        A_sl(j+1) = A_sl(j) + dt*(-A_sl(j)/RC2 + A_fwr(j)/RC1); 

        delta_A = (A_sl(j) - A_DM(j)); 

        A_DM(j+1) = A_DM(j) + Ka*delta_A; 

                 

        % Simulating low-pass filter for frequencies above 200 Hz 

        Sm_out(m+1) = Sm_out(m) + dt*(-Sm_out(m)/RC + Sm(m)/RC); 

        delta_phi(m) = real(asin(2*Sm_out(m+1)/(A_DM(j+1)*A_sl(j+1)))); 

         

        % Simulating loop filter and VCO integrator (non-minimum phase  

  % zero and two zero poles) 

        if m==1 

            delta_phi_dot(m) = 0; 

        else 

            delta_phi_dot(m) = (delta_phi(m) - delta_phi(m-1))/dt; 

        end 

         

        Th0_dot(m+1) = Th0_dot(m) + dt*((Ko/R1C)*delta_phi(m) + 

(Ko*R2C/R1C)*delta_phi_dot(m)); 

        Th0(m+1) = Th0(m) + dt*Th0_dot(m); 

        phase(j+1) = Th0(m+1); 

         

       % Frequency content of filtered mixing signal % 

       [pp2,NN2]=size(Sm_out); 

       TT2(m+1)=m*dt; 

       Y_fft2=fft(Sm_out); 

       PSD2=(Y_fft2.*conj(Y_fft2))/NN2; 

       freq2=(1/TT2(m+1))*(0:ceil(NN2/2)-1); 

         

    end 

         

    % Removing Tilt from OPD at each time step 

    poly=polyfit(xx_ap,OPD_error(j,:),1); 
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    linear_fit=poly(1)*xx_ap+poly(2); 

    OPD_tilt_removed = OPD_error(j,:) - linear_fit; 

         

    % Calculating the Strehl ratio at each time step % 

        th=linspace(-6*lambda/aperture,6*lambda/aperture,L); 

    for k=1:size(th,2) 

        theta=th(k); 

        

Intens(k)=(abs(sum(exp(2*pi*i*((OPD_error(j,:)+theta*xx_ap)/lambda))))/

size(xx_ap,2))^2; 

        

Intens_orig(k)=(abs(sum(exp(2*pi*i*((OPD_ap(j,:)+theta*xx_ap)/lambda)))

)/size(xx_ap,2))^2; 

        

Intens_tr(k)=(abs(sum(exp(2*pi*i*((OPD_tilt_removed+theta*xx_ap)/lambda

))))/size(xx_ap,2))^2; 

        

Intens_ideal(k)=(abs(sum(exp(2*pi*i*((OPD_ideal+theta*xx_ap)/lambda))))

/size(xx_ap,2))^2; 

    end; 

 

    psuedo_St(j)=max(Intens); 

    St(j)=Intens((L+1)/2); 

    mean_st=mean(St); 

     

    psuedo_St_tr(j) = max(Intens_tr); 

    St_tr(j) = Intens_tr((L+1)/2); 

    mean_st_tr=mean(St_tr);     

     

    St_orig(j) = Intens_orig((L+1)/2); 

     

    if psuedo_St(j)>1 

        j 

    end 

        

    rmsOPD(j) = sqrt(mean(OPD_error(j,:).^2)); 

     

%     figure(j) 

%     plot(xx_ap,OPD_error(j,:),'r'); 

%     grid on; 

%     ylim([-1e-6, 1e-6]); 

%     xlim([xx(loc1),xx(loc2)]); 

%     title('Wavefront Sensor'); 

%     xlabel('x (m)'),ylabel('OPD error (m)'); 

 

% % Movie 1   

%     handle=figure(1) 

%     subplot(2,1,1),plot(time,phase(1:j).*(180/pi),'m',time,phi_act, 

'k--'); 

%     grid on; 

%     xlim([0,t_final]); 

%     ylim([-180,90]); 

%     %title('Phase Control'); 

%     xlabel('Time (seconds)'),ylabel('Phase (degrees)'); 

