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SYMMETRY ANALYSIS APPLIED

TO MULTI-AGENT SYSTEMS

Abstract

by

Ashley M. Nettleman

The multi-agent system of interest is a planar formation control problem, where

each agent references a pre-specified number of agents. Since the formation control

law does not specify the location and orientation of the formation in planar space,

continuous symmetries arise. Through a previously established methodology, it is

possible to calculate the continuous symmetries for a system of second order differ-

ential equations. The symmetries were found for a specific neighbor graph and were

extended to the general case. The symmetries associated with planar motion were

used to define coordinate transformations that reduced the system of interest to one

in which the origin is the set of all possible formations. It is now possible to perform

stability analysis of the formation by studying the stability properties of the origin of

the reduced system. This will be beneficial for showing extended stability properties,

like boundedness.
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SYMBOLS

A partial differential equation form of the differential equation

a index, typically for the symmetry condition equations

B matrix term in the symmetry result

b index for summation

C matrix term in the symmetry result

c index for summation

D matrix term in the symmetry result for three agents or

the derivative function in Mathematica code

dij error in the distance between agents i and j

d̂ij desired distance between agents i and j

dij error in the distance between agent specified by qi and the agent an index

distance of j away

d̂ij desired distance between agent specified by i and the agent an index

distance of j away

d1 error in distance between the two agents in the two agent case

d total derivative

f a function

gi position based terms in the control law for the differential equation

corresponding to qi

H i differential equation corresponding to qi set equal to zero,

H i = q̈i − ωi = 0

H refers to the whole set of H i terms or a general case
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i index

j index typically used for a neighboring agent or the index

distance for a neighbor

k index typically used for the corresponding x or y term such that (qi, qk)

are the dynamics for an agent

l index for neighboring agent coordinates

m index for neighboring agent coordinates or

the number of constraints on a formation

N number of agents for the system of interest

Ni the neighborhood for an agent i

Ñi the neighborhood for the agent specified by qi

n order of a differential equation

O order of magnitude

pi quadrature defined to reduce the order of the system

qij dynamics for the system, where i indices the agent and j is used to

indicate the step in the coordinate reduction

qi dynamics for the system, where i indices the agent

q dependent variable

q column vector of the qi terms in the symmetry result

ri coordinate transformation variable corresponding to Xri = 0

r coordinate transformation variable corresponding to Xr = 0

si coordinate transformation variable corresponding to Xsi = 1

s coordinate transformation variable corresponding to Xs = 1

t independent variable, typically time

Vi Lyapunov function corresponding to agent i

V Summation of the individual Lyapunov functions, Vi

X i
j linear operator form for the jth coordinate reduction on the ith
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individual symmetry

X i linear operator form for the ith individual symmetry

X linear operator form for the symmetry and typically the general form with

free variables

xi the position on the x-axis for agent i

x the position on the x-axis

x̃ the position on the x-axis after a point transformation

y(n) the nth derivative of y with respect to time

yi the position on the y-axis for agent i

y the position on the y-axis

ỹ the position on the y-axis after a point transformation

α0(t) function depending only on time that is used in finding the ξ term

α0 constant that is used in finding the ξ term

αi(t) function of time that has a correspondence with qi that is used in finding

the ξ term

αi constant that has a correspondence with qi that is used in finding the

ξ term

α index

βi(t) function of time that has a correspondence with the ith equation that is

used in the η term

βij constant that has a correspondence with the ith equation and the qj term

that is used in the η term

β(t) column vector of the βi(t) terms in the symmetry result

Γ matrix term in the symmetry result

γij(t) function of time that corresponds to the ith equation and the qj term

γij constant that corresponds to the ith equation and the qj term

δab Kronecker delta function that is equal to one when a = b and is equal to
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zero otherwise

∂ partial derivative

ε variation parameter in the point transformation corresponding to a

symmetry

ηik spatial coefficient term corresponding to the qi term in the kth symmetry

ηi spatial coefficient term corresponding to the qi term

η spatial coefficient term in the general symmetry

η column vector of the ηi terms in the symmetry result

λmax maximum eigenvalue

λ a typically nonconstant factor or a trajectory of the solution

ξ time coefficient term in the general symmetry

φα the complete set of solutions to y(n) = ω

φ−1i the inverse of the ith coordinate transformation

φi the ith coordinate transformation

Ωi a function of the solutions φα

ωi control law corresponding to qi such that H i = q̈i − ωi = 0

ω general form for the control law

∞ infinity∫∞
0

integral from zero to infinity

,i partial derivative with respect to qi

,q partial derivative with respect to q

,t partial derivative with respect to t
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CHAPTER 1

INTRODUCTION

The study of multi-agent systems has typically been fraught with the difficulty of

dealing with the resulting complex system. Add in varying interconnections between

the agents, and the analysis of such a system quickly becomes difficult. However,

usually these systems have several symmetric properties, since they tend to have

very similar, if not identical agents. Therefore, it is of interest to be able to extract

the symmetric information and work instead with a reduced system.

Unfortunately, using the symmetries to reduce the system becomes complicated

by the fact that there are several types of symmetries. Typically the first type of

symmetry that comes to mind is the discrete reflection, or mirror, symmetry. Objects

with this symmetry generally have an obvious centerline where the features on one

side of the centerline are just a reflection, or mirror, of the other side. There also

exist continuous symmetries, where by varying a parameter it is possible to go from

one solution to another. Of particular interest are the continuous symmetries that

return the original solution when the varying parameter is equal to zero and the

transformation defined by the parameter is continuous. Some examples of these

continuous symmetries include translation and rotation. These are the symmetries

that will be explored in attempts to reduce the complexity of the dynamics of a

multi-agent system.

Multi-agent systems have been studied by many others [2, 3, 14, 16, 17, 19]. Of

particular interest is being able to guarantee that the system of agents, or robots, is

able to make it to a final destination or formation. It is also desirable that the agents
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are able to perform as intended with minimal external control input, as this can allow

for reduced required computing power. With this in mind, some researchers [11, 13]

were able to design control laws that created imaginary agents that acted as guides

to help avoid obstacles. Discrete symmetries have also been studied [5–7, 9] in an

effort to reduce the complexity of the system and further study the stability of the

formation, or the ability of the agents to achieve the desired formation.

Unfortunately, there is a common potential pitfall with some of the prior work.

Typically LaSalle’s Invariance Principle has been used to show that the system is

stable; however, it requires that a compact invariant set be defined [10]. A compact set

requires that the area in which one is working be closed and bounded. The majority of

the time, this is not an issue; however, with the scale of the systems becoming larger

and the range of motion becoming unbounded, this is quickly becoming an important

aspect to investigate. Therefore, it is of interest to be able to reduce and redefine the

system, such that the control laws have the origin as the set of all possible formations

for the system of agents. This allows for the use of Lyapunov’s Theorem, which does

not require a compact set to be defined. Additionally, numerous extensions have been

derived to be able to show boundedness, or the ability of the system to remain stable

with disturbances. Since disturbances exist in the real world, it is of added benefit

to be able to use these extensions to show boundedness when the system is not ideal.

The organization of this work is such that the process for reducing the system

of interest is broken down into steps. In Chapter 2, some basic definitions and

preliminaries of networks of agents and symmetries are introduced along with the

system of interest. The method to find the symmetries for a system of second order

differential equations is presented in Chapter 3, along with the results for the system

of interest. These symmetries are then used to reduce the system of interest in

Chapter 4, and stability analysis is shown for the reduced dynamics found for the

two agent case in Chapter 5.
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CHAPTER 2

BACKGROUND THEORY ON NETWORKS AND SYMMETRIES

2.1 System of interest and network terminology

The system of interest is an interconnected system of agents with a control law

driving the system to a formation. These agents can be robots, vehicles, a repre-

sentation of a cyber-physical system, or any system in which the dynamics can be

written as

ẍi = −ẋi −
∑
j∈Ni

(xi − xj)dij

ÿi = −ẏi −
∑
j∈Ni

(yi − yj)dij,

with

dij = (xi − xj)2 + (yi − yj)2 − d̂ij,

where Ni is the set the indices corresponding to the agents that agent i references,

d̂ij is the square of the desired distance between agents i and j, and i ranges from

one to N , which is the number of agents in the system.

For ease of analysis, the equations will be written in terms of one coordinate q,

where

xi = q2i−1 and yi = q2i for i ∈ {1, . . . , N} .

The change from subscripts to superscripts is done to match the notation used in
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[18]. The system of interest is then

q̈i = ωi = −q̇i −
∑
j∈Ñi

dij(q
i − ql)

dij = (qi − ql)2 + (qk − qm)2 − d̂ij,

where i ∈ {1, . . . , 2N} , k = i− (−1)i, l = i+ 2j (mod 2N), m = k+ 2j (mod 2N),

N is the number of agents, Ñi is the set of neighbors with which agent i communicates,

and d̂ij is the desired distance between agent i and its neighbor that is j away.

The set of neighbors that an agent references, or communicates with, can be rep-

resented as a network. This network will be referred to as the neighbor graph for the

system. The nodes of the neighbor graph are the agents, and an edge exists if two

agents communicate with each other. These edges can be directed or undirected, de-

pending on the type of communication between the agents. If the communication is

defined as being one-directional, then the edges will be directed. Otherwise, the edges

will be undirected. Depending on whether the network is directed or undirected, [12]

defines two different standards of connectivity. For an undirected network, the net-

work is connected if it is possible to travel from any node to another by traveling

along the edges. Figure 2.1a shows an example of a connected undirected network.

