BIFURCATIONS AND SYMMETRIES OF OPTIMAL SOLUTIONS FOR
DISTRIBUTED ROBOTIC SYSTEMS

A Dissertation

Submitted to the Graduate School
of the University of Notre Dame
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Baoyang Deng,

Bill Goodwine, Director

Graduate Program in Aerospace and Mechanical Engineering
Notre Dame, Indiana

March 2011

BIFURCATIONS AND SYMMETRIES OF OPTIMAL SOLUTIONS FOR
DISTRIBUTED ROBOTIC SYSTEMS

Abstract
by
Baoyang Deng

In this thesis, we consider the motion planning problem for a symmetric distributed
system which consists of a group of autonomous mobile robots operating in a two-
dimensional obstacle-free environment. Each robot has a predefined initial state and
final state and the problem is to find the optimal path between two states for every
robot. The path is optimized with respect to the control effort and the deviation from a
desired formation. Due to scaling issues, it becomes more and more difficult and some-
times infeasible to numerically find solutions to the problem as the number of robots
increases. One goal of this thesis is to exploit symmetries in distributed control systems
to reduce the computational effort to determine solutions for optimal control of such
systems. One way to characterize a distributed system is that it is a control system in
which the state space is naturally decomposed into multiple subsystems, each of which
typically only interacts with a limited subset of the other subsystems. A symmetric dis-
tributed system can be defined when the subsystems are diffeomorphically related. The
optimal control problem for distributed systems may not scale well with the size of the
overall system; hence, our efforts are directed toward exactly solving the optimization
problem for large scale systems by working with a reduced order model that is deter-
mined by considering invariance properties with respect to certain group actions of the

governing equations of the overall system.

Baoyang Deng

This thesis also studies bifurcations and multiple solutions of the optimal control
problem for mobile robotic systems. While the existence of multiple local solutions
to a nonlinear optimization problem is not unexpected, the nature of the solutions are
such that a relatively rich and interesting structure is present, which potentially could
be exploited for controls purposes. The bifurcation parameter is the relative weight
given to penalizing the deviation from the desired formation versus control effort. Nu-
merically it is shown that as this number varies, bifurcations of solutions are obtained.
Theoretic results of this paper relate to the symmetric properties of these bifurcations
and the number and existence of multiple solutions for large and small values of the
bifurcation parameter. Understanding the existence and nature of multiple solutions for
optimization problems of this type is also of practical importance due to the ubiquity of
gradient-based optimization methods where the search method will typically converge

to the nearest local optimum.

CONTENTS

FIGURES e iv
ACKNOWLEDGMENTS e e e e Vi
CHAPTER 1: INTRODUCTION e e e 1
1.1 MotionPlanning 3
1.1.1 CentralizedPlanners 4
1.1.2 DecentralizedPlanners 5
1.2 FormationControl 7
1.2.1 Leader-following Method 7
1.2.2 Behavior-basedMethods 9
1.2.3 \Virtual Structure Methods 11
1.3 Multiple Solutions of Second Order Ordinary Differential Equations . . 12
1.4 Organization. i 16
CHAPTER 2: MATHEMATICAL BACKGROUND 18
2.1 Differential Geometry 18
22 GroupTheory e 20
2.3 GraphTheory 23
2.4 Symmetric Distributed Systems 24
CHAPTER 3: SYMMETRIC PROPERTIES OF A DISTRIBUTED SYSTEM
MADE OF MICABOTS o e e e e e e e e e e e e 31
3.1 Prototypical Model: MICAbots 31
3.2 Problem Statement 33
3.3 Equationsof Motion 36
3.4 Algorithm e 41
3.5 Symmetry in Distributed Systems L. 47

CHAPTER 4: BIFURCATION RESULTS OF A DISTRIBUTED SYSTEMS
MADE OF UNICYCLES

............................ 57
4.1 BifurcationResults 59
4.1.1 Solutions for a Five Robot System 60
4.1.2 Solutions for a Six Robot System 64
4.1.3 Solutions for a Seven Robot System 69
4.2 Optimization Software iISIGHT 69
4.3 Asymptotic Analysis 76
431 Smalk 78
432 Largek 82
4.4 Symmetries in the Bifurcation Diagrams 83
CHAPTER 5: CONCLUSIONS AND FUTUREWORK 89
APPENDIX A: RELAXATION SHOOTING METHOD PROGRAM 92
BIBLIOGRAPHY e 114

FIGURES

2.1 Graph of the four component system given in Example 3.4.4. 27
2.2 Graph symmetrg acting on the four component system. 28
3.1 Sketchof MICAbot. 32
3.2 Graph theoretic representation of the distributed system. 33
3.3 Liesymmetry. e 41
3.4 lllustration of the algorithm. 43
3.5 lllustration of symmetry trajectories. 45
3.6 Five side regular polygon formation. 52
3.7 Trajectoriesofateamoffiverobots. 53
3.8 Trajectories of ateam of sixrobots. 55

3.9 The optimal costates of the 2nd robot verse time for six robots system. . 56

4.1 Optimal paths for the five robot system wikh-24.5. 60

4.2 Difference among the optimal paths for robot three. 61
4.3 Bifurcation diagrams for robot one in a 5-robotic system. 62
4.4 Bifurcation diagrams for robot two in a 5-robotic system. 62
4.5 Bifurcation diagrams for robot three in a 5-robotic system. 63
4.6 Bifurcation diagrams for robot four in a 5-robotic system. 63
4.7 Bifurcation diagrams for robot five in a 5-robotic system. 64
4.8 Optimal paths for a six robot systemwkhk=-24.5. 65

4.9 Difference among the optimal paths for robot three. 65
4.10 Bifurcation diagrams for robot one in a 6-robotic system. 66
4.11 Bifurcation diagrams for robot two in a 6-robotic system. 66
4.12 Bifurcation diagrams for robot three in a 6-robotic system. 67
4.13 Bifurcation diagrams for robot four in a 6-robotic system. 67

414
4.15
4.16
4.17

4.18
4.19
4.20
421
4.22
4.23
4.24
4.25
4.26

5.1

Bifurcation diagrams for robot five in a 6-robotic system. 68
Bifurcation diagrams for robot six in a 6-robotic system. 68
Optimal paths for a seven robot system wita23. 70
Difference among the optimal paths for robot four magnified by a factor

Of 5. . . e 70
Bifurcation diagrams for robot one in a 7-robotic system. 71
Bifurcation diagrams for robot two in a 7-robotic system. 71
Bifurcation diagrams for robot three in a 7-robotic system. 72
Bifurcation diagrams for robot four in a 7-robotic system. 72
Bifurcation diagrams for robot five in a 7-robotic system. 73
Bifurcation diagrams for robot six in a 7-robotic system. 73
Bifurcation diagrams for robot seven in a 7-robotic system. 74
ISIGHT model layout. 75
Optimal trajectories solved by iISIGHT. 77
First bifurcation point versus the number of robots in a system. 91

ACKNOWLEDGMENTS

I would like to express my gratitude to those who made an important difference and
played a vital role in the successful completion of my Doctoral studies at the Univer-
sity of Notre Dame. | am grateful to my advisor Professor Bill Goodwine whose help,
stimulating suggestions and encouragement helped me in all the time of research and
writing of this thesis. Professor Mihir Sen provided valuable advice and insight towards
my work. | am very thankful for his opinion and guidance during the course of my the-
sis. I would like to thank Professor Panos Antsaklis, Professor John Renaud, Professor
Mihir Sen and Professor Bill Goodwine for agreeing to be the members of my thesis
committee and for taking the time to read my thesis and provide valuable suggestions.

I would like to thank my former and present colleagues, Brett McMickell, Neil
Petroff, Dayu Lv, Jason Nightingale and Alice Nightingale for all their help, support,
valuable hints.

I would like to give my special thanks to my husband whose patient love enabled
me to complete this work. Thanks to my parents who gave me the love, education,

skills, and constant support that enabled me to do this work.

Vi

CHAPTER 1

INTRODUCTION

Research on multi-robot systems originates in the late 1980s and increased substan-
tially in the 1990s. Compared to a single-robot system, it may cost less in time and
money to construct multiple simple robots and have those robots can work simultane-
ously to perform cooperative tasks. Also, the multi-robot system may be more robust
and reliable than a single-robot system. Hence they have been the focus of increased
research effort and attention in recent years. The application of distributed systems
are everywhere: unmanned underwater vehicles [48], satellite clustering [36], electric
power system [44], search and rescue operations [25] and so on.