%      
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%     subplot(2,1,2),plot(time,St,'b'); 

%     %title('AO Corrected'); 

%     xlabel('Time (seconds)'); 

%     ylabel('Strehl Ratio'); 

%     ylim([0,1]); 

%     xlim([0,t_final]); 

%     grid on; 

%     F(j)=getframe(handle); 

% 

% % Movie 2       

%     handle=figure(2); 

 

figure(2)    

subplot(2,1,1),plot(xx_ap,OPD_ap(j,:).*10^6,'k',xx_ap,OPD_DM(j,:).*10^6

,'b'); 

    grid on; 

    ylim([-2, 2]); 

    xlim([xx(loc1),xx(loc2)]); 

    title('Waveform Comparison'); 

    legend('Numerical waveform','DM waveform'); 

    xlabel('x (m)'),ylabel('OPD (\mu m)'); 

      

    subplot(2,1,2),plot(th,Intens,'b',th,Intens_ideal,'k-.'); 

    xlim([-1.5e-5,1.5e-5]); 

    ylabel('Intensity'),xlabel('6 \lambda / Ap'); 

%     F(j)=getframe(handle); 

% 

% 

% % Movie 3 % 

% 

%    OPD_ap2_rect=OPD_ap2(j,:); 

%    OPD_er_rect=OPD_error(j,:); 

%    for cc=1:N_aperture 

%        OPD_ap2_rect=[OPD_ap2_rect; OPD_ap2(j,:)]; 

%        OPD_er_rect=[OPD_er_rect; OPD_error(j,:)]; 

%    end 

% 

%    for aa=1:Nx 

%        aa 

%        for bb=1:Ny 

%            E_er(aa,bb)=sum(sum(tr.*exp(-

i*k_laser.*OPD_er_rect).*exp(-

i*k_laser*(u(aa).*x_pr+v(bb).*y_pr)))*dx_pr)*dy_pr; 

%            E_ap(aa,bb)=sum(sum(tr.*exp(-

i*k_laser.*OPD_ap2_rect).*exp(-

i*k_laser*(u(aa).*x_pr+v(bb).*y_pr)))*dx_pr)*dy_pr; 

%        end 

%    end 

% 

%    Intens_er(:,:,j)=(abs((i/lambda)*Eo*(exp(-

i*k_laser*Ro_pr)/Ro_pr)*E_er)).^2; 

%    Intens_ap(:,:,j)=(abs((i/lambda)*Eo*(exp(-

i*k_laser*Ro_pr)/Ro_pr)*E_ap)).^2; 

%     

%    handle=figure(3) 
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%    subplot(1,2,1) 

%    h1=pcolor(X,Y,Intens_ap(:,:,j)); 

%    caxis([0,2e-12]); 

%    title('Uncorrected Far Field'); 

%    subplot(1,2,2) 

%    h2=pcolor(X,Y,Intens_er(:,:,j)); 

%    set(h1,'EdgeColor','interp'); 

%    set(h2,'EdgeColor','interp'); 

%    %colormap gray 

%    caxis([0,2e-12]); 

%    title('Corrected Far Field'); 

%     

%    if j==1; 

%        brighten(0.45); 

%    end 

%     

%    F(j)=getframe(handle); 

% 

     

    j=j+1; 

end 

 

%save(['/home/anightingale/research/Results/AIAA_Conf_06/control_1100.m

at'],'F'); 

% movie2avi(F,'Phase_Step_Error','fps',40); 

 

mean_rmsOPD=mean(rmsOPD(600:j-1)) 

%mean_orig=mean(St_orig) 

mean_st=mean(St(600:j-1)) 

%mean_psuedo=mean(psuedo_St) 

mean_st_tr=mean(St_tr(450:j-1)) 

 

 

% Figure 1 % 

phi_act = -94;      % Initial phase error between shear layer and 

conjugate correction 

 

figure('PaperUnits','centimeter','PaperPosition',[0 0 12 10]);  

subplot(2,1,2),plot(time,St,'b'); 

%title('AO Corrected'); 

xlabel('Time (seconds)','LineWidth',1.2); 

ylabel('Strehl Ratio'); 

ylim([0,1]); 

xlim([0,time(length(time))]); 

grid on; 