On the other hand, a directed network can be either strongly connected, weakly con-

nected, or disconnected. A strongly connected network is one in which it is possible

to travel from any node to any other by traveling in the direction of the edges. If

this is not possible, but if the directions on the edges are removed and the resulting

undirected network is connected, then the directed network is weakly connected. Fig-

ure 2.1b shows a weakly connected directed network, while Figures 2.1c and 2.1d are

both strongly connected directed graphs. An example of a disconnected undirected

network is shown in Figure 2.2a, along with a connected undirected network with the

same number of nodes in Figure 2.2b.
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(a) Connected
(b) Weakly
connected

(c) Strongly
connected

(d) Strongly
connected

Figure 2.1. Examples of a (a) connected undirected network, (b) weakly
connected directed network, and (c),(d) two strongly connected directed

graphs

(a) Disconnected network (b) Connected network

Figure 2.2. Examples of a (a) disconnected undirected network and (b)
connected undirected network

5



Figure 2.3. The two possible configurations for a rigid and foldable
neighbor graph

For formation theory, [14] defines two additional network concepts: rigidity and

foldability. A formation’s neighbor graph is rigid if there exists at least 2N−3 edges.

Even if a neighbor graph is rigid, multiple formations may still be possible through

a discrete transformation. When this is possible, the neighbor graph is foldable. In

order to define a formation that is rigid and not foldable, each agent must have edges

connecting it to three other agents. Figure 2.2b is an example of a five-agent neighbor

graph that is not rigid. The two different possible configurations for a rigid foldable

neighbor graph are shown in Figure 2.3. Note that neighbor graphs do not necessarily

have to appear the same as the formation; however, for illustrative purposes, the

neighbor graph is shown to have edge lengths corresponding to the desired distances

between agents. Examples of rigid and not foldable neighbor graphs are shown in

Figure 2.4.

2.2 Definition of a symmetry

In order to factor out the symmetries present in a system, one must first be

able to find and represent the symmetries. It is possible to represent continuous

Lie symmetries by an infinitesimal point transformation in terms of at least one

parameter. For example, the rotational symmetry in the plane can be represented
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Figure 2.4. Two examples of neighbor graphs that are rigid and not
foldable.

by the point transformation

x̃(x, y; ε) = x cos ε− y sin ε

ỹ(x, y; ε) = x sin ε+ y cos ε,

where ε can be thought of as the angle of rotation. A function, f(x, y) = 0 has a

rotational symmetry if f(x, y) = f(x̃, ỹ) = 0 for the point transformation defined

above. In other words, the point transformation is able to take one solution of

f(x, y) = 0 to another solution of f(x, y) = 0.

It is also possible to represent the symmetry as a linear operator, called a generator

and denoted by X. The generator can be found from the point transformation, or a

general form can be assumed to find all of the symmetries of a system. The generator

can be defined by terms in the Taylor series expansion of the point transformation
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about ε = 0. Consider

x̃(x, y; ε) = x̃(x, y; 0) +
∂x̃

∂ε

∣∣∣∣
ε=0

(ε− 0) + · · ·

= x+ εη1(x, y) + · · ·

= x+ εXx+ · · ·

ỹ(x, y; ε) = ỹ(x, y; 0) +
∂ỹ

∂ε

∣∣∣∣
ε=0

(ε− 0) + · · ·

= y + εη2(x, y) + · · ·

= y + εXy + · · · ,

which gives

X = η1(x, y)
∂

∂x
+ η2(x, y)

∂

∂y
.

Note that is also possible to have a transformation in the independent variable. When

this is the case, the general expression for the symmetry is

X = ξ(t, x, y)
∂

∂t
+ η1(t, x, y)

∂

∂x
+ η2(t, x, y)

∂

∂y
.

The check for whether a function, f(x, y) = 0, has the symmetry defined by a gener-

ator X is simply Xf = 0, which is satisfied if the action of the symmetry leaves the

function invariant. For example, the rotational symmetry has the generator

X = −y ∂
∂x

+ x
∂

∂y
,

which when acting on the function f(x, y) = x2 + y2 − 4 = 0, leaves the function

invariant. In other words,

Xf =

(
−y ∂

∂x
+ x

∂

∂y

)
(x2 + y2 − 4) = −y(2x) + x(2y) = 0.
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2.3 Prolongation of the generator for use with differential equations

In order to apply the generator to differential equations, one must first prolong

the generator to include derivative terms. This is done by taking the Taylor series

expansion of the transformations for the derivatives. For an independent variable t,

the Taylor series expansion for the x derivative is

dx̃

dt̃
(t, x, y; ε) =

dx̃

dt̃
(t, x, y; 0) +

∂

∂ε

(
dx̃

dt̃

)∣∣∣∣
ε=0

(ε− 0) + · · ·

=
dx

dt
+ εη′1(t, x, y, dx/dt, dy/dt) + · · ·

=
dx

dt
+ εX

dx

dt
+ · · · ,

where

η′1(t, x, y, dx/dt, dy/dt) =
∂

∂ε

(
dx̃

dt̃

)∣∣∣∣
ε=0

=
∂

∂ε

(
dx̃ dt̃−1

)∣∣∣∣
ε=0

=

(
∂

∂ε
(dx̃) dt̃−1 + (−1)dx̃

∂

∂ε

(
dt̃
)
dt̃−2

)∣∣∣∣
ε=0

=

(
d

(
∂x̃

∂ε

)
dt̃−1 − d

(
∂t̃

∂ε

)
dx̃dt̃−2

)∣∣∣∣
ε=0

=

(
d

dt̃
(η1)−

d

dt̃
(ξ)

dx̃

dt̃

)∣∣∣∣
ε=0

=
dη1
dt
− dξ

dt

dx

dt
.

Since there is a transformation in the independent variable, η′1 does not necessarily

equal dη1/dt. However, η′1 is equal to dη1/dt when ξ is equal to a constant or zero.

The expression for the prolongation of the generator is then

X = ξ
∂

∂t
+ η1

∂

∂x
+ η2

∂

∂y
+ η′1

∂

∂ẋ
+ η′2

∂

∂ẏ
+ η′′1

∂

∂ẍ
+ η′′2

∂

∂ÿ
+ · · · ,

9



where ẋ = dx
dt
, ẏ = dy

dt
and

η′1 =
dη1
dt
− ẋdξ

dt
η
(i)
1 =

dη
(i−1)
1

dt
− dix

dti
dξ

dt

η′2 =
dη2
dt
− ẏ dξ

dt
η
(i)
2 =

dη
(i−1)
2

dt
− diy

dti
dξ

dt
.

Note that if ξ is equal to a constant, which corresponds to the independent variable

being transformed by a constant shift, η
(i)
j =

diηj
dti

. In other words, the only time when

η
(i)
j is equal to the ith derivative of ηj is when the independent variable is subjected

to at most a constant shift. For further details on the prolongation of the symmetry,

see [18].

The prolongation of the rotational symmetry is

X = −y ∂
∂x

+ x
∂

∂y
− ẏ ∂

∂ẋ
+ ẋ

∂

∂ẏ
− ÿ ∂

∂ẍ
+ ẍ

∂

∂ÿ
,

where the independent variable is t.

A differential equation, H = 0, has a symmetry defined by a generator X if

XH = 0. Note that for systems of differential equations, H1 = 0, H2 = 0, it is

possible that XH1 = H2, which equals zero since H2 equals zero by definition. Since

H = 0 and XH = 0, the generator X maps solutions of H = 0 into another solution

of H = 0.

2.4 Using a general form to find the symmetries for a system

One way to find the symmetries of a differential equation is by “solving for X.”

This is done systematically when the differential equation is expressed as a linear

operator. For simplicity, this will be shown for one dependent variable y and one

independent variable t. The relationship between a differential equation y(n) = ω

10



and its linear operator is found by the first integrals f of a differential equation and

is (
∂

∂t
+ y′

∂

∂y
+ · · ·+ ω

∂

∂y(n−1)

)
f = Af = 0,

where y(i) denotes the ith derivative of y with respect to the independent variable

t. Note that a system of differential equations can be represented by a single linear

operator. This will be shown in Chapter 3.

The general expression for a symmetry of this system is

X = ξ
∂

∂t
+ η

∂

∂y
+ η′

∂

∂y′
+ · · ·+ η(n−1)

∂

∂y(n−1)
,

where η′ = dη
dt
−y′ dξ

dt
, η(i) =

dη
(i−1)
1

dt
−y(n) dξ

dt
. Let φα be the complete set of n independent

solutions of y(n) = ω. Since X is a symmetry of this system, Xφα must also be a

solution since the generator maps solutions into solutions. The relationships between

X and A with the solutions φα are

Xφα = Ωα(φβ), Aφα = 0 = AΩα,

where Ωα is defined to be a function of the solutions such that it is also a solution to

y(n) = ω.

By use of the skew symmetric commutator, [X,A] = XA− AX, it is possible to

eliminate the unknown functions Ωα. Note that [X,A] is also a linear operator and

that

[X,A]φα = X(Aφα)− A(Xφα) = X(0)− A(Ωα) = 0− 0 = 0.

This means that [X,A]f = 0 has the same set of solutions as Af = 0 since this is

valid for all of the solutions φα. Therefore, the linear operator [X,A] can only differ
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from the linear operator A by a factor λ,

[X,A] = λ(t, y, y′, . . . , y(n−1))A.

By equating the coefficients of the partial derivatives, ∂/∂t, ∂/∂y, ∂/∂y′, ..., in this

equation, it is possible to solve for the unknowns ξ and η to determine the symmetries

for the differential equation y(n) = ω. Further details on the terminology, method,

and analysis can be found in [18] and [15].
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CHAPTER 3

FINDING THE SYMMETRIES

3.1 General theory for a system of second order differential equations

A system of m second order differential equations

q̈1 = ω1, . . . , q̈m = ωm,

can be written as a partial differential equation Af = 0, where

A =
∂

∂t
+ q̇1

∂

∂q1
+ ω1 ∂

∂q̇1
+ · · ·+ q̇m

∂

∂qm
+ ωm

∂

∂q̇m
.

The general form for a symmetry X of m second order differential equations is

X =ξ(t, q1, . . . , qm)
∂

∂t
+ η1(t, q1, . . . , qm)

∂

∂q1
+ · · ·+ ηm(t, q1, . . . , qm)

∂

∂qm
.