Although each robot in a distributed system may possess a simple and tractable
model and it may interact its neighbors in a very simple way, the resulting system
often displays a rich and complex behavior when viewed as a whole. Since the robots
in a distributed system work together to accomplish one task, coordination between
robots are needed. Having multiple robots in a limited area may cause interference and
collisions. Therefore, the control of a distributed system is more difficult than that of
a single robotic system and it is a challenging topic in recent years. Especially when
the number of the subsystems increases, the state space of the whole system becomes
huge.

In this thesis, the problem addressed is to control a formation of robots moving

along an optimal path between an initial configuration and a final configuration. The

path is optimized with respect to a combination of the corgffdrt and the deviation
from a desired formation. Using standard methods from optimization, since each robot
has its own predefined initial state and final state, the procedure to find the optimal
path is to solve a boundary value problem for a set of second order ordinary differential
equations. Since those equations are highly nonlinear, it is not feasible to determine
closed form solutions. We develop a relaxation shooting method to solve them numeri-
cally. Theoretically, the method will work for a system with arbitrary large state space.
But in fact, convergence issues prevent finding a solution when a system is too large.
So one task here is to find a way that reduces the dimension of the state space of a
large distributed system to a smaller one which is more manageable. The reduced state
space should be “equivalent” to the larger state space in some sense. We will discuss
the meaning of “equivalent” in later chapter. The idea behind this reduction is that a
distributed system could have symmetric structure since the subsystems are identical
to each other. We have the detailed definition of symmetric distributed system in this
thesis. We exploit the symmetric properties of the distributed system to reduce it to a
smaller one. Since the optimal control problem for distributed systems may not scale
well with the size of the overall system, we work on this reduced order model to find
the optimal trajectory for each robot in the reduced small system. Then, we can exactly
solve the optimization problem for the original large scaled system by considering in-
variance properties with respect to certain group actions of the governing equations of
the overall system reduced computational effort. Note that these results are general in
that they will apply to any optimization problem for any type symmetric systems, not
just for controls problems.

We defined the motion planning problem for a group of robots which result in solv-

ing a system nonlinear second order boundary value problems. The study for coordi-

nated control of distributed systems has been developedday iyears and overview

of the literature appears in the next section. Also, the boundary value problem arises
in a variety of different areas of applied mathematics and physics and the existence of
nontrivial solutions has been paid much attention. These results are also outlined in the

next section.

1.1 Motion Planning

The problem of motion planning is to deal with finding a feasible trajectory for a
robotic system from a given initial configuration to a goal configuration, while satisfy-
ing some constraints.

Motion planning algorithms for single robot systems have been intensively dis-
cussed for years and the research on motion planning for mobile robots is vast. In the
area of mobile robots, time optimal motion planning for a single car-like robot has been
thoroughly studied. Dubins [14] proved the existence of shortest paths and provided a
sufficient family of trajectories containing an optimal path to link any two configura-
tions for a vehicle that can only move forward and is subject to curvature bounds. Paths
in this family are at most three pieces of either arcs of circles with minimum radius
or straight line segments. Reeds and Shepp [45] extended Dubins’ results to a vehicle
that can drive both forward and backward with a constant velocity. They proved that a
shortest path in a free environment may always be one of 48 simple paths which con-
sist of at most five pieces straight line segments or arcs of circle with minimum radius.
In 1991, Sussmann and Tang [50] gave new proof of Dubins’ results and Reeds and
Shepp’s results using Pontryagin’s Maximunm Principle. They reduced the path family
to 46 different paths and their result is an improvement of the Reeds and Shepp’s. In

1994, Buiet al.[54] performed a complete optimal path synthesis for Dubins robots.

Although most mobile robotic systems involving a single roten operate alone in
its environment, many researchers have considered the problems and potential advan-
tages involved in having an environment inhabited by a team of robots which cooperate
in order to complete some required task. For some specific tasks such as search and
rescue operations [25], cleaning up toxic waste [34] and pushing boxes [35], it would
be more effective to send a number of smaller and simple robots to perform the task
than sending one very complex and expensive robot. Since each individual robot is
simple and cheap, using multiple robots can have several advantages such as the result-
ing system can be more economical and scalable and less susceptible to overall failure
than a system with one robot. In order to complete one whole task, the robot must com-
municate with others and the coordination of the robots is very important. However, as
the number of robots and degrees of freedom of the system become large, the control
of the system becomes difficult which has been the focus of much research interest in
recent years. On the other hand, broad applications in multiple robots systems call for
practical and efficient motion planning strategies.

The multi-robot motion planning algorithms can be roughly grouped into two cat-
egories: centralized motion planning [18] and decentralized motion planning [24] ac-

cording to the information handling structure among robots.

1.1.1 Centralized Planners

In a multi-agent system, a central planner designs the motion plan for all robots
based on full knowledge about the environment. This approach fits better purely com-
putational problems rather than tasks that rely on real-time feedback control. The ob-
vious advantage is its conceptual simplicity. It allows the possibility of global opti-

mization. The price for this convenience is the computationally intensity due to high

dimensional configuration spaces. Most of the literature emtralized approach con-
centrates on decreasing the computational cost. This is typically achieved at the expense
of completeness. In Kant and Zucker [26] the task is divided into two subtasks. Each
robot’s path is determined taking into account only stationary obstacles. With the paths
fixed, velocities of all the robots are then adjusted avoiding collisions. Erdmann and
Lozano-Perez [18] explore the motion planning problem for multiple moving robots.
The approach assigns priorities to robots in advance, then plans motions one robot at a
time. For each moving robot, the planner constructs a configuration space-time that rep-
resents the time varying constraints imposed on the moving robot by the other moving
and stationary robots. This approach was demonstrated in two domains: one domain
consisting of translating planar objects and the other one consisting of two link planar
articulated arms.

One merit of the centralized planners is that they allow the possibility of complete-
ness and global optimization. A drawback of most centralized planners is that they are
computationally intensive due to high dimensional configuration spaces. This leads to

search high dimensional configuration spaces quickly at the cost of losing optimality.

1.1.2 Decentralized Planners

Decentralized control has two obvious advantages. In principle, computational
complexity of a decentralized system can be made independent of the number of agents
in it, and it may be more stable and robust. Also a failure of one or few agents does
not necessarily affect the whole system. On the negative side the decentralized control
is less likely to deliver optimal performance since it might only use local information.
Hence, many decentralized algorithms exist that search for near-optimal solutions.

In decentralized methods, each robot plans individually for itself by means of col-

lecting information from other robots and environmentabmmfiation around the robot.
Belta and Kumar [6] propose a modern geometric approach to design trajectories for
teams of robots. First, they consider the problem of generating minimum kinetic energy
motion for a rigid body in a 3D environment. Then, they illustrate a procedure of opti-
mal motion planning for groups of robots required to maintain a rigid formation. The
overall procedure is invariant with respect to both the local coordinates and the choice
of the inertial frame.

Guo and Parker [24] use altering velocity to produce a distributed planner that tries
to optimize trajectories. First, each robot plans its own trajectory independently. Then
a coordination diagram is constructed based on collision checks among all robot paths.
This scheme was demonstrated both in simulations and on physical Nomad robots.

One of the fundamental problems in the coordinated control of distributed systems
IS consensus seeking among agents. In order for agents to coordinate their behaviors,
they have to use some shared knowledge about variables such as position, speed etc.
This shared information is a necessary condition for cooperation in multi-agent sys-
tems. Several consensus protocols have been proposed in the literature. Most con-
sensus protocols operate in a synchronized fashion [21], and each agents’s decisions
must be synchronized to a common clock shared by all other agents in the group. This
might not be natural in certain context, and Lei Fang, Panos Antsaklis [19, 20] proposed
an asynchronous consensus protocol, where each agent updates on its own pace, and
uses the most recently received information from other agents. It encompasses those

synchronous ones with various communication patterns.

1.2 Formation Control

The formation problem in multi-robot systems is defined as the coordination of a
team of robots to get into and maintain a formation with a certain shape. Current ap-
plications of formation control include unknown environments exploration [2], search
and rescue operations [25], traffic control [1, 53], satellite clustering [36] and holding
and transporting objects [11, 56].