 

subplot(2,1,1),plot(time,phase(1:j-

1).*(180/pi),'r',time,ones(length(time)).*phi_act,'k--

','LineWidth',1.2); 

grid on; 

xlim([0,time(length(time))]); 

ylim([-180,180]); 

%title('Phase Control'); 

xlabel('Time (seconds)'),ylabel('Phase (degrees)'); 
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% Figure 2 % 

figure('PaperUnits','centimeter','PaperPosition',[0 0 10 10]) 

plot(time,St,'k',time,St_tr,'b-','LineWidth',1.2); 

xlabel('time (seconds)'); 

ylabel('Strehl Ratio'); 

legend('Strehl Ratio', 'Tilt-Removed Strehl Ratio'); 

ylim([0,1]); 

xlim([0,time(length(time))]),grid on; 

 

% Figure 3 %      

figure('PaperUnits','centimeter','PaperPosition',[0 0 10 10]); 

plot(time,St_orig, 'LineWidth', 1.2); 

xlabel('time (seconds)'); 

ylabel('Strehl Ratio'); 

ylim([0,1]); 

xlim([0,time(length(time))]); 

grid on; 

title('Forced Shear Layer'); 

 

figure(10) 

for qq = 1:6 

    

subplot(2,3,qq),plot(xx_ap,OPD_ap(700+round(qq*(1/Ff)/dt/6),:)*10^6,'r'

, xx_ap,OPD_DM(700+round(qq*(1/Ff)/dt/6),:)*10^6,'k-.'); 

    grid on; 

    ylim([-1, 1]); 

    xlim([xx(loc1),xx(loc2)]); 

    xlabel('x (m)'),ylabel('OPD (\mu m)'); 

end 

 

figure(11) 

for qq = 1:6 

    

subplot(2,3,qq),plot(xx_ap,OPD_error(700+round(qq*(1/Ff)/dt/6),:)*10^6,

'r'); 

    grid on; 

    ylim([-1, 1]); 

    xlim([xx(loc1),xx(loc2)]); 

    xlabel('x (m)'),ylabel('OPD error (\mu m)'); 

end 
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APPENDIX C: 

ALTERNATIVE AO CONTROLLER SPECIFICATIONS 

 This appendix contains specifications for the PLL circuit‟s primary electrical 

components described in Chapter 5.  Each section includes a brief description of the 

component‟s function within the PLL circuit and a table of key electrical specifications.  

Further information may be found by referencing the manufacturer‟s website. 

C.1.  Four-Quadrant Analog Multiplier (AD633) 

 Two four-quadrant analog multiplier chips were used in the construction of the 

PLL circuit.  The first AD633 chip, in conjunction with a low-pass filter, functions as a 

phase detector.  The shear layer jitter signal is multiplied with the PLL output in an effort 

to determine the phase difference between signals.  The second AD633 chip is used to 

create a phase-locked output signal with the appropriate amplitude.  The PLL phase-

locked output previously scaled to unity is multiplied by an estimate of the shear layer‟s 

amplitude using this multiplier chip.  The four-quadrant analog multiplier chip has high 

impedance inputs and operates with a supply voltage between ±8 Volts to ±18 Volts.  

Table C.1 includes a few key specifications for the AD633 four-quadrant analog 

multiplier chip. 
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TABLE C.1 
 

SPECIFICATIONS FOR THE FOUR-QUADRANT 

MULTIPLIER CHIP, AD633. 

Model AD633JN 
Manufacturer Analog Devices 

Name Low Cost Analog Multiplier 
Transfer Function 

  
              

  
   

Supply Voltage Operating Range ±8 Volts to ±18 Volts 
Input Resistance 10 MΩ 

C.2.  Low-Noise Operational Amplifier (NE5534A) 

 Nine low-noise operational amplifiers were used in the construction of the PLL 

circuit described in Chapter 5.  The eight pin amplifiers were used to perform several 

different operations within the circuit including scaling, filtering, and summing.  Table 

C.2 shown below contains a few key specifications pertaining to these operational 

amplifiers.  Further information including a complete data sheet may be found at the 

manufacturer‟s website. 