From [18], the symmetry condition [X,A] = λA simplifies to (with ,t = ∂/∂t, and

,c = ∂/∂qc)

ξωa,t + ηbωa,b +
(
ηb,t + q̇cηb,c − q̇bξ,t − q̇bq̇cξ,c

) ∂ωa
∂q̇b

+ 2ωa
(
ξ,t + q̇bξ,b

)
+ωb

(
q̇aξ,b − ηa,b

)
+ q̇aq̇bq̇cξ,bc + 2q̇aq̇cξ,tc − q̇cq̇bηa,bc + q̇aξ,tt − 2q̇bηa,tb − ηa,tt = 0,

with (a, b, c = 1, . . . ,m). Note that a is an index for the m equations, while b and

c are summation indices. Recall that ξ and ηa are functions of t and qa and not q̇a.

This allows for the m symmetry condition equations to be split apart further, which

13



reduces the complexity of solving for ξ and ηa. The next step will be to split the

equations apart based on the order of the q̇a terms.

3.2 Applying the theory to the system of interest

The system of interest is

q̈i = ωi = −q̇i −
∑
j∈Ñi

dij(q
i − ql)

dij = (qi − ql)2 + (qk − qm)2 − d̂ij,

where i ∈ {0, . . . , 2N} , k = i− (−1)i, l = i+ 2j (mod 2N), m = k+ 2j (mod 2N),

N is the number of agents, Ñi is the set of neighbors with which agent i communicates,

and d̂ij is the desired distance between agent i and its neighbor that is j away. The

control law ωi is comprised of a damping term q̇i and a formation force that drives the

system to a desired formation. Note that the system does not depend explicitly on

time and the q̇i terms do not appear in the formation force. Therefore, for simplicity

of notation, the formation force will be written as ga(q1, . . . , q2N). In other words,

q̈i = ωi = −q̇i − gi.

The m = 2N equations that define the symmetry are then

ηb(−ga),b +
(
ηb,t + q̇cηb,c − q̇bξ,t − q̇bq̇cξ,c

)
(−1)δab + 2(−q̇a − ga)

(
ξ,t + q̇bξ,b

)
+(−q̇b − gb)

(
q̇aξ,b − ηa,b

)
+ q̇aq̇bq̇cξ,bc + 2q̇aq̇cξ,tc − q̇cq̇bηa,bc + q̇aξ,tt − 2q̇bηa,tb − ηa,tt = 0,
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with δab = 1 if a = b and 0 otherwise. Rewriting this system by decreasing powers of

q̇a gives

q̇aq̇bq̇cξ,bc + q̇bq̇cξ,cδab − 3q̇aq̇bξ,b + 2q̇aq̇cξ,tc − q̇cq̇bηa,bc

−q̇cηb,cδab + q̇bξ,tδab − 2q̇aξ,t − 2q̇bgaξ,b + q̇bηa,b − q̇agbξ,b + q̇aξ,tt − 2q̇bηa,tb

−ηbga,b − ηb,tδab − 2gaξ,t + gbηa,b − ηa,tt = 0.

Since the symmetry condition equations must hold for all values of q̇a and qa, the

coefficients for each order of q̇ and qa must equal zero. Taking q̇aq̇bq̇cξ,bc = 0 yields

ξ = α0(t) + α1(t)q1 + · · ·+ α2N(t)q2N .

Note that this means that

ξ,t = α̇0(t) + α̇1(t)q1 + · · ·+ α̇2N(t)q2N

ξ,b = αb(t)

ξ,tb = α̇b(t).

The symmetry condition equations are now

q̇bq̇cαc(t)δab − 3q̇aq̇bαb(t) + 2q̇aq̇cα̇c(t)− q̇cq̇bηa,bc

−q̇cηb,cδab + q̇bδab(α̇
0(t) + α̇c(t)qc)− 2q̇a(α̇0(t) + α̇c(t)qc)− 2q̇bgaαb(t)

+q̇bηa,b − q̇agbαb(t) + q̇a(α̈0(t) + α̈c(t)qc)− 2q̇bηa,tb

−ηbga,b − ηb,tδab − 2ga(α̇0(t) + α̇c(t)qc) + gbηa,b − ηa,tt = 0.

The next equation to solve is

q̇bq̇cαc(t)δab − 3q̇aq̇bαb(t) + 2q̇aq̇cα̇c(t)− q̇cq̇bηa,bc = 0,
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which simplifies to

2q̇aq̇b(α̇b(t)− αb(t))− q̇cq̇bηa,bc = 0.

Recall that a designates the symmetry condition equation, while b and c are summa-

tion indices. This gives that

2(α̇b(t)− αb(t)) = ηa,ba,

ηa,bc = 0 when c 6= a.

Since partial derivatives commute,

ηa,bc = 0,

ηa = βa(t) + γab (t)qb

2(α̇b(t)− αb(t)) = 0,

α̇b(t) = αb(t),

αb(t) = αb exp(t),

where αb is a scalar. The symmetry condition equations are now

−q̇aα̇0(t) + q̇aα̈0(t)− 2q̇bγ̇ab (t)− 2q̇bgaαb exp(t)− q̇agbαb exp(t)

−ga,bβb(t)− ga,bγbc(t)qc − γ̇ab (t)qb − 2gaα̇0(t)− 2gaαb exp(t)qb + gbγab (t)− γ̈ab (t)qb

−β̇a(t)− β̈a(t) = 0.

Normally one would continue with the q̇a terms; however, the purely time-based

terms, or the terms that do not depend on q̇a or qa, are quite simple to solve. The

equation to solve is

β̇a(t) + β̈a(t) = 0,
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which gives

βa(t) = βa1 + βa2 exp(−t),

where βa1 and βa2 are constants. Thus,

ηa = βa1 + βa2 exp(−t) + γab (t)qb.

The symmetry condition equations are now

−q̇aα̇0(t) + q̇aα̈0(t)− 2q̇bγ̇ab (t)− 2q̇bgaαb exp(t)− q̇agbαb exp(t)

−ga,b(βb1 + βb2 exp(−t))− ga,bγbc(t)qc − γ̇ab (t)qb − 2gaα̇0(t)

−2gaαb exp(t)qb + gbγab (t)− γ̈ab (t)qb = 0.

At this point the formation force needs to be substituted in for ga to solve the q̇a and

qa equations. A Mathematica program was used to expedite the solving process and

can be found in the Appendix.

3.3 The symmetries for the system of interest

From running the program for multiple cases, a general result emerged, regardless

of the number of agents. Note that it is possible to check this result by computing

XH and checking if it equals zero. This will be shown after presenting the general

form of the symmetries for the system. The general solution for N agents with an
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undirected connected neighbor graph is

X = ξ
∂

∂t
+ ηa

∂

∂qa

ξ = α0

η = (η1, . . . , η2N)T = β(t) + Γq,

q = (q1, . . . , q2N)T , β(t) = (β1(t), . . . , β2N(t))T ,

βi(t) =

β
1
1 + β1

2 exp(−t) for i odd

β2
1 + β2

2 exp(−t) for i even
,

Γ =



B C · · · C

C B
...

...
. . . C

C . . . C B


,

B =

γ11 γ12

γ21 γ22

 , C =

 γ11 γ14

γ12 − γ14 + γ21 γ22

 .

Each constant, or free variable, corresponds to a symmetry. The free variables

are α0, β1
1 , β

1
2 , β

2
1 , β

2
2 , γ

1
1 , γ

1
2 , γ

1
4 , γ

2
1 , and γ22 . By setting a free variable equal to one and

the rest equal to zero, the individual symmetries are found. Note that the number

of free variables is the same for any number of agents1 for an undirected connected

neighbor graph.

There are a total of ten free variables; therefore, it is possible to write out ten

1When there are three agents, an additional free variable is obtained in the Γ matrix, which
becomes a circulant matrix. This case will be shown at the end of the chapter.
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unique symmetries for the system. One set of these ten symmetries is

X1 =
∂

∂t
X2 =

N∑
i=1

∂

∂q2i−1
X3 =

N∑
i=1

∂

∂q2i

X4 = exp(−t)

(
N∑
i=1

∂

∂q2i−1

)
X5 = exp(−t)

(
N∑
i=1

∂

∂q2i

)

X6 =
N∑
i=1

(
−q2i ∂

∂q2i−1
+ q2i−1

∂

∂q2i

)

X7 =

(
N∑
i=1

q2i

)(
N∑
i=1

∂

∂q2i−1

)
X8 =

(
N∑
i=1

q2i−1

)(
N∑
i=1

∂

∂q2i

)

X9 =

(
N∑
i=1

q2i−1

)(
N∑
i=1

∂

∂q2i−1

)
X10 =

(
N∑
i=1

q2i

)(
N∑
i=1

∂

∂q2i

)
,

where

X =α0X1 + β1
1X

2 + β2
1X

3 + β1
2X

4 + β2
2X

5 + (γ14 − γ12)X6 + γ14X
7

+ (γ12 − γ14 + γ21)X8 + γ11X
9 + γ22X

10.

The purpose of splitting up the general symmetry into individual symmetries is

two-fold. The first is that it allows for easier computation of XH = 0, as each of the

individual symmetries must also satisfy the relationship, or alternatively X iH = 0.

This is due to the definition of a symmetry being X iH = 0, so if this does not hold,

then X i is not a symmetry for the system. Since X is a linear combination of the

individual symmetries X i, if X iH = 0, then XH = 0. The second purpose is for

coordinate reduction, which will be shown in Chapter 4.

These individual symmetries may not seem easier to deal with; however, they

mimic the original structure of the system. Recall that the system of interest deals

with agents that have a control law in the x- and y-directions. The structure of the

q-dynamics is such that the x-dynamics have an odd index, while the y-dynamics

have an even index. Therefore, when a summation occurs over all of the odd indices,
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it corresponds to a symmetry with the x-direction. For instance, X2 corresponds

to the symmetry of a constant shift of the system in the x-direction. Likewise, X3,

which has a summation over all of the even indices, corresponds to a constant shift

in the y-direction. The other main symmetry is X6, which is the symmetry with

respect to planar rotation.