Formation control is an important issues in coordinated control for a collection of
robots. Many control approaches have been used to solve the problems in formation
control, for example, leader-follower method [9, 10, 12, 13, 15, 28], behavior-based

method [2, 3, 32, 33, 49], virtual structure method [6, 29, 51, 55] and so on.

1.2.1 Leader-following Method

In the leader-follower method, each robot has at least one designated leader. Leaders
can be some robots in the group or virtual robots that represent pre-computed trajectory
supplied by a higher level planner. The other robots are followers that try to maintain
a specified relative configuration to their leaders. This method can control the team of
robots behaviors if the leader’s behavior is given. However there is no obvious feedback
from the followers to their leaders, so the whole system is more susceptible to overall
failure.

Desai,et al. [9, 10, 13] propose a graph theoretic framework for the control of a
team of robots moving in an terrain with obstacles while maintaining a desired forma-
tion. The behaviors of robots in the formation are defined by using a control graph.
This framework can handle transition between formatiaes,between control graphs,
and they define the transition matrix to model transition from one control graph to an-

other. It requires to enumerate and classify control graphs given in order to prove the

mathematical results. When the number of robots increasesgtiputations for con-
trol graphs will increase. But these computations are decentralized, which allows the
methods to be scalable to large number of robots.

In another paper, Desagt al. [12] investigate feedback laws to control multiple
robots moving in a formation and propose a method for controlling formations that
uses only local sensor-based information. They assume that each robot has the ability
to measure the relative position of other robots that are immediately adjacent to it.
Once the motion for the lead robot is given, the remainder of the formation is governed
by local control laws based on the relative dynamics of each of follower robots and
the relative positions of the robots in the formation. These control laws can provide
easily computable, real-time feedback control with provable performance for the entire
system, and can be extended to control arbitrarily large numbers of robots moving in a
formation. This paper proves that the zero dynamics of the system are asymptotically
stable by using feedback linearizion to exponentially stabilize the relative distance and
orientation of the followers. They demonstrate their result by applying it to simulate
six robots moving around an obstacle.

Egerstedt and Hu [15] propose a model-independent coordination strategy for mov-
ing a group of robots in a desired formation over a given path. In the paper, the leader
robot is a given, nonphysical point. The paths for the real robots are defined by a for-
mation constraint in combination with the desired reference path for the virtual leader,
which is specified by the planners. They applied the method to rigid body constrained
motions. The paper shows that if the real robots track their reference points perfectly,
or the tracking error of the robots are bounded, their method can stabilize the formation
error.

Barfoot and Clark’s paper [4] is similar to the leader-following work in that they

use a reference trajectory and define the motion of each tharobot relative to this
trajectory. But they did not use any particular feedback control to enable each robot
to actually track its planning trajectory. The robot in the formation can not sense the
locations of other robots but can sense its own location relative to a common global
reference frame. They allow the distance between robots to change when the formation
turns. The paper shows that a formation can be treated in the same way as a single robot
is treated, which makes a great deal of single robot work relevant at the formation level.
The method allows the geometry of a formation to be considered separately from the
formation’s overall trajectory by providing a way to combine these two components It
was validated on the Stanford Micro-Autonomous RoverS (MARS) testbed.

In leader-following method, there is a explicit dependence of the motion of follow-
ers on their leaders, but the leaders motion is independent of their followers. This may
cause some problem. For example, if a robot fails or slows down, the motion of the
robots that are following it will be directly affected by its behavior, while its leaders are
not affected and continue their tasks. This method is modified by Peetigh,[42],
where a cooperative leader-follower method is introduced as a modification of the stan-
dard leader-following approach. In the new method, the motion of a robot is dependent

on both its leaders and its followers. Thus, the system is more robust to failures.

1.2.2 Behavior-based Methods

Behavior-based methods draw inspiration from biology. In nature, each animal in a
herd benefits by minimizing its encounters with predators. By grouping, they combine
their sensors to maximize the chance to detecting predators or to more efficiently forage
for food. Robotic researchers have developed formation behaviors for simulated robots

inspired by animals behaviors. This approach can derive control strategies easily, but it

can not define the whole team'’s behaviors, obviously. Thezefds difficult to analyze
the behaviors mathematically.

In a behavioral-based method, the behavior of each robot is prescribed and the final
control is derived by weighting the relative importance of each behavior. A behavior-
based architecture is exploited in [2] for multi-robot systems. In this study, each robot
computes its proper position in the formation based on the locations of the other robots.
Each robot is to simultaneously move to a goal position, avoid colliding with other
robots and obstacles, and maintain a formation. In the paper, the authors present reac-
tive behaviors for four formations (line, column, diamond and wedge) and three forma-
tion reference (unit-center-referenced, leader-referenced and neighbor-referenced). The
behaviors were validated both in the laboratory on mobile robots and outdoors on non-
holonomic 4-wheel-drive High Mobility Multipurpose Wheeled Vehicles (HMMWVSs).

Balch and Hybinette [3] introduce a behavior-based approach to robot formation
problem, which provides scalability, locality and flexibility to the system. This idea is
inspired from the way molecules form crystals. In the formation, each robot has several
local attachment sites that other robots may be attracted to. This type of attachment
site geometry is similar to molecular covalent bonding. The robot formation shapes are
influenced by the attachment site geometries used. This approach is scalable to large
robot groups because global communication of robot position is not used and each robot
only relies on the locations of nearby robots.

Mataric [32] proposes a bottom-up methodology that produced the desired system
behavior as a result of the interaction dynamics between the robots and their environ-
ment and the biases and constraints introduced by the system designer. This approach
is more flexible and robust than the top-down methodology. The paper [33] presents

that the use of behaviors as the underlying control representation provides a useful en-

10

coding that both lends robustness to control and allowsadigin for handling scaling
in learning, of key importance to robot systems.

Su and Lu [49] improve the behavior-based method by combining it with formation
feedback. They design the main behaviors of the leader robot to avoid obstacles and
move to a goal point. The leader plans its path according to the current environment,
and then sends its formation through network to each follower robots. The follower
generates its own behavior based on the information given by the leader. The current
information, such as the positions of the robots and the shape of the formation is given

to the leader as feedback. The leader plans its behavior according to this feedback.

1.2.3 Virtual Structure Methods

The virtual structure method involves the maintenance of a geometric configuration
during robot movement using the idea that points in space should maintain fixed geo-
metric relationship. If robots behaved in this way, they would be moving inside a virtual
structure. The concept of virtual structure in the framework of cooperative robotics is
introduced in [51]. Tan and Lewis [29, 51] develop a control method to force an en-
semble of robots to behave as if they were particles embedded in a rigid body structure.
Their method has many merits: it is capable of high-precision control, inherently fault
tolerant, no leader election are required and it is reconfigurable for different kinds of
virtual structures. This method had been tested both using simulation and experimen-
tation with a group of three robots. Although it was only tested with robots moving on
a plane, there is no limitation to three dimensional space.

Yamaguchigt al.[55] develop a distributed control scheme of a team of robotic ve-
hicles that guaranteed stability and controllability using only relative position feedback.

Each robots in this scheme has its own coordinate system and it can sense its relative

11

position and orientation to others. There is no supervisdreath robot moves based
on feedback from itself and its neighbors. The robots interact with each other directly
or indirectly through others by the relative position feedback. This scheme is validated
by computer simulations.

The formation control used in this thesis is most similar to the virtual structure
method in that we try to maintain the rigid body formation during the robots moving.
But as the geometrical distances between robots vary slightly with time, our approach

is flexible rather than rigid.

1.3 Multiple Solutions of Second Order Ordinary Differential Equations

The existence of multiple solutions to boundary value problems is a common feature
of the types of problems considered in this thesis. This section reviews the literature

related to multiple solutions of boundary value problems. Consider the equations of the

form
u' +at)f(uy=0, 0<t<1, u@)=u(1l)=0
Define
o= imy e fim

then, the properties of the solutions depend on the limiting behavior of the function
f(u). And, the fixed-point theorem of cone expansion/compression [23] is broadly

used in this area. The theorem is stated as follows.

THEOREM1.3.1 Let E be a Banach space, and letiKE be a cone in E. Assunig,,

12

Q, are open subsets of E withe Q1, Q1 C Q,, and let
A KN (Q2\Q1) —K

be a completely continuous operator such that either

(i) JAu|| < ||ul,ue KNaQ, and||Au|| > ||u],ue KNaQy; or
(i) [JAul| > ||u],ue KNadQ, and||Au|| < |u|,ue KNoQ,.
Then A has a fixed pointin & (Q2\ Q1).