 

SPECIFICATIONS FOR THE LOW-NOISE 

OPERATIONAL AMPLIFIER, NE5534A. 

Model NE5534AP 
Manufacturer Texas Instruments 

Name Low-Noise Operational Amplifer 
Supply Voltage Operating Range ±3 Volts to ±20 Volts 

Input Resistance 100 kΩ 
 

TABLE C.2
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C.3.  Waveform Generator (NTE864) 

 A precision waveform generator, also referred to as a voltage-controlled oscillator 

(VCO), is one of the primary components of the PLL circuit.  The NTE864 chip is an 

integrated circuit designed to produce sine, square, triangular, sawtooth, and pulse 

waveforms.  The chip is capable of both frequency modulation and sweeping with a 

frequency range from 0.001 Hz up to 300 kHz.  The operating range for the chips supply 

voltage is between ±5 Volts to ±15 Volts.  The PLL application described in this 

dissertation uses both frequency modulation and the sine wave output.  Table C.3 

provides a few key specifications for the waveform generator chip.  Further details and 

examples of operation may be found at the manufacturer‟s website.  It should be noted 

that the NTE864 is a replacement part for the ICL8038 chip which has become obsolete.  

The ICL8038 data sheets may also be referenced for additional information pertaining to 

operation and circuitry. 

TABLE C.3  

SPECIFICATIONS FOR THE PRECISION 

WAVEFORM GENERATOR CHIP, NTE864 

(REPLACEMENT CHIP FOR ICL8038). 

Model NTE864 
Manufacturer NTE Electronics, Inc. 

Name Integrated Circuit Precision Waveform 
Generator 

Frequency Range 0.001 Hz to 300 kHz 
Supply Voltage Operating Range ±5 Volts to ±15 Volts 

Obsolete Model Number/Manufacturer ICL8038, Intersil 



 
 

214 

 

C.4  RMS-to-DC Converter (AD536A) 

 The amplitude estimator circuit described in Section 5.3 is based upon a root-

mean-squared (rms) approximation.  An RMS-to-DC converter chip (AD536A) computes 

the true rms level of an input sinusoidal signal.  In this case, the AD536A computes the 

rms of the shear layers regularized jitter signal producing a DC value corresponding to its 

input.  The AD536A chip is a monolithic integrated circuit with fourteen leads.  Table 

C.4 contains a few key specifications for the AD536A chip.  Further information 

including detailed data sheets may be found at the manufacturer‟s website. 

 

 

SPECIFICATIONS FOR THE RMS-TO-DC 

CONVERTER CHIP, AD536A. 

Model AD536AJ 
Manufacturer Analog Devices 

Name Integrated Circuit True RMS-to-DC 
Converter 

Transfer Function 
             

   

Supply Voltage Operating Range ±3 Volts to ±18 Volts 

C.5.  Four-Quadrant Multiplier/Divider (AD734) 

 A four-quadrant multiplier/divider chip (AD734) was also used in the 

development of the AO controller.  Before being fed into the PLL control circuit, the 

incoming shear layer jitter signal is scaled to unity.  The AD734 chip performs analog 

division in this application.  The shear layer jitter signal is divided by an estimate of the 

TABLE C.4 
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signal‟s amplitude, the output from the RMS-to-DC converter and op-amp amplifying 

circuit.  This fourteen lead multiplier/divider chip operates off a dual power supply and 

has multiplication, division, squaring and square root capabilities.  Table C. 5 contains a 

few key specifications for the AD734 chip.  Further information including detailed data 

sheets may be found at the manufacturer‟s website. 

 

TABLE C.5 
 

SPECIFICATIONS FOR THE FOUR-QUADRANT 

MULTIPLIER/DIVIDER CHIP, AD734. 

Model AD734AN 
Manufacturer Analog Devices 

Name 10 MHz, 4-Quadrant Multiplier/Divider 
Transfer Function 

     
              

 
          

Supply Voltage Operating Range ±8 Volts to ±16.5 Volts 
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