3.4 Verification of the symmetries

Since the general solution for the symmetry, and resulting individual symmetries,

was not computed by hand, the solution should be validated. This can be done quite

easily by checking if XH = 0, as that is the definition of a symmetry for a system

H. To assist in calculating XH = 0, the system of interest will be rewritten as two

systems, or back into x and y notation essentially. Recall that H i = q̈i−ωi = 0. The

system of interest is then

H2i−1 = q̈2i−1 + q̇2i−1 +
∑
j∈Ñi

dij(q
2i−1 − ql)

H2i = q̈2i + q̇2i +
∑
j∈Ñi

dij(q
2i − qm)

dij = (q2i−1 − ql)2 + (q2i − qm)2 − d̂ij,

where l = 2i− 1 + 2j (mod 2N), m = 2i+ 2j (mod 2N).

Now it will be rather straightforward to show that X iH = 0, which shows that

XH = 0. Recall that in order for the symmetry to act on a differential equation, it

must be prolongated to include derivative terms. Additionally, since the individual

symmetries two through ten do not contain an ξ term, the prolongation simplifies to

X i = ηj ∂
∂qj

+η̇j ∂
∂q̇j

+η̈j ∂
∂q̈j
, where η̇j and η̈j are exactly the first and second derivatives

of η with respect to time.

1. X1 = ∂
∂t

Note that H2i−1 and H2i have no standalone t terms. Therefore,
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X1H = 0.

2. X2 =
∑N

i=1
∂

∂q2i−1 This is also the prolongated version since η2i−1 = 1. Note that

for both H2i−1 and H2i, any q2i−1 term is subtracted from ql, where l = 2i−1+2j
(mod 2N). Since ql is also contained in the set of q2i−1 terms, all terms will cancel
out, resulting in X2H = 0.

3. X3 =
∑N

i=1
∂
∂q2i

The same logic that was used for showing that X2H = 0 holds

for showing that X3H = 0.

4. X4 = exp(−t)
(∑N

i=1
∂

∂q2i−1

)
−exp(−t)

(∑N
i=1

∂
∂q̇2i−1

)
+exp(−t)

(∑N
i=1

∂
∂q̈2i−1

)
Since

H2i has no q̇2i−1 and q̈2i−1 terms, X4H2i = 0 by the same logic as was used for
X2. For H2i−1, the q2i−1 terms cancel out as in X2. Since there are alternating
signs on the prolongated terms of X4 and the q̇2i−1 terms are always added to a
q̈2i−1 term, the remaining terms cancel out as well, showing that X4H2i−1 = 0 and
thus, X4H = 0.

5. X5 = exp(−t)
(∑N

i=1
∂
∂q2i

)
− exp(−t)

(∑N
i=1

∂
∂q̇2i

)
+ exp(−t)

(∑N
i=1

∂
∂q̈2i

)
Again,

the same logic that was used for X4 can be used to show that X5H = 0.

6. X6 =
∑N

i=1

(
−q2i ∂

∂q2i−1 + q2i−1 ∂
∂q2i

)
+
∑N

i=1

(
−q̇2i ∂

∂q̇2i−1 + q̇2i−1 ∂
∂q̇2i

)
+
∑N

i=1

(
−q̈2i ∂

∂q̈2i−1 + q̈2i−1 ∂
∂q̈2i

)
This is the symmetry with respect to planar rota-

tion. Note that the distance metric dij is invariant with respect to planar rotation
and can be easily checked by X6dij = 0. Note also that this symmetry essentially
swaps the x and y terms. This results in, for a given i, X6H2i−1 = −H2i and
X6H2i = H2i−1, which both equal zero since H equals zero. Therefore X6H = 0.

7. X7 =
(∑N

i=1 q
2i
)(∑N

i=1
∂

∂q2i−1

)
+
(∑N

i=1 q̇
2i
)(∑N

i=1
∂

∂q̇2i−1

)
+
(∑N

i=1 q̈
2i
)(∑N

i=1
∂

∂q̈2i−1

)
Again, the q2i−1 and q2i terms cancel out since there is a summation of all of the
q2i−1 partials. The prolongated terms result in a summation of all of the q̇2i and
q̈2i terms. Note that

∑N
i=1H

2i =
∑N

i=1(q̇
2i + q̈2i), since all of the formation-based

terms cancel out. Therefore, X7H2i−1 =
∑N

j=1H
2j, which equals zero since H = 0,

and X7H2i = 0, which results in X7H = 0.

8. X8 =
(∑N

i=1 q
2i−1
)(∑N

i=1
∂
∂q2i

)
+
(∑N

i=1 q̇
2i−1
)(∑N

i=1
∂
∂q̇2i

)
+
(∑N

i=1 q̈
2i−1
)(∑N

i=1
∂
∂q̈2i

)
The same logic as for X7 results in X8H2i−1 = 0 and X8H2i =

∑N
j=1H

2j−1 = 0

and thus, X8H = 0.
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9. X9 =
(∑N

i=1 q
2i−1
)(∑N

i=1
∂

∂q2i−1

)
+
(∑N

i=1 q̇
2i−1
)(∑N

i=1
∂

∂q̇2i−1

)
+
(∑N

i=1 q̈
2i−1
)(∑N

i=1
∂

∂q̈2i−1

)
The same logic as for X7 results in X9H2i−1 =

∑N
j=1H

2j−1 = 0 and X9H2i = 0

and thus, X9H = 0.

10. X10 =
(∑N

i=1 q
2i
)(∑N

i=1
∂
∂q2i

)
+
(∑N

i=1 q̇
2i
)(∑N

i=1
∂
∂q̇2i

)
+
(∑N

i=1 q̈
2i
)

(∑N
i=1

∂
∂q̈2i

)
The same logic as for X7 results in X10H2i−1 = 0 and X10H2i =∑N

j=1H
2j = 0 and thus, X10H = 0.

Therefore, since all of the individual symmetries result in X iH = 0 and X is a linear

combination of all of the individual symmetries, XH = 0.

This means that the general form taken from the computer program is indeed a

symmetry for any number of agents with an undirected connected neighbor graph.

Note that the desired distance between agents was never specified. The computer

program does assume that dik = djk; however, the check of XH = 0 uses the general

form for the system, which does not have this constraint. Therefore, since XH = 0 for

the general form of the system, the desired distances can be anything. Additionally,

the analysis does not take into account the stability or feasibility of the formation. In

other words, it is possible to define desired distances such that a formation is never

possible.

If a directed neighbor graph is used instead of an undirected neighbor graph,

then the individual symmetries X1 − X6 still hold. However, the individual sym-

metries X7 − X10 require that the neighbor graph is connected and are therefore

not symmetries for the system. This is due to
∑N

i=1H
2i 6=

∑N
i=1(q̇

2i + q̈2i) and∑N
i=1H

2i−1 6=
∑N

i=1(q̇
2i−1 + q̈2i−1). It should be noted that X1−X6 might not be the

only symmetries for a system with a directed neighbor graph, as a directed neighbor

graph may lead to symmetries that an undirected neighbor graph does not have. If

a disconnected neighbor graph is used, then the resulting Γ matrix has a block di-

agonal structure, where the blocks are the Γ’s for the smaller connected components

of the disconnected neighbor graph. In other words, each connected component of
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the disconnected neighbor graph can be inspected individually and then combined

together for the final result.

3.5 Special case for three agents

For completeness, there is an additional individual symmetry when there are three

agents. This symmetry is due to the ability of the Γ matrix to become a circulant

matrix. The Γ matrix for three agents is

Γ =


B C D

D B C

C D B

 , B =

γ11 γ12

γ21 γ22

 ,

C =

 γ13 γ14

γ12 − γ14 + γ21 −γ11 + γ13 + γ22

 , D =

 2γ11 − γ13 γ14

γ12 − γ14 + γ21 γ11 − γ13 + γ22

 .

Note that when γ11 = γ13 , matrices C and D are equal to each other and are also equal

to the original C matrix in the general case.
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CHAPTER 4

USING THE SYMMETRIES FOR REDUCTION

4.1 General theory and notation

Given a symmetry Xk = ξk
∂
∂t

+ ηik
∂
∂qi

, it is possible to define a coordinate trans-

formation such that Xk = ∂
∂s

. It is through this coordinate transformation that an

integrating factor is found that reduces the order of the system.

This coordinate transformation, (rj, s), is defined such that Xks = 1 and Xkrj =

0. This can be done through an educated guess of the coordinates, or through the

trajectories (orbits) of the group generated by Xk.

The trajectories are

dqi

dλ
= ηik,

dt

dλ
= ξk,

which can be rewritten as

dq1

η1k
=
dq2

η2k
= · · · = dqn

ηnk
=
dt

ξk
.

It is possible to take the initial values for these trajectories as rj and solve Xks = 1

by a line integral.

For clarity, this process is rewritten for a system with only one equation. To solve

Xr = 0, one takes an orbit for which r equals a constant. This gives the expression

dr = 0 = r,tdt+ r,qdq.
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Note that Xr = 0 can be rewritten as

Xr = ξr,t + ηr,q = 0.

It is then possible to eliminate r,t and r,q by the prior two equations and obtain the

expression

ξdq − ηdt = 0.

Now r is the constant of integration that appears in the solution to the equation

above. Recall that for an orbit, r is defined as a constant. Each orbit of the system is

defined by an r value, and it is possible to invert the system to obtain an expression

for r in terms of q and t.

4.2 Two-agent example

For simplicity, the reduction process will be shown for the two-agent system. Ad-

ditionally, since the process requires multiple coordinate transformations, a subscript

will be added to indicate the step in the process. The two-agent system is

q̈10 = −q̇10 − d1(q10 − q30)

q̈20 = −q̇20 − d1(q20 − q40)

q̈30 = −q̇30 + d1(q
1
0 − q30)

q̈40 = −q̇40 + d1(q
2
0 − q40)

d1 = (q10 − q30)2 + (q20 − q40)2 − d̂1.