The proof of the fixed point theorem can be found in [23]. And the following application

of the theorem can also be found in [23].

Example 1.3.2: Consider the two-point boundary value problem of an ordinary

differential equation:
X"+ f(x) =0, o<t<1, x(0) =x(1) =0,

wheref(X) is continuous and nonnegative for- 0 andf(x) = 0. The above equation
has at least one nontrivial solutiout) € C?[0,1] if fo =0, fe = ® or fg = o, f, = 0.
Proof: Now, we apply Theorem 1.3.1 to prove it. Obviously) = 0O is the trivial
solution of the problem.

The Green’s function of the differential operatienx” with x(0) =x(1) =0s

Git.s) = t(1—s), tgs‘

sl-t), t>s

Let AX(t) = folG(t,s)f(x(s))ds, andP: be the cone ife = C[0,1] given by

13

P = {x(t) € C[0,1] : x(t) > O,miny_, 1, X(t) > (3—¢€) || x|} where 0< e < 3,
| X [|= supyg 4 [XI-

Whens —e<t<i+e

os) =17 (3-8)A-9). t<s

s(L—-t)>s(3—¢), t>s

ThereforeG(t,s)> (3 —€)s(1—s)=(3—€)G(s,s),V3—¢ <t<3+eand
0<s<1.

Then

1
min Ax = min /OG(t,s)f(x(s)ds

F—e<t<i+e j—e<t<j+e

v

vV
e i

SoAX€ P;, andA(P;) C P,V 0<e< 3.
Since fp = 0, we can choosk > 0, such thatfo| < n, for |x| < r1, wheren >0

satisfies) [7 G(s,s)ds< 1

Ax — /OlG(t,s)f(x(s))ds

/OlG(t,s)\f(x(s))|ds

1
< nlx] A G(t,s)ds

IN

IN
x

14

which meang| Ax ||<|| x ||, whenx € P: N 9dQ1, whereQ; := {x € E:|| x||<r1}.
For f» = o, choosey, such thatf.| > , for |x| > F2, whereu > 0 satisfies

1

3+
(3-¢) uf%{:G(%,s)dsz 1.

Letry = max{2ry, %} andQ, = {x: |x| <rp}. Forx e P:NdQy,

. 1 1 R
mn x> (2-¢) Ixl=(5-¢)r2> 2
freql2-e<t<i+e 2 2

Ax(%) _ /OlG(%,s)f(x(s))ds

AV IV
= =
TN S—
NI =
[()]

[T N
N——— I\ZIH
~ 2
_— s
—~~
o\ n
, O
'))
N
NI
N
o
)

So|| Ax||>|| x ||, whenx € P: N dQgp, whereQy := {x € E:|| x || < r2}.

The proof for sublinear case is similar to the suplinear case as stated. [

Erbe and Wang [16] studied the existence of positive solutions of the equation with
linear boundary conditions. They showed the existence of at least one positive solu-
tion in two cases, superlinearityfg(= 0, f,, =) or sublinearity o = o, f., = 0) by
application of the fixed point theorem. A simple superlinearity exmaplg$s = s>
and a simple sublinearity examplefigs) =s'/2. In [31], Ma and Thompson extended
the functionf to be a continuous function satisfyirsf(s) > 0. And proved that the
problem had two solutions for superlinearity or sublinearity. And further, in [17], Erbe,
Hu and Wang showed that there were at least two positive solutions in the case of su-

perlinearity at one end (zero or infinity) and sublinearity at the other end.

15

Naito and Tanaka [40] and Ma and Thompson [30] establishecigareondition
concerning the behavior of the ratfgs)/s for the existence and nonexistence of solu-
tions. Their main results were that the boundary value problem had aklsakttions

if the ratio f (s)/s crossed thé& eigenvalues of the associated eigenvalue problem.

1.4 Organization

In this thesis, we focus on solving the motion planning problem for a group of
robots with the goal of optimizing a suitable cost function. We assume those robots
move in a two dimensional obstacle-free environment. We encounter boundary value
problems when solving equations of motion of the system, where there exists more
than one solution for some cases. The main contributions of this thesis are finding
the symmetric properties of the results, asymptotically analyzing the results for some
special cases, numerically analyzing the bifurcation phenomena in multiple solutions
and proving symmetry of bifurcations. The remainder of this thesis is organized as
follows.

In Chapter 2, a brief mathematical background of differential geometry, group the-
ory, graph theory and symmetric distributed systems is presented. Chapter 3 defines the
optimal problem considered in this thesis and presents the properties of the cost function
related to this problem and the algorithm to solve the problem. It also gives the results
illustrating the properties of the optimal problem in a distributed system. Chapter 4
first presents numerical results illustrating bifurcations and multiple solutions of the
boundary value problem associated with the optimal control problem. Then, it presents
a theoretical result relating to the existence of multiple solutions in the limiting cases
of small and large values of the bifurcation parameter. Finally, it proves the existence

of symmetric solutions which guarantees that for any solution, a corresponding sym-

16

metric solution exists. The practical benefit of this ressilthat if a solution is found
numerically, the symmetric solution can be computed from that algebraically. Finally,

Chapter 5 presents conclusions and provides an outline of future work in this area.

17

CHAPTER 2

MATHEMATICAL BACKGROUND

This chapter provides an introduction to the mathematical terms used throughout
this thesis. In section 2.1, we introduce some basic concepts from differential geometry,
which is a wide area for study. Those who are interested in this area are referred to [7,
41, 47]. Some useful definitions of group theory and graph theory are presented in

section 2.2 and section 2.3 respectively.

2.1 Differential Geometry

A manifold is the fundamental object in differential geometry. Roughly speaking,
it is a set of points that locally “looks like” an open subset of Euclidean space. The
formal definition of manifold is more challenging than the previous description and it

is defined as follows.

Definition 2.1.1: [47] A m-dimensional manifold is a skt together with coordinate
charts(%a, @) with the property thaM = U;%, and that, wheneve?, N %4, # 0, we

have

1. the overlap magy := 50 @5 1| (% N %) is a diffeomorphism from
Pa(%a U) 10 Go(UaN Uh)-

2. if x e Uy, y € Uy are distinct points oM, then there exist open subsgtc R™,

V C R™, with gu(X) €W, @y(y) € V, satisfyinggy H(W) U g, (V) = 0.

18

Example 2.1.2:[47] An n-sphere is a manifold. The unit sphere

S = {xeR"™Y |IX||gniz = 1},

is a n-dimensional manifold realized as a surfacBil. LetU;, U, be the subsets

obtained by deleting the north and south poles respectively. Let

@:U —R" i=1,2,

be projections from the respective poles, so

X1 X2 Xn
X) = ’ [’
a (1_Xn+1 1—Xng1 1—Xn+1>
X1 X2 Xn
X) = 9 P s).
@(x) (1+Xn+1 1+Xnr1 1+Xns1)

It can be easily checked that on the ovetlap U,

2= @og R {0} —R"\{0}

is a smooth diffeomorphism, given by the inversion

X1 X2 Xn
X f— - .
(p.I.Z() (1_)(2 71—X%+1’ 1—X2 >

n+1 n+1

In this thesis, we always consider that the configuration of an object is in a manifold,

19

so the trajectory of the object is a curve on the manifold. Tdleaity, which lies in the
tangent space of the manifold, at a given time is a tangent vector to the curve evaluated
at the same time. Now, we present the definitions of curve, tangent vector, tangent

space and tangent bundle mathematically.

Definition 2.1.3: A curveon an-dimensional manifold/ is a mapc: | — M, wherel
is a subinterval oR. At each poinix = c(t), the curve haa tangent vector

X =c/(t) = (Xx1,%,-- ,%). The collection of tangent vectors to all possible curves
passing through a given poipton M is an-dimensionatangent space, denotdgM.
The collection of tangent spaces for all pointsMns thetangent bundlef M,

denotedl M. [|

Definition 2.1.4: [47] AssumeM is a manifold,a vector field XonM is a map
X :M — TM, such thatto X =idM, i.e.,¥p € M, X(p) € T,M. Heremis the natural
projection fromT M ontoM. A smooth vector fiels a smooth maX : M — T M,

such thatro X = idM. [

Definition 2.1.5: [47] If V is a finite-dimensiondR-vector spacethe dual spacéo V
is the sev* = L(V;R) of linear maps fronV to R. If (e1,ey,---&,) is a basis foW,
then a basis fov* can be denote(e', €?, - - "), defined bye(ej) = 3. |

2.2 Group Theory

In this section, we present some definitions and notations in group theory and they

are from[41, 46].