For the following analysis, the symmetry X1
0 will be ignored. This is due to it

being the only individual symmetry with a partial with respect to time, and it is

already in the form of ∂
∂s

.
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4.2.1 Translation in x-direction symmetry

The first symmetry that will be used is X2
0 = ∂

∂q10
+ ∂

∂q30
. The method requires

defining a coordinate transformation φ1 such that X2
0r

j = 0 and X2
0s

1 = 1. One such

transformation is

φ1(q
1
0, q

2
0, q

3
0, q

4
0) =



q10

q10 − q30

q20

q40


=



s1

r1

r2

r3


.

Since this process will be repeated, the coordinates (r1, r2, r3) will be changed to

(q11, q
2
1, q

3
1), respectively.

The inverse transformation written in the new coordinates is

φ−11 (s1, q11, q
2
1, q

3
1) =



s1

q21

s1 − q11

q31


=



q10

q20

q30

q40


.

The symmetries will now be recalculated based on the new coordinate system.

For brevity, these symmetries will be referred to as being the updated symmetries for

the updated system. The updated symmetries are found by transforming the system

to the new coordinates and recalculating the symmetries. The updated system of
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equations is

s̈1 = −ṡ1 − d1q11

q̈11 = −q̇11 − 2d1q
1
1

q̈21 = −q̇21 − d1(q21 − q31)

q̈31 = −q̇31 + d1(q
2
1 − q31)

d1 = (q11)2 + (q21 − q31)2 − d̂1.

Note that s1 does not appear in the q-dynamics. The q-dynamics are the reduced

system, and the s1 equation only needs to be solved if one wants to recover the full

dynamics of the system. In other words, if one were to solve the reduced system,

then the s1 equation only needs to be solved to determine where the formation is on

the x-axis and its velocity in the x-direction.

The updated symmetries for the reduced q-dynamics are then

X1
1 =

∂

∂t

X2
1 = 0 X3

1 =
∂

∂q21
+

∂

∂q31

X4
1 = 0 X5

1 = exp(−t)
(
∂

∂q21
+

∂

∂q31

)
X6

1 = −(q21 − q31)
∂

∂q11
+

1

2
q11

(
∂

∂q21
− ∂

∂q31

)
X7

1 = 0 X8
1 = 0

X9
1 = 0 X10

1 = (q21 + q31)

(
∂

∂q21
+

∂

∂q31

)
.

4.2.2 Translation in y-direction symmetry

Now the process will be repeated with the symmetry X3
1 = ∂

∂q21
+ ∂

∂q31
. A second

coordinate transformation φ2 is defined such that X3
1r

j = 0 and X3
1s

2 = 1. Note that
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this is s2 as s1 was defined in the prior section. One such transformation is

φ2(q
1
1, q

2
1, q

3
1) =


q21

q11

q21 − q31

 =


s2

r1

r2

 .

Again, the coordinates (r1, r2) will have a change in notation to (q12, q
2
2), respec-

tively. This gives an inverse coordinate transformation of

φ−12 (s2, q12, q
2
2) =


q12

s2

s2 − q22

 =


q11

q21

q31

 .

The transformation φ−12 is used to write the system in the new coordinates.

s̈1 = −ṡ1 − d1q12

s̈2 = −ṡ2 − d1q22

q̈12 = −q̇12 − 2d1q
1
2

q̈12 = −q̇22 − 2d1q
2
2

d1 = (q12)2 + (q22)2 − d̂1.

Recall that the s1 equation only needs to be solved if one wishes to know where

on the x-axis the formation is and with what velocity the formation is traveling in

the x-direction. Similarly, the s2 equation only needs to be solved for the formation’s

location on the y-axis and the velocity of the formation in the y-direction. The

reduced system is now only two second-order differential equations in terms of q12 and

q22.
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The updated symmetries for the reduced q-dynamics are then

X1
2 =

∂

∂t

X2
2 = 0 X3

2 = 0

X4
2 = 0 X5

2 = 0

X6
2 = −q22

∂

∂q12
+ q12

∂

∂q22

X7
2 = 0 X8

2 = 0

X9
2 = 0 X10

2 = 0.

4.2.3 A comment on the coordinate transformations thus far

Recall that the main objective is to reduce the system for ease of further calcu-

lations, including stability of the formation, where stability is defined as the agents

converging to a formation. For some applications, it may be important that the

agents are at rest (Case A), while other applications are only concerned that the

agents are not moving relative to each other (Case B). This method is able to han-

dle both cases. For Case B, each coordinate transformation thus far has been able

to eliminate two variables, si and ṡi. This is shown by the q dynamics not being

dependent on si and ṡi. As will be shown with the rotational case, it is not always

possible to eliminate two variables with one coordinate transformation; however, it

is a fortuitous result when it does occur. The reduced dynamics for this case are the

q- dynamics

q̈12 = −q̇12 − 2d1q
1
2

q̈22 = −q̇22 − 2d1q
2
2

d1 = (q12)2 + (q22)2 − d̂1.
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For Case A, each coordinate transformation has eliminated only one variable, which

is all that the method is designed to do [18]. In this case it is convenient to define a

new variable pi such that

pi = ṡi,

which defines the quadrature

si =

∫ ∞
0

pidt.

The quadrature is now the equation to be solved if one wishes to determine where

on the x- and y-axis the formation is. The reduced dynamics is a system of two first

order differential equations and two second order differential equations

ṗ1 = −p1 − d1q12

ṗ2 = −p2 − d1q22

q̈12 = −q̇12 − 2d1q
1
2

q̈22 = −q̇22 − 2d1q
2
2

d1 = (q12)2 + (q22)2 − d̂1.

Since the q dynamics do not depend on the p variables, it is possible to solve the

q dynamics first and then solve the p dynamics. In terms of showing stability, one

would proceed the same way as with Case B to show stability of the q dynamics.

Then, after that is shown, one would treat q as an input to the p dynamics and show

stability of the p dynamics.

4.2.4 Rotational symmetry

Now the rotational symmetry X6
2 will be used. For the prior two symmetries, it

was convenient to keep the system as a system of second order differential equations

and define the coordinate transformation in terms of only the positions. It is also
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possible to define the coordinate transformation in terms of the velocities, or a mix of

the position and velocity terms. Note that the prolongation of the symmetry needs

to be used when including velocity terms in the coordinate transformation.

For both the original x- and y- translation symmetries, the prolongation is equal

to the original symmetry. This is due to the coefficient in front of the partials being

a constant. The rotational symmetry prolongates to

X6
2 = −q22

∂

∂q12
+ q12

∂

∂q22
− q̇22

∂

∂q̇12
+ q̇12

∂

∂q̇22
.

To create a simplified set of reduced dynamics, a coordinate transformation will

be defined such that the reduced dynamics are all first order differential equations.

One such transformation is

φ3(q
1
2, q

2
2, q̇

1
2, q̇

2
2) =



arctan 2
(
q22
q12

)
(q12)2 + (q22)2 − d̂1

q̇12q
1
2 + q̇22q

2
2

(q̇12)2 + (q̇22)2 + ((q12)2 + (q22)2 − d̂1)2


=



s3

r1

r2

r3


.

Note that s3 is defined in a similar manner as the argument, or angle, of a com-

plex number expressed in exponential notation. As such, the same extended arctan

function, often expressed as arctan 2, will be used, where the inverse transformation

is

φ−13 (s3, r1, r2, r3) =


√
r1 + d̂1 cos s3√
r1 + d̂1 sin s3

 =

q12
q22

 .
The transformation φ−13 is used to write the system in the new coordinates. For

simplicity, only the q dynamics will be transformed, as the q dynamics do not depend
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on the s1 and s2 dynamics.

ṡ3 =

√
(r1 + d̂1)(r3 − (r1)2)− (r2)2/(r1 + d̂1)

ṙ1 = 2r2

ṙ2 = −2d̂1r
1 − r2 + r3 − 3(r1)2

ṙ3 = −2r3 + 2(r1)2,

where the original d1 is equal to r1. Note the s3 does not appear in any equation and

the s3 equation only needs to be solved if one wishes to know the orientation of the

formation.

4.3 Five-agent example

These results will be extended to five agents. Two cases will be worked out

simultaneously: Case I will have each agent only reference its nearest neighbor, while

Case II will have each agent reference its nearest neighbor and its second nearest

neighbor. Recall that nearest is defined with respect to the index of the agent and

not with regard to spatial distance. The two cases are shown in Figure 4.1a and 4.1b,

respectively.

For a general system of N agents, [14] states that a minimum of 2N−3 constraints

are needed to define a rigid formation. Therefore, Case I does not define a rigid

formation, while Case II can, provided that none of the constraints are in conflict.