20

Definition 2.2.1: A group Gis a set together with a binary operatiphn: G x G — G,

such that the following properties are satisfied:
1. Associativity:(a-b)-c=a-(b-c), forall a,b,c € G.
2. ldentity: 3 an identitye such thake-a = a-e= a, for every elemerd € G.
3. Inverse: For alh € G, there exists an inverse !, suchthat-at=a'l.-a=e.

Example 2.2.2: The set of all invertiblen x n matricesGL(R, n) with matrix

multiplication is a group. [|

Definition 2.2.3: Let G be a group an&be a set. Aeft actionof GonM is a map

¢:GxM — M satisfying
e @(e x) =X, whereeis the identity element o, for allx € M.
e ¢(g,0(h,x)) =@(g-h,x), forallg,he G,x e M.

Similarly, aright actionof G onSis a mapg : Sx G — M satisfying
e (¢(x,e) =X, whereeis the identity element dB, for allx € M.
e 0(9(x,9),h) =0@(x,g-h), forallg,he G,xe M.

G is called a transformation group, agds called the left (resp. right) group actioll.

21

Definition 2.2.4: Let @ be a smooth group action & onM, a functionf : M — R is
invariant under group actiom if, for all g € G, ¢(f,g) = f, if @is a left action or

@(g, f) = f,if @is aright action. u

Definition 2.2.5: A permutationof a setS= {1,2,--- ,n} is a one-to-one mapping of

Sinto itself and is usually written as

1 2 3 - n
P=

i1 ip i3 -+ ip
which indicates that & i1, 2+— o, - -, N+— iy, A permutation groups a finite group
G whose elements are permutations of a giverSsetd whose operation is

composition of permutations iG. [|

The dihedral grou®, is an example of permutation groups. It is the symmetry
group of an n-sided regular polygon centered about the origin in the plamexfdt.
The group order oDy, is 2n. Dihedral group®,, are non-Abelian permutation groups
for n > 2. A reducible two-dimensional representation of dihedral group using real
matrices has generators given byandr, wheref is a rotation by radians about an
axis passing through the center of a reguiagon and one of its vertices amds a

rotation by 21/n about the center of the-gon, 1.e,

1 0 cos2 —gin 2l
— r =
)
21T 217
0 -1 sin 5 COS%;

Then,Dn - {e,r,rz,"' ,I’n_]" f’ fr’ frz, .. frn—l}

22

2.3 Graph Theory

Graph theory is a powerful tool to represent the structure of the distributed systems.
In this section, we provide some definitions and notations in graph theory that allow
us to identify symmetries in distributed systems. For more information about graph

theory, the reader is referred to [22, 52].
Definition 2.3.1: A graph Gconsists of

1. A setV whose members are called vertices (also called “nodes” or simply

“points”).
2. A setE whose members are called edges.

3. Afunction (the endpoint function) which assigns to each exigeE an
unordered pair of vertices called the endpointg ofe.,

f:E— {(M,V))Vi,Vj eV}

We may writeG = (V, E, f) to represent grap@® with the vertex se¥, edge seE and

the endpoint functiorf. [|

An edge is said teonnecits two endpoints, and it imcidenton each of its endpoints.

A loop is an edge which joins a vertex to itself. Two edges which connect the same
pair of endpoints are callechultiple edge®r parallel edges. A graph with no loops

and no multiple edges is calledsanple graph. Two vertices amdjacentif there is

an edge connecting them. If both the vertex set and the edge set are finite, then the
graphG is said to bdfinite. A directed graphor digraphis one where each edge has

a specified direction. For a directed graph the edge-endpoint function assigns to each
edge an ordered pair of vertices. The first member of the pair is called the initial vertex

(or start) and the second is called the terminal vertex (or finish). Unless otherwise

23

specified, the graphs discussed here are directed graphaimdicitly considered to

be simple and finite.

2.4 Symmetric Distributed Systems

We adopt the definition of symmetric distributed system in [37, 38]. This definition
is defined for a system without drift, then extended to the drift system. Consider a

driftless system of the form

> X:_igi(x)ui. (2.2)

We can use a graph to represent the sysienn the graph, each node represents
a subsystem and the lines between nodes are interactions between subsystems. If the
systemZ is symmetric, then there exists a graph symmetrypfvhich defined as

follows.

Definition 2.4.1: LetGs = (V,E, f) be the graph of a distributed systengiven by
Equation 2.1. Agraph symmetrgr automorphisnof Gs is a permutationg, on the

set of verticey/ given by,
o) =V, V,V,eV
that preserves adjacency:
Wi,VieV:(\V,V)) eEs (cM),0(V))) €E

The group of all such permutations together with composition is called the

automorphism group AyG) of the graph. [|

24

Sinceo is a permutation of the vertices, we need to define the permutation on the states
induced fromo. Leta(Vy,...,Vh) = [xl,...,xn]T be the canonical mag : V — M.
The action of a graph automorphism naturally induces a permutatiariVl — M, of

states given by,

Vi Vo, ..., W X1, X2, ..., Xn

\/i]_ \/iza) \/in Xilv Xi27) Xin

whereV,,...,Vj, andx,,...,X, are rearrangements of the vertex set and state vector,
respectively. Note, the elementsmay be vectors if dirtM;) > 1. Vector fields are

mapped under the induced permutatmrusing the usual push-forward,
(0:).g! = Toyogl oo, (x).

The induced permutation defines an equivalence relation between vector fields.

Definition 2.4.2: Two vector fieldsg;(x) andg;(x) areequivalentdenotedy; ~ gj, if
there exists @ < Aut(G) such that the corresponding induced permutatigns such

that,
9i(X) = (0%)+0j(x). (2.2)

Given an equivalence relation among vector fields, a symmetric nonlinear distributed

system is defined as follows.

Definition 2.4.3: LetGs = (V,E, f) be the graph of the distributed systéngiven by

Equation 2.1. The syster,is symmetric if there exists a graph symmetry,

25

o € Aut(Gs) other than the identity, such thataf(V;) = Vj, then

g ~ Qj.

The following example is to illustrate theses concepts.

Example 2.4.4: [37] Consider a four component system that can be represented by a

graph shown in Figure 2.1 and described by the following equation

X1 sinxg X1 X1 X1

Xo X5 COSXy X3X2 Xq+1

_ o= Uy + Uz + uz + Ug,

X3 X3 Xo+1 COSX3 XaX3
k|| X2 | | XoXa | | X3 +1 | | cosx |

Choose a graph symmetoy, which corresponds to a cyclic counter-clockwise

permutation of the outer components of the graph shown in Figure 2.2. Then,

0(V1,V2,V3,Vs) = (V1,V4,V2,V3),

which creates an induced permutation given by

04 (X1, X2,X3,Xa) = (X1,X4,%2,X3)

26

7

//\

Figure 2.1. Graph of the four component system given in Exar8pt.4.

Consider the vector fieldg andgs in the given system,

(0y)<G2(x1, X2, X3, %) = TOy00200; (X1, X2, X, Xa)

= T0y002(X1,X3,Xa,%2)

X1 -1 00 O- i X1 |
~ Too COSX3 _ 0 001 COSX3
X3+1 0100 X3+1
| XX | _0010__x3x2_
_ . -
X3X2
- COSX3
X3+1

= 03(X1,X2,X3,X4).

So the vector fieldg, andgs are equivalent and this result can be extended to other

27

CE——)

Figure 2.2. Graph symmetry acting on the four component system.

vector fields, the given system is symmetric. [|

Now, consider a general nonlinear system of the form,

3 X = f(x)+igi(x)ui (2.3)

In order to define the symmetry in a distributed system with drift, we partitioning the

drift vector field such that

f = i fi(X),

where f; is associated with the subsystem Thekth component of the vector fielf

satisfies,

fi7k(X1,X2,...,Xi,...,Xk,...,Xn) - fi,k(ylay27---7Xi7"'7Xk7'"7yn)7 (24)

for all {xp,yq/P,q< {1,...,n}}. Then we can define the symmetric distributed system

28

as follows.