Two constraints are in conflict if a formation is not possible; however, removing one

of the conflicting constraints will result in a formation being possible. Since it was

shown that symmetries are the same regardless of what the desired distances are, the

general case of the desired distances being unique will be used.
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(a) Case I (b) Case II

Figure 4.1. Neighbor graphs for the two five agent cases

The dynamics for Case I are

q̈10 = −q̇10 − d11(q10 − q30)− d1−1(q10 − q90)

q̈20 = −q̇20 − d21(q20 − q40)− d2−1(q20 − q100 )

q̈30 = −q̇30 − d31(q30 − q50)− d3−1(q30 − q10)

q̈40 = −q̇40 − d41(q40 − q60)− d4−1(q40 − q20)

q̈50 = −q̇50 − d51(q50 − q70)− d5−1(q50 − q30)

q̈60 = −q̇60 − d61(q60 − q80)− d6−1(q60 − q40)

q̈70 = −q̇70 − d71(q70 − q90)− d7−1(q70 − q50)

q̈80 = −q̇80 − d81(q80 − q100 )− d8−1(q80 − q60)

q̈90 = −q̇90 − d91(q90 − q10)− d9−1(q90 − q70)

q̈100 = −q̇100 − d101 (q100 − q20)− d10−1(q100 − q80)

d11 = d21 = d3−1 = d4−1 = (q10 − q30)2 + (q20 − q40)2 − d̂11

d31 = d41 = d5−1 = d6−1 = (q30 − q50)2 + (q40 − q60)2 − d̂31

d51 = d61 = d7−1 = d8−1 = (q50 − q70)2 + (q60 − q80)2 − d̂51

d71 = d81 = d9−1 = d10−1 = (q70 − q90)2 + (q80 − q100 )2 − d̂71

d91 = d101 = d1−1 = d2−1 = (q90 − q10)2 + (q100 − q20)2 − d̂91.
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The dynamics for Case II are

q̈10 = −q̇10 − d11(q10 − q30)− d1−1(q10 − q90)− d12(q10 − q50)− d1−2(q10 − q70)

q̈20 = −q̇20 − d21(q20 − q40)− d2−1(q20 − q100 )− d22(q20 − q60)− d2−2(q20 − q80)

q̈30 = −q̇30 − d31(q30 − q50)− d3−1(q30 − q10)− d32(q30 − q70)− d3−2(q30 − q90)

q̈40 = −q̇40 − d41(q40 − q60)− d4−1(q40 − q20)− d42(q40 − q80)− d4−2(q40 − q100 )

q̈50 = −q̇50 − d51(q50 − q70)− d5−1(q50 − q30)− d52(q50 − q90)− d5−2(q50 − q10)

q̈60 = −q̇60 − d61(q60 − q80)− d6−1(q60 − q40)− d62(q60 − q100 )− d6−2(q60 − q20)

q̈70 = −q̇70 − d71(q70 − q90)− d7−1(q70 − q50)− d72(q70 − q10)− d7−2(q70 − q30)

q̈80 = −q̇80 − d81(q80 − q100 )− d8−1(q80 − q60)− d82(q80 − q20)− d8−2(q80 − q40)

q̈90 = −q̇90 − d91(q90 − q10)− d9−1(q90 − q70)− d92(q90 − q30)− d9−2(q90 − q50)

q̈100 = −q̇100 − d101 (q100 − q20)− d10−1(q100 − q80)− d102 (q100 − q40)− d10−2(q100 − q60)

d11 = d21 = d3−1 = d4−1 = (q10 − q30)2 + (q20 − q40)2 − d̂11

d31 = d41 = d5−1 = d6−1 = (q30 − q50)2 + (q40 − q60)2 − d̂31

d51 = d61 = d7−1 = d8−1 = (q50 − q70)2 + (q60 − q80)2 − d̂51

d71 = d81 = d9−1 = d10−1 = (q70 − q90)2 + (q80 − q100 )2 − d̂71

d91 = d101 = d1−1 = d2−1 = (q90 − q10)2 + (q100 − q20)2 − d̂91

d12 = d22 = d5−2 = d6−2 = (q10 − q50)2 + (q20 − q60)2 − d̂12

d32 = d42 = d7−2 = d8−2 = (q30 − q70)2 + (q40 − q80)2 − d̂32

d52 = d62 = d9−2 = d10−2 = (q50 − q90)2 + (q60 − q100 )2 − d̂52

d72 = d82 = d1−2 = d2−2 = (q70 − q10)2 + (q80 − q20)2 − d̂72

d92 = d102 = d3−2 = d4−2 = (q90 − q30)2 + (q100 − q40)2 − d̂92.

It is not necessary to write out all of the symmetries as only three will be used
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for the reduction. The first two symmetries, for both cases, are

X2
0 =

∂

∂q10
+

∂

∂q30
+ · · ·+ ∂

∂q90

X3
0 =

∂

∂q20
+

∂

∂q40
+ · · ·+ ∂

∂q100
.

Note that these two symmetries correspond to the x− and y− translation, respec-

tively. Since these symmetries are mutually exclusive and quite simple, it is possible

to define a coordinate transformation that will take care of both symmetries at once.

One possible coordinate transformation, for both cases, is

s1 = q10 s2 = q20

r1 = q10 − q30 r2 = q20 − q40
...

...

r7 = q10 − q90 r8 = q20 − q100 .

As was done with the two-agent system, ri will be rewritten as qi1. The inverse

coordinate transformation is

q10 = s1 q20 = s2

q30 = s1 − q11 q40 = s2 − q21
...

...

q90 = s1 − q71 q100 = s2 − q81.
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This reduces the dynamics for Case I to

s̈1 = −ṡ1 − d11(q11)− d91(q71)

s̈2 = −ṡ2 − d11(q21)− d91(q81)

q̈11 = −q̇11 − d31(q31 − q11) + d11(q
1
1)

q̈21 = −q̇21 − d31(q41 − q21) + d11(q
1
1)

q̈31 = −q̇31 − d51(q51 − q31) + d31(q
3
1 − q11)

q̈41 = −q̇41 − d51(q61 − q41) + d31(q
4
1 − q21)

q̈51 = −q̇51 − d71(q71 − q51) + d51(q
5
1 − q31)

q̈61 = −q̇61 − d71(q81 − q61) + d51(q
6
1 − q41)

q̈71 = −q̇71 + d91(q
7
1) + d71(q

7
1 − q51)

q̈81 = −q̇81 + d91(q
8
1) + d71(q

8
1 − q60)

d11 = (q11)2 + (q21)2 − d̂11

d31 = (q31 − q11)2 + (q41 − q21)2 − d̂31

d51 = (q51 − q31)2 + (q61 − q41)2 − d̂51

d71 = (q71 − q51)2 + (q80 − q61)2 − d̂71

d91 = (q71)2 + (q81)2 − d̂91.
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The reduced dynamics for Case II are

s̈1 = −ṡ1 − d11(q11)− d91(q71)− d12(q31)− d72(q51)

s̈2 = −ṡ2 − d11(q21)− d91(q81)− d12(q41)− d72(q61)

q̈11 = −q̇11 − d31(q31 − q11) + d11(q
1
1)− d32(q51 − q11)− d92(q71 − q11)

q̈21 = −q̇21 − d31(q41 − q21) + d11(q
1
1)− d32(q61 − q21)− d92(q81 − q21)

q̈31 = −q̇31 − d51(q51 − q31) + d31(q
3
1 − q11)− d52(q71 − q31) + d12(q

3
1)

q̈41 = −q̇41 − d51(q61 − q41) + d31(q
4
1 − q21)− d52(q81 − q41) + d12(q

4
1)

q̈51 = −q̇51 − d71(q71 − q51) + d51(q
5
1 − q31) + d72(q

5
1) + d32(q

5
1 − q11)

q̈61 = −q̇61 − d71(q81 − q61) + d51(q
6
1 − q41) + d72(q

6
1) + d32(q

6
1 − q21)

q̈71 = −q̇71 + d91(q
7
1) + d71(q

7
1 − q51) + d92(q

7
1 − q11) + d52(q

7
1 − q31)

q̈81 = −q̇81 + d91(q
8
1) + d71(q

8
1 − q60) + d92(q

8
1 − q21) + d52(q

8
1 − q41)

d11 = (q11)2 + (q21)2 − d̂11

d31 = (q31 − q11)2 + (q41 − q21)2 − d̂31

d51 = (q51 − q31)2 + (q61 − q41)2 − d̂51

d71 = (q71 − q51)2 + (q80 − q61)2 − d̂71

d91 = (q71)2 + (q81)2 − d̂91

d12 = (q31)2 + (q41)2 − d̂12

d32 = (q51 − q11)2 + (q61 − q21)2 − d̂32

d52 = (q71 − q31)2 + (q81 − q41)2 − d̂52

d72 = (q51)2 + (q61)2 − d̂72

d92 = (q11 − q71)2 + (q21 − q81)2 − d̂92.

Note that the reduced system defined by s̈i and q̈i1 does not depend on sj, but it

37



does have ṡj terms. This means that it is possible to define a quadrature

si =

∫ ∞
0

pidt, pi = ṡi.

To continue the reduction, it is not necessary to find all of the symmetries, but

rather only the one that will be used to reduce the system. As with the two-agent

example, only the q-dynamics will be considered. This can be done by either the

process shown in Chapter 3, or by making an educated guess and testing if XH = 0.

The updated rotational symmetry is

X6
1 = −q21

∂

∂q11
+ q11

∂

∂q21
+ · · · − q81

∂

∂q71
+ q71

∂

∂q81
.

The number of si and rj terms for this coordinate transformation depends on

the number of constraints that the system formation has. If there are m ≤ 2N − 3

constraints, then j = 1, . . . ,m and i = 1, . . . , 2N −m− 2. For Case I of the five-

agent case, there will be five rj terms and three si terms. If there are more than

2N − 3 constraints, then it must be checked that there are no conflicting constraints.

For Case II of the five-agent case, this means that d92 can be written as a function

of the other dij terms, or d92 = f(d11, d
3
1, d

5
1, d

7
1, d

9
1, d

1
2, d

3
2, d

5
2, d

7
2). Since 2N − 3 is equal

to seven for five agents, it should be possible to define three dij terms as a function

of the remaining dij terms. Note that with seven constraints, the formation is rigid;

however, it can still be foldable. This means that it is possible to have a convex

and a concave pentagon as possible formations. These two possibilities are shown in

Figure 2.3. An additional constraint needs to be added to make it so that each agent

references at least three other agents. Further details and information on this topic

can be found in [1, 4, 14].

For Case I, there are five constraints. Therefore, there are three additional si
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terms and five rj terms. One possible set of coordinate transformations is

s3 = arctan 2

(
q21
q11

)
s4 = arctan 2

(
q41
q31

)
s5 = arctan 2

(
q61
q51

)
r1 = d11 = (q11)2 + (q21)2 − d̂11

r2 = d31 = (q31 − q11)2 + (q41 − q21)2 − d̂31

r3 = d51 = (q51 − q31)2 + (q61 − q41)2 − d̂51

r4 = d71 = (q71 − q51)2 + (q80 − q61)2 − d̂71

r5 = d91 = (q71)2 + (q81)2 − d̂91.

For Case II, there are ten constraints. Therefore, only one additional si term is

defined, and there are seven rj terms. One possible set of coordinate transformations

is

s3 = arctan 2

(
q21
q11

)
r1 = d11 = (q11)2 + (q21)2 − d̂11

r2 = d31 = (q31 − q11)2 + (q41 − q21)2 − d̂31

r3 = d51 = (q51 − q31)2 + (q61 − q41)2 − d̂51

r4 = d71 = (q71 − q51)2 + (q80 − q61)2 − d̂71

r5 = d91 = (q71)2 + (q81)2 − d̂91

r6 = d12 = (q31)2 + (q41)2 − d̂12

r7 = d32 = (q51 − q11)2 + (q61 − q21)2 − d̂32.

Recall that arctan 2 is the extended arctan function, where the inverse transfor-
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mation is

φ−13 (s3, r1) =


√
r1 + d̂11 cos s3√
r1 + d̂11 sin s3

 =

q12
q22

 .
The advantage of defining the coordinate transformation this way is that the

origin of the rj dynamics for both cases is the set of all possible formations. Now

the inverse coordinate transformation, renaming the rj to qj2, and calculating the qj2

dynamics can be done as before.

4.4 Extension of method for N agents

There are several different ways to extend these results to the general system. It is

possible to pick s1 = q10 again, or one can use an average of all of the odd coordinates.

For simplicity and ease of notation,

s1 = q10, s2 = q20,

where s1 corresponds to X2
0 and s2 corresponds to X3

0 , where

X2
0 =

∂

∂q10
+

∂

∂q30
+ · · ·+ ∂

∂q2N−10

X3
0 =

∂

∂q20
+

∂

∂q40
+ · · ·+ ∂

∂q2N0
.

Note that these two symmetries correspond to the x− and y− translation, respec-

tively. Since these symmetries are mutually exclusive and quite simple, it is possible

to define a coordinate transformation that will take care of both symmetries at once.

40



One possible coordinate transformation is

s1 = q10 s2 = q20

r1 = q10 − q30 r2 = q20 − q40
...

...

r2N−3 = q10 − q2N−10 r2N−2 = q20 − q2N0 .

As was done with the two coordinate system, ri will be rewritten as qi1. The

inverse coordinate transformation is

q10 = s1 q20 = s2

q30 = s1 − q11 q40 = s2 − q21
...

...

q2N−10 = s1 − q2N−31 q2N0 = s2 − q2N−21 .

The system of equations written in the new coordinates is now

s̈1 = −ṡ1 −
∑
j∈Ñs1

ds
1

j (qj1)

s̈2 = −ṡ2 −
∑
j∈Ñs2

ds
2

j (qj1)

q̈i1 = −q̇i + ṡ(3+(−1)i)/2 +
∑
sj∈Ñi

ds
j

i (qi1)−
∑
j∈Ñi

dij(q
i
1 − q

j
1)

ds
1

j = (qj1)
2 + (qj+1)2 − d̂s1j

ds
2

j = (qj−11 )2 + (qj1)
2 − d̂s2j

dij = (qi − ql)2 + (qk − qm)2 − d̂ij,

where i ∈ {0, . . . , 2N − 2} , k = i − (−1)i, l = i + 2j (mod 2N − 2), m = k + 2j
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(mod 2N − 2), and care needs to be taken to ensure that Ñi is defined properly to

be consistent with the original system.

Note that the reduced system defined by s̈i and q̈i1 does not depend on sj, but it

does have ṡj terms. This means that it is possible to define a quadrature

si =

∫ ∞
0

pidt, pi = ṡi.

To continue the reduction, it is not necessary to find all of the symmetries, but

rather only the one that will be used to reduce the system. As with the two-agent

case, only the q-dynamics will be considered. The updated rotational symmetry is

X6
1 = −q21

∂

∂q11
+ q11

∂

∂q21
+ · · · − q2N−21

∂

∂q2N−31

+ q2N−31

∂

∂q2N−21

.

From here one can choose to use s3 = arctan 2
(
q21
q11

)
again, or any other combi-

nation of the qj’s that results in X6
1s

i = 1. A similar extension of the ri’s for the

five-agent coordinate transformation can be used to define the coordinate transfor-

mation for the general case. Recall that the number of si and rj terms will depend

on the number of constraints, which is based on the number of neighbors an agent

references. If the agents that a given agent references are set arbitrarily, then it can

be beneficial to construct the neighbor graph as a visual aid. Recall that in order

for a formation to be rigid and not foldable, each agent must reference at least three

other agents [1].

A key point to remember is that the control law determines which formations

are possible, while the individual symmetries specify how these formations can move

in space and still be a solution to the dynamics. Therefore, the appearance of the

neighbor graph and the number of discrete reflection symmetries that it may or may

not have, play no role in the number of continuous individual symmetries for the

system.
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It is also important to note that these coordinate transformations are found based

on the symmetries. Therefore, if another second order system of equations is found

to have the symmetries X2
0 , X

3
0 , and X6

0 , it is possible to use the same coordinate

transformation to reduce the system.
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CHAPTER 5

STABILITY ANALYSIS

5.1 Stability analysis for the original system

The system of interest can be expressed in x and y coordinates for each agent as

ẍi = −ẋi −
∑
j∈Ni

(xi − xj)dij

ÿi = −ẏi −
∑
j∈Ni

(yi − yj)dij,

with

dij = (xi − xj)2 + (yi − yj)2 − d̂ij,

where d̂ij is the square of the desired distance between agents i and j.

For this system, consider

Vi =
1

2
((ẋi)

2 + (ẏi)
2) +

1

8

∑
j∈Ni

(dij)
2,

with V =
∑N

i=1 Vi. This then gives

V̇ = −
N∑
i=1

((ẋi)
2 + (ẏi)

2).

This is negative semi-definite, which means that it is not possible to infer asymptotic

stability from Lyapunov’s Theorem. One might infer notions of asymptotic stability

properties from LaSalle’s Principle. However, it is not straightforward to define an
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invariant compact set containing all of the desired formations, as the initial conditions

play a significant role in determining where the formation will be in space. In [8],

this was addressed in the examples by adding a term to the control attracting the

formation to the origin. This allows for the identification of an invariant compact set

which can be used for LaSalle’s Principle. Then, using the discrete symmetry, scaling

of O(0) was obtained where the order is with respect to the number of agents in the

system.

5.2 Lyapunov stability for the reduced two-agent system

Alternatively, one can use the reduced coordinates found in the prior chapter to

show Lyapunov stability. Recall that the reduced coordinates are

r1 = (x1 − x2)2 + (y1 − y2)2 − d̂12

r2 = (x1 − x2)(ẋ1 − ẋ2) + (y1 − y2)(ẏ1 − ẏ2)

r3 = (ẋ1 − ẋ2)2 + (ẏ1 − ẏ2)2 + ((x1 − x2)2 + (y1 − y2)2 − d̂12)2,

and the dynamics are given by

ṙ1 = 2r2

ṙ2 = −2d̂12r
1 − r2 + r3 − 3(r1)2

ṙ3 = −2r3 + 2(r1)2.

Note that the origin of this system is the set of all possible formations. Therefore,

showing stability of the origin for this system is equivalent to showing stability of the
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formation. Consider the candidate Lyapunov function

V =
1

2

[
r1 r2

]2d̂12
1
4

1
4

2


r1
r2

+ (r3)2,

which gives

V̇ =

[
r1 r2 r3

]
− d̂12

2
− 3

40
1
8

− 3
40
−3

2
1

1
8

1 −2



r1

r2

r3


− 3

4
(r1)3 + 2(r1)4 − 6(r1)2r2 − 2((r1)2 + r3)2.

Using

[
r1 r2 r3

]
− d̂12

2
− 3

40
1
8

− 3
40
−3

2
1

1
8

1 −2



r1

r2

r3

 ≤ λmax((r
1)2 + (r2)2 + (r3)2),

it is possible to define a domain that proves that the origin is stable, where λmax is

the maximum eigenvalue for the matrix. For illustrative purposes, a value of d̂12 = 1

will be used; however, it is possible to show stability for values larger than 0.153

with this Lyapunov function. Note that d̂12 must be greater than 0.03125 for the

Lyapunov function to be positive definite. This then gives

V̇ ≤− 0.48((r1)2 + (r2)2 + (r3)2)− 2((r1)2 + r3)2 − 3

4
(r1)3 + 2(r1)4 − 6(r1)2r2,

which is negative semi-definite for all values of ri and negative definite for −0.136 ≤

r1 ≤ 0.172. Recall that this shows Lyapunov stability for the origin, which is the set

of all possible formations.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In summary, the method for using symmetries to reduce a system of second order

differential equations as taken from [18] was presented and applied to a multi-agent

system. The multi-agent system of interest drives the agents to a desired formation

in planar space. A future goal is to use the reduced dynamics to show stability of the

formation, or the ability of the agents to obtain the desired formation. This is very

difficult to show for the unreduced coordinates. The final orientation and location

of the formation is not needed for showing formation stability. Therefore, symmetry

analysis is useful in separating the orientation and location of the formation and the

dynamics for the formation.

The definition of a symmetry was presented along with a way to find all of the

symmetries for a system of second order differential equations. The method was

applied to the system of interest, and a computer program was presented to assist

in the calculation. A simplifying assumption on which neighbors an agent references

was used in the computer program. The result of the computer program was checked

with the definition of a symmetry and was shown to hold for the general system of

interest with a connected undirected neighbor graph. Brief extensions for directed

and unconnected neighbor graphs were also presented. Through the verification of the

results, the general symmetry was split into individual symmetries that corresponded

to actions, such as a shift in the x- and y-directions and rotation about the origin.