Definition 2.4.5: LetGs = (V,E,) be the graph of the distributed systéngiven by
Equation 2.3. The syster,is symmetric if there exists a graph symmetry,

0 € Aut(Gs) other than the identity, such thataf(V;) = Vj, then

g ~Jj, fiij.

Here is the example of symmetric distributed system with drift.

Example 2.4.6: Consider a four component system described by the following

equation
X1 X2 sinxy X1 X1 X1
X7 X1 + X2 X3 COSXo X3Xo X441
= + Uy + Uz + Uz + Ug,
X3 X1+ X3 X3 Xp+1 COSX3 XaX3
X4 X1+ X4 X5 XX X3+ 1 cosxy

where the vector field can be partitioned as following:

X2 X2 0 0 0
X1+ X2 0 X1+ X2 0 0
f= = + + +
X1+ X3 0 0 X1+ X3 0
o xat+x | [O] | 0O | | 0O | [XtXq]

29

We use the same graph symmeinn example 3.4.4, then

(o.]j)* f2(X17X27X37X4) = To-ﬁ © f2 © O'ﬁ_l(X1,X2,X3,)(4>

= T0os002(X1,X3,%4,%2)

0 -1000--0-

~ Too X1+ X3 _ 0 001 X1+ X3

0 0100 0

_O__OOlO__O_
0
0
_x1+x3
0

= f3(x1,%2,%3,X4).

This result can also be extended to other vector fields exigeguid from example
3.4.4, we knowg; ~ g;. So the given system in this example is a distributed system

with drift. |

30

CHAPTER 3

SYMMETRIC PROPERTIES OF A DISTRIBUTED SYSTEM MADE OF
MICABQOTs

This thesis considers large distributed systems made up of a group of identical
robots which attain certain formations. We adopt two types of robotics: MICAbots [39]
(see Figure 3.1) and unicycle-like autonomous mobile robots. In this chapter, we focus

on the MICAbots. We will introduce the other prototypical model in next chapter.

3.1 Prototypical Model: MICAbots

The kinematics of MICAbot are described by

X— %COS@(U:L—{‘UZ) =0

y—%sine(u1+uz) ~0 (3.1)
.
9—%(u1—u2) =0

wherei is the index of the MICAboty; (up) is the angular velocity of the right (left)
wheel of the robotb andr are geometric parameters of the robot as illustrated in Fig-
ure 3.1.

Consider a formation when a group ofidentical MICAbots form an side regu-

lar polygon, but they are considered heterogeneous since each MICAbot has a unique

31

Figure 3.1. Sketch of MICADot.

identification number (index). The graph theoretic representation of this system is il-

lustrated in Figure 3.2.

Each vertex represents a MICAbot, and the edges between vertices represent the
communications between the robots. For the distributed system contairdegtical

MICADbots, the configuration spacgis a submanifold oR3",

Q={R*xS'xR?x S x.-- xR*x S'} c R™".
ncgpies

The configuration spad® can be partitioned into a set nfsubmanifoldsQ; = {R? x
S'}, wherei € {1,...,n}, such thaiQ is the Cartesian product of th@;, i.e. Q=
L1 Qi- The submanifold®; is the configuration space of tlith MICAbot, i.e. Q =

(i, Vi, 6).

32

Figure 3.2. Graph theoretic representation of the disteidsystem.
3.2 Problem Statement

The optimal control problem we are investigating is defined as follows:

Find a sequence of contralg;(t), uyi(t) for each robot which steer the formation
from a predefined configuratioty to its goal configuratiorgs, while maintaining a
rigid body formation at the start and end points and minimizing the global performance

index

ty N

J= / Z i)+ (ui)?) + Zk dij 1 —d) (3.2)

subject to the robot kinematic constraints 3.1 where 2 is the number of robots,

di.j = /((x —Xj)2+ (yi —yj)?) is the Euclidean distance froith to jth robots,d is
the desired distance between two adjacent robots,kaedch non-negative weighting
constant. For a closed formation such as a regular polygoea n; for an open forma-
tion such as a straight linepg=n— 1.

The definition of a rigid body formation is that the distances between chosen ref-

33

erence points on robots remain fixed. The relative orientadfoeach robot is not re-
stricted in such a formation. The rigid body formation constraint is restrictive in many
applications. We allow the robots to break formation in the middle of the trajectory,
and to achieve a desired formation at the destination. The second summation in the
cost function is the deviation from a desired formation. It is natural to minimize the the

combination of the control effort (first summation) and the deviation in our case.

Remark 3.2.1: The cost functiond for a regular polygon formation is invariant under

the action of dihedral groupy,.

Proof: Letr, f be the two generators of the dihedral group, such thg) = Vi1,
f(Vi) = Vii2-i, (note thawvp 1 = Vy).

The cost function may be written as

n

Zlk(dml —d)?dt

1N
‘](V].?VZ,"‘VI’]) = /0 Z(uli2+u2i2)+
i=
then

JO(R(VLVZ?"'VH) = J(V27V3;"'Vn,vl)
1n+1 n+1

= [} 3 () Y Kk -

1n n
_ / S (U2 +upy?) + Y K(dj jo1—d)%t
0 =1 =1

= J(V17V27 o 'Vn),

34

and

JO(Pf(VLVZa'”Vn) = J(Vn—i—lavnf"VS;VZ)

1 2 2 -
_ / S (W2 +wd)+ Y K(dg —d)%t
0 i—ht1 i=n+1

1n+1 n+1
= / Zull +U2| ‘|‘22kd| 1i—
= (V17V27 Vn)

For each elementr € D,, o can be written ass = fPr49, wherep = 0,1 andq =
0,1,--- ,n—1.

If p=0,9=0,0 =eanditis a trivial permutation.

If p=0,q9> 0,0 =r9% Inthis case, we use induction method to prove that the cost
function under the action af is invariant.

We already proved thato @ (V1,Vo, - ,Vn) = J(V1,Vo,--- V). Now, we assume
thatdo @s(V1,Vo, -+ Vi) = J(V1, Vo, - --Vy), Wheresis a positive integer. Then

Jo (prs+1(V1,V2, V) = Joro rS(Vl,VZ; --Vp)
— ‘]Ors(V17V2,"'Vn

= J(V1,Vo,---Vp).

35

If p=1,9>0, 0= fr9 The cost function under the action @fmay be given by

‘]O(pO'(V17V27"'7Vn) - JO(PfO(Prq(V17V2>"'7Vn)
= \]O(ﬂ'q(V]_,VZ,"',Vn)

= J(V1,Vo,---Vp).

In summary, for allo € Dy, the cost function does not change under the action of

o. [|

3.3 Equations of Motion

We adopt Pontryagin’s Maximum Principle (PMP) to solve the optimal control

problem stated in last section. The Hamiltonian associated with this problem is

M= 3 (- (i e —8)
+ pli(%(uli + Upj) cosB;) + p2i(%(uli +Upi)sinG) + psa(sz(uli - U2i))} ,

where(Xi(t),yi(t), 8(t)) € TQ and(pui, p2i, psi) € T*Q; are the system costates.

Remark 3.3.1: The HamiltoniarH is invariant under the action of dihedral groDg.
The proof of this remark is similar to that of the previous one.

According to PMP, we know the optimai, u, should satisfy

(u1,Uup) = argmad.
ug,U2

36

Applying PMP to our problem, we have

(ugi, Upi)

which gives

r
= arg max{ — (ui®+ ugi?) + P1i(5 (Ui + Uai) cos6h)

Ugj, Ui
r

+p2i(%(uli +Uzi) Sin 6) + pSi(ﬁ)(Uli — U2i))}

r r . r 2
arg max— { (Uli - (Z P1; cOS6; + 2 P2isin 6 + HJM))

r r) r 2
+ (UZi - (Z p1icOS6; + er2i5|n 6 — 4—bp3i)> } ,

r
%pSi

= L p1icosB + —pasin G — ——py
Upj = 4pll | 4le TS P3i-

r r .
Upj = Zplicoséh + szisne. +

The adjoint equation fop(t) is

oH . oH oH

pli(t):_d_xi’ pZi(t):_é’_yi’ psi(t)z—a—el.

The solutions to these equations together with state equations are

P1i

P2i

Pai

2

rZcos@. (p1icOSB + p2iSinG)
r2 . .
2 Sné (P1icoSB; + p2ising)
(2
Epa))
2k(x —%i—1) (dicgj—d) 2k(x —Xit1) (dijy1 —d)
+
di1 di,i+1
2k(yi —yi—1) (dicai—d) 2k(yi —Yit1) (dijy1 —d)
+
di—1 dijir1
r2 . .
1 (P1iSiN 6 — p2i cOSE;) (P1iCOSH; + P2iSING),

37

(3.3)

(3.4)

(3.5)

wherei = {1,2,--- ,n}, andn is the number of robots. The initial conditiorg0) =
X0, ¥i(0) =Yio, 6(0) =6, and final conditions; (tr) = Xit, i(tt) =Vit, 6(tf) = B
are given.

Our goal here is to find curves(t) = (xi(t),yi(t),6(t)) € Q;, i ={1,2,--- ,n} sat-
isfying the Equations 3.5 with (0) = (Xio, Yio, 60) andci(ts) = (Xif, Vit , Gt)-

Remark 3.3.2: There exists a three parameters Lie grésuch that the differential
equations 3.5 are invariant under the action of the Lie group. Any elegne@ is
defined as follows: for anyx;, yi, 8, p1i, Pai. P3i)| € M; satisfying Equations 3.5,

(%,9, 6, 0%, p2,p3)" = 9(x,Yi, 8, pi, P2i, p3i) T € M; and

Xi Xi cosy —singg 0 O 0 0 Xi Ox
Vi Vi sing cosy O O 0 0 Vi Qy
6 6 0 0O 0 O 0 0| 6 W
=9 = -
Pui P1i 0 O 0 cogp —sing O P1i 0
P2i P2i 0 0O 0 sinp cosy O P2i 0
| Pai | | psi | | O o 0 O O 1){mi| |0

wheredy, gy, are three parameters.

38

Proof:

N d .
X = gi(xicosy —yising+ o)
= X cosy —y;siny
r2 r2
= ZCOSG' (p1iCOSB; + poiSing;) cosy — Zsin 6 (p1iCcoOsB; + poising) siny
2

= rz (P1iCOSB + p2isinG) cos @ +)
= ; ((paicosty — paisiny) cosh: + (pyising + pzi cosy) sin) cosh
= ;cosé. (P1icos + Prising) .
Similarly
R . i
Vi = sné (P1icosb: + Pzising) .

& is easy to verify:

= —(6+) =6

di_1i = \/()A(i—l—)zi)2+(yi—l—yi)2

= \/((Xi—l — i) cosY — (Yi—1 — ¥i) Sing)? + ((Xi—1 — %) SiNY + (Yi—1 — ¥i) cOS)?

= \/(Xi—l —X)%4 (Yie1 — ¥i)2 =di_1

39

d .
P = a(pliCOSLl/—DZiSlml’)

= picosy — p2siny
B (Zk(xi —Xi—1) (di_1 —d) i 2K(% —%it1) (dhis1 —d)) cosy

di1, dijt1
2k(V: — Vi . —d .\ A
B (Vi —VYi-1) (dl 1,i d) " 2K(Yi —VYit1) (dl,H—l dn) sin g
dioa, diit1
_ 2K((x cosy — yising) — (xi_1 cosy —yi_y sin)) (ch-1; — d)
di—1
| 2k((acosy —yising) — (%41 COSY — ¥i1 Sin)) (dijrr —d)
dij+1
2k(% —%i_q) (dicaj—d) 2K(% — K1) (dijyr —d)
— - + - .
i1, dijt1
Similarly
. 2K —Yic1) (diegi—d) 2K —Yis1) (dhjr —d)
P2i = = + = ,
di1 dijit1
and
A .3 r2 . .
Psi = P = 4 (puisin6 — pzicOS)(paiCOS; + P2iSinG)
r2 A . A A

= 4 (Pusin(8 —) — p2icos@ — ¢))(pricos@ —) + paisin(6 — ¢))
2
< ~ . a - P A S
= Z(pL— sin 6 — p2,cos6,) (pi cosl; + p2,sinG,).
Since(%;, ¥, é., P1i, P2i, |63i)T satisfy the motion equations 3.5, the equations are invari-
ant under the specified Lie group, in other words, the system has Lie group symmetry,

which illustrated in Figure 3.3. [|

40

trajectory of 1% robot
4r — — — trajectory of 2" robot
— -~ trajectory of 3" robot
3 i
2pie e T i

> ~
(-3.1) - — =
1k + Phis T LN .

S 0,0

of o -
_l . .

-4 -3 -2 -1 0 1 2 3

X
Figure 3.3. Lie symmetry.
3.4 Algorithm

We develop a relaxation shooting method to solve the equations of motion and ob-
tain the trajectory of each robot. Letrepresent the state amistand for costate, the

algorithm of this method is as follows.
1. Choose initial guesg;(0) = pjo for the costate.

2. Numerically solve the equations of motion with the initial conditi¢ms, pio}-

Obtain the final statez} based on the initial guess.

3. Comparezﬂ with z;. Divide the straight line segment frozﬁ to z into several

41

small intervals. Let
i j
Zl = Z+(z —Z'Of)ﬁ,
wherej =0,1,--- , mandmis the number of the intervals.

4. Treatzp and ZiO as new initial and final boundary conditions of equations of
motion. Use the shooting method [43] to solve the two points boundary value
problems. We can obtain the proper initial values of the costates for this specified

problem after solved the equations.

5. Use the initial value of the costate from fourth step as the new initial guess for
the differential equations whose initial conditions gteand final conditions are

zL.

6. Repeat the fifth step unfjl= m. Then the whole problem is solved.

We give an example to illustrate the algorithm presented above. The j@add final
configurationgys (positions and orientations) are given for each robots in the system.
We make initial guesses for all the costates, and we could get the final configurations
o? and the trajectories of each robot could be found based on these initial guesses,
which is shown as dashed lines in Figure 3.4. We divide the difference between the
given final configurations|s and calculated final configuration§ into several parts
a?,0t,92,---,qs. Considem? as the new desired final configurations, we use shooting
method to get new trajectories, which are the closest lines to the dashed lines in Fig-
ure 3.4. Step by step, we can obtain the desired trajectories, thick lines in Figure 3.4.
For a distributed system, it becomes more and more difficult and sometimes infea-

sible to numerically find solutions to the problem as the number of robots increases.

42

15F

Figure 3.4. lllustration of the algorithm.

We may predict unknown trajectories of some robots based on the knowledge of other

robots as stated in Proposition 3.4.1

Proposition 3.4.1:Consider a robotic system containingobots and leC be the

center of the regular polygon, which vertices represents MICAbots (see Figure 3.5).
Suppose the trajectories of roband robotj are reflection backward in time about

the perpendicular bisector to the straight line segment connecting initial point

C(Xo, Yo) and final pointC(Xs,Ys), which slope isa. Then,

43

X(t) o
i) | |2
aw | | o
put) | | 0
p2i(t) 0
L pai) | | O

_ 2a
a?+1

_a?-1
a?+1

0

0
0
0

0
0
0

0 00
0 00

0 (ON0]
a’—1 2a 0
a2+1 a?+1
_2a a-1 0
a’+1 a?+1

0 01

Proof: Let o = arctarmandt =t; —t, then

sin(2a) =

+a?’

Xj(tr —t)
yj(ts —t)
0j(ts —1)
pLj(ts —t)
p2;(ts —t)

p3j (tf —t)

After some simple but tedious computations, we obtain

P1j(T) cosB;(T) + p2j(T) SinB;(T) = p1i(t) cosb;(t) + p2i(t) SinGi (t),

dj—1j(T) = di_1i(t),

44

Xt —Xo
Y —Yo

2arctara

.(3.6)

Xi

C(Xs,Y;)

ith robot
ith robot

C(Xo,Yo)

jth robot

Figure 3.5. Illustration of symmetry trajectories.
0 (&0 - -2y (D) + (X %)
dt \a2+1" 21 f

_a@—1dxj(r) | 2a dyj(1)
a2+1 d(r) a2+1 d(1)

2 2
—Zz—ﬁ (rZCOSBJ' (1) (plj(T) cosO; (1) + p2j(T)sinG; (r)))

2
L 28 (r_ sin (1) (p1j(T) cosB; (1) + py; (T)Sinej(T)))

a?+1\ 4
2 2_
3 (Pu)0s8(0) + P singy1) (7 0088,(1)+ 2o sney(r))
2
rZcos(Za —0;(1)) (p1i(t) cosbi(t) + pai(t) sinGi(t))

;cos(e.(t)) (p1i(t) cosBi(t) + p2i(t) sindi(t)).