It was shown that regardless of the number of agents in the system, the number of

individual symmetries remained the same, except for the special case of three agents.
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This result is independent of how many neighbors an agent references; however, an

agent needs to reference at least three agents in order for a formation rigid and not

foldable. The minimum number of constraints for a formation to be rigid was shown

to correspond to the dimension of the reduced dynamics for a rigid formation.

The reduction process was demonstrated on the system of interest by using the

individual symmetries corresponding to a constant shift in the x- and y-directions

and planar rotation. Formation stability analysis was done for the two-agent case

by utilizing the reduced dynamics. Two cases were presented for the five-agent case,

one that was an under-constrained formation and one that was fully constrained,

producing a rigid and not foldable formation. The reduction process was shown for

both cases with comments on how the dimension of the reduced space corresponds to

the rigidity of the formation. The results were generalized to N agents and noted that

if a system of second order systems has the individual symmetries corresponding to

a constant shift in the x- and y-directions and a planar rotation, then the coordinate

transformation used to reduce the system would also apply to the new system.

Future work would include showing stability for the two different five-agent cases

and eventually the general N agent case. Since it is possible to over-constrain the

formation, it would be beneficial if stability could be shown in a way such that losing

the extraneous constraints would still result in stability. The coordinate transfor-

mations presented were based on the individual symmetries. Therefore, it should be

possible to define constraints on a system of second order equations such that these

coordinate transformations would reduce the system. With this result it would be

interesting to see if the reduction could be applied to systems that describe motion

or properties not related to formations.
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APPENDIX A

MATHEMATICA PROGRAM USED TO SOLVE THE SYMMETRY EQUATION

(* Program for computing the symmetries for the system

Subscript[x, i]’’[t]=-Subscript[x, i]’[t]-Subscript[\[CapitalSigma],\

j\[Element]Subscript[\[ScriptCapitalN], i]] \

Subscript[d,ij](Subscript[x, i][t]-Subscript[x, j][t]);

Subscript[y, i]’’[t]=-Subscript[y, i]’[t]-Subscript[\[CapitalSigma],\

j\[Element]Subscript[\[ScriptCapitalN], i]] \

Subscript[d, ij](Subscript[y, i][t]-Subscript[y, j][t]);

Subscript[d, ij]=(Subscript[x, i][t]-Subscript[x, j][t])^2 \

+ (Subscript[y, i][t]-Subscript[y, j][t])^2 \

-Subscript[Overscript[d,^], ij];

where Subscript[Overscript[d,^], ij] is the desired distance between\

agents i and j, where agent j is in the neighborhood, \

Subscript[\[ScriptCapitalN], i], of agent i.;

--------------------------------------------------------------------;

Made on June 3, 2014 by Ashley Nettleman (kulczyc2@gmail.com)

with comments added on October 19, 2014.

--------------------------------------------------------------------;

Formula for computing the symmetries for a system of second order

differential equations is found in Hans Stephani’s book

"Differential Equations: Their solution using symmetries".;

Preliminary work was done to simplify the symmetry condition
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\[Xi] is a constant

\[Eta] is comprised of a time based term (\[Beta](t)) and a

linear combination of the position terms which is expressed as

a matrix product for visual purposes.;

--------------------------------------------------------------------;

Inputs

NumberofAgents: Specify the number of agents for the system

NumberofNeighbors: Specify how far in one direction an agent will

look. The program takes this input and references this number of

agents to the left and right of the given agent.;

--------------------------------------------------------------------;

Outputs

None directly. However, it is possible to obtain any information

desired by calling out these terms;

MyEtas/. gamSol//Simplify - This gives the \[Eta] terms;

MyGammas/.gamSol//Simplify//MatrixForm - This gives the \

\[CapitalGamma] matrix;

ControlLaws - This outputs the control laws, or the system of

interest, created from the two inputs;

gamSol - This contains the constraints on the \[Gamma] terms that

are necessary to satisfy the symmetry condition;

Note that is possible to switch from the intial assumptions to the

final result by adding "/.gamSol". For instance "MyEtas" will

give the intial values for the \[Eta] terms and "MyEtas/. gamSol"

will give the final result;

--------------------------------------------------------------------;
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Run the program by either going to Evaluation \[Rule] Evaluate

Notebook or by clicking in a cell and pressing Shift+Enter;

Note that there are two cells to the progam. The first cell sets up

the intial values and assumptions. The second cell solves the

symmetry condition equations;

--------------------------------------------------------------------;

*)

ClearAll["Global‘*"] (* Clears all variables *)

NumberofAgents = 3; (* Input number of agents *)

NumberofNeighbors = 1; (* Input for how far in each direction

the control law will reference *)

(* Only edit the items after the line if you know what you are doing;

--------------------------------------------------------------------;

*)

(* The Array command is used to create a convenient way to create

the variables and store them *)

myVar = Array[myq, 2 NumberofAgents];

DmyVar = Array[myqd, 2 NumberofAgents];

desiredDist = Array[mydn, NumberofNeighbors+1, 0];

ControlLaws = Array[myw, 2 NumberofAgents];

MyEtas = Array[eta, 2 NumberofAgents];

MyGammas = Array[gam, {2 NumberofAgents, 2 NumberofAgents}];

SymmetryEqs = Array[symeq, 2 NumberofAgents];

(* This function takes the index of an agent and calculates the
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error between the actual distance and the desired distance of

the agent and an agent a given distance away. *)

mydist[qIndex_, nIndex_] = (myq[qIndex]-myq[Mod[qIndex+2 nIndex,

2 NumberofAgents,1]])^2+(myq[qIndex-(-1)^qIndex]

-myq[Mod[qIndex-(-1)^qIndex +2nIndex, 2 NumberofAgents,1]])^2

-mydn[Abs[nIndex]];

(* The control law is created based on the number of agents and

the number of neighbors an agent references. *)

For[myi=1, myi<= 2 NumberofAgents, myi++,

myw[myi] = -myqd[myi]- Sum[mydist[myi, myn](myq[myi]

-myq[Mod[myi+2myn, 2 NumberofAgents,1]]),

{myn, -NumberofNeighbors, NumberofNeighbors}];];

(* The initial form for the \[Eta] terms *)

For[myi=1, myi<= 2 NumberofAgents, myi++,

eta[myi]=Sum[gam[myi,myj]myq[myj], {myj, 1, 2 NumberofAgents}]

+ beta[Mod[myi,2,1],1]+ beta[Mod[myi,2,1],2] Exp[-t];];

(* The symmetry condition equations with the control law and initial

form for the symmetry substitued in. *)

For[mya=1, mya<= 2 NumberofAgents, mya++,

symeq[mya]=xi D[myw[mya],t]+Sum[eta[myb] D[myw[mya], myq[myb]],

{myb, 1, 2 NumberofAgents}]+ Sum[(D[eta[myb], t]

+Sum[myqd[myc]D[eta[myb], myq[myc]],{myc, 1, 2 NumberofAgents}]

-myqd[myb]D[xi,t]-Sum[myqd[myb]myqd[myc]D[xi, myq[myc]],

{myc, 1, 2 NumberofAgents}])D[myw[mya], myqd[myb]],
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{myb, 1, 2 NumberofAgents}]+2 myw[mya](D[xi,t]

+Sum[myqd[myb] D[xi, myq[myb]],{myb, 1, 2 NumberofAgents}])

+ Sum[myw[myb](myqd[mya] D[xi, myq[myb]]

-D[eta[mya], myq[myb]]),{myb, 1, 2 NumberofAgents}]

+Sum[myqd[mya]myqd[myb]myqd[myc]D[xi, myq[myb], myq[myc]],

{myb, 1, 2 NumberofAgents}, {myc, 1, 2 NumberofAgents}]

+ Sum[2 myqd[mya] myqd[myc] D[xi, t, myq[myc]],

{myc, 1, 2 NumberofAgents}]-Sum[myqd[myc]myqd[myb] D[eta[mya],

myq[myb], myq[myc]],{myb, 1, 2 NumberofAgents},

{myc, 1, 2 NumberofAgents}]+myqd[mya]D[xi, {t,2}]

-Sum[2 myqd[myb]D[eta[mya], t, myq[myb]],

{myb, 1, 2 NumberofAgents}]- D[eta[mya], {t,2}];];

gamSol = {}; (* Reset the value back to empty if it isn’t already *)

(* Since the only variables left to solve are the \[Gamma] terms,

which are constants, it is possible to split the symmetry

condition equation into multiple equations based on the powers

of the position terms.;

From prior work, the highest power of the position terms will be a

third order term. A convenient way to collect the coefficients of

each of these terms, especially since the coefficients will be set

equal to zero, is to take the partial derivative with respect to

each of the three variables that comprise the third order term.;

The program goes through all of the possible third partial

derivatives and stops only after it has made it through all

possibilities or if the symmetry condition equation is equal to
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zero.;

When the symmetry condition equation is equal to zero, there are

no further constraints that can be set on the \[Gamma] terms. *)

For[CurrentEq=1, CurrentEq <= 2 NumberofAgents, CurrentEq++,

loopCont = True;

testEq =Expand[symeq[CurrentEq]/. gamSol];

If[testEq== 0, Continue[]];

For[myi=1, loopCont && myi<= 2 NumberofAgents, myi++,

For[myj=1, loopCont && myj<= 2 NumberofAgents, myj++,

For[myk=1,loopCont && myk<= 2 NumberofAgents, myk++,

{runningSol}=Quiet[Solve[D[testEq, myq[myi], myq[myj],

myq[myk]]==0,Flatten[MyGammas]]];

If[runningSol== {}, Continue[]];

gamSol=Append[gamSol/.runningSol[[1]], runningSol[[1]]];

testEq=Expand[symeq[CurrentEq]/. gamSol];

If[ testEq== 0,loopCont = False];]]]]
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