45

Similarly

i =

P =

2 _

G (o0 - S + ()
2

7 (Pu(t)cOSE (1) + Pa) s (1) 3507 cOSEy(T) + 35 sny (1))

2
in(2a — 6;(1)) (p1i(t) cosB (t) + pai(t) sinBi(t))

Z
2
rZ in(6i(t)) (p1i(t) cosBi (t) + pai(t) sinbi(t)),

d d(g(r)) r? r2
dt(é 7 @pSi(T):Ep%
d 21 2a
a(—;—upﬂm 2riral))
a’—1d(py(1)) 2a d(p(1))
a2+1 d(r) a+1 d(1)

a2—1<2k(XJ XJ 1 (d| 1|)

6;(1) +2arctara) =

+2k(xj(T) —Xj+1(T)) (d.7.+1()—d)
dijya(t)

_ 2a <2k(yj(r)—yj_1(r) (di_1(t)—d)
az+1 di_17i(t)

N 2k (y;j(1) —yj41(1)) (dijia(t) —d)
dijya(t)

2K(_1i(t) ~d) (a1 2
(dili% | (ZZJrl (4 %2) = g O) —m))

+2k(d|,.+1(t)) d) (ZZJJ (Xj —Xjt1) — 8 (vy —YJ+1))

dijrq(t a2+1
2K(X —Xi—1) (di—l,i —H) 2k(Xi —Xj+1) (di,i+1 —H)
+ .
di_1 dijt1

46

The costate,; can be verified in very similar way and we skip the proof here. For the

third costate

. d(psi(T)
Pai = TJT)
(2
_ZZ
= rz(pli(t)Sin 6 (t) — pai(t) cosbi (1)) (pai(t) cOsBi (1) + p2i(t) SinGi(t)).

(P1j(T)SinG;(T) — p2j(T)cosB;(1))(p1jcost;(T) + p2j(T)sin6;(1))

Remark 3.4.2: Consider a robotic system containingobots. If we give such initial

and final configurations (position and orientation) for each rolod there exists a
robot j that the top three conditions of Equation 3.6 are satisfied. Then, if the whole
system rotates by an angfe= KZF" — (m—2a), whereK is an integer and

a= arctan%, thenj = modn— K +2—1i,n). Under such condition, if we want to
know the trajectories of all robots in the system, we should at least know one ofirobot

and robotj’s trajectory.

3.5 Symmetry in Distributed Systems

Our system is described by Equation 3.5. In this section, we are going to check if
our system has symmetry by using the definition given in Chapter 2. The formation of
the team of MICADbot is a an-sided regular polygon, and the dihedral grapis the
symmetry group of such graph. So the graph symmetiyr our system is contained in

the dihedral grou,,, which meansr € D, = {e,r,r?,--- ,r"=L f fr fr2 ... fr"=1},

47

We can partition the vector field in the system given by Eque® as

where
Osx1

06><1

I c0S6, (PaiCOSB: + PaiSinG)
ggn 6 (p1icOSB; + p2iSinG)
fi= %pﬁ

0

0

7 (P1iSin 6 — p2i COSA) (p1i COSB, + P2ising) |

\

O x1

the non-zero & 1 blocks in the above matrix are in positiori-or simplification, let

(%cos@.(plicoseﬁrpzsin@.) \ (Xi \
©sin 6 (p1icosh + paising) yi
h = %pgi and x = ? :
0 P1i
0 P2i
| (PriSin6 — p2i COSA) (p1i COSA, + PaisinG)) | | psi |

48

then the Equation 3.5 can be rewritten as:

- X1 [hy |
X9 _ h2 _ f(X) _ i f; (X) fi (X) = h|
| Xn | L hn i

For each elemeno € Dy, o can be written ass = fPr49, wherep = 0,1 andq =

0,1,---,n—1.
e If p=0,9=0,0 =eand itis a trivial permutation.

e If p=0,0>0,0=r% Theno(Vi) =Viiq.

O—(Vlf e 7\/i7"' 7Vn) - (Vl-l—(]a"' a\/i+Qa" ’ 7Vn+q)7

O-*()_(lv"'7)_(i7"'7)_(n) = <)_(1+q7"'7)_(i+q7"'7)_(n+q)7

49

(O-ﬂ)*fi-FQ()_(l?"' 7)_(i7"' 7)_(n)
= Too fi+q00ﬁ_1(>_(1,--- Kivgp %)

= TO’ﬁOfl—i_q()—(l—q”)—(l?.?)_(n—q)

0 - 0 1514q O e 0| -
0
0O --- 0 0 Log O -0
I : : : P (it row)
0 .- 0 0 0 diyq - O
0
0 lhgy O 0 0 O
- .]
= | hi(ithrow) | = fi.
- O -

e If p=1,0>0,0=fr% Theno (Vi) = Vhiqr2-i

oV, Vi V) = Vargrn s Vargre—i o Vgr2),

O-*()—(l’”")—(i’”")—(n) = ()_(n+q+17"'7)_(n+q+2—i7"'7)—(q+2),

50

(0« frrqi2-iXes + Xnpgra—i =+ %n)

— TGﬁo fi oGﬁ_l()_(l,... Xniqia i %)

— TO'ﬁO fio—(n—i-l—qa"' Xy 7)_(n+2—q)
0 --- 0 0 lygi1 - 0
0 -~ 0 1oyq O 0 0
0 Lq O 0 O 0
0 .- 0 0 0 Tgia-- O
_ 0 _

= | hi(ithrow) | = f.

To summarize, our distributed system is symmetric. Notg, heans the element 1 is
in mth row,nth column.

We show how our approach works in simulation using several examples. Suppose
that our systems are in an obstacle free environment. We first consider two examples

which are not reduced to lower dimensional systems. We directly compute the optimal

51

trajectories for all robots in the systems. These resultswedidate our Proposition

3.4.1 and Remark 3.4.2.

Example 3.5.1: We have five robots and they form a five-side regular polygon (see
Figure 3.6). The robots are labeled by a unique integer number. The black point in the
Figure 3.6 is the geometric center of the polygon. When we say the position of a

formation, we mean the position of its center.

Figure 3.6. Five side regular polygon formation.

We solve the Equations 3.5 by numeric methodrfet 5. Att = 0, the formation is at
the point(—1,—2). We choosés = 1s. The goal position i€1,2). We try to find the
optimal trajectories for all robots while the formation goes froai,—2) to (1,2) and

rotates by an angle = — (11— 2a) about its center and the cost function 3.2 is

52

trajectories of five robots

simulation result

. . . — — — analytical compution
-2 -15 -1 -0.5 0 0.5 1 15 2

Figure 3.7. Trajectories of a team of five robots.

minimized. The trajectories are plotted in Figure 3.7. In Figure 3.7, the solid lines are
the trajectories (costates) numerical solved from Equation 3.5. According the Remark
34.2,0=—(m—2a) = k%"— (m—2a), i.e., k= 0. Then, if we know the trajectories

of theith or (7 —i)th, we can algebraically compute other robots’ trajectories, which
results in much computational savings. In this example, weipiek ,3.5. Using the
information of these three robots to construct those of the second and fourth robots by

using of Proposition 3.4.1. The dashed lines in the following figures represent these

53

Example 3.5.2:1n this example, our system contains six robots, which form a 6-side

regular polygon. The solid and dashed lines represent the same things respectively as

those in Figure 3.7. The coordinates of initial center of the formatign-is —1) and

the final position of the center is ét,1). The formation rotates by an angfe= 7.

According the remark 4.1. 9= J =k& — (n— J), i.e. k= 3. If we know the

trajectories of robot or robot(5—1i), we can algebraically compute the other robots’

trajectories. Here, we pick= 1,3,5. Since the trajectories and costates of the other

three robots have the reflection relations with the known three robots respectively, we

compute them and they are represented in dashed lines in Figure 3.8 and Figure 3.9.
[

The numerical results and the analytically computed results are exactly the same in the

above two examples. These validated our Proposition 3.4.1 and Remark 3.4.2. 3.4.

54

trajectories of six robots
2 T T T T T T

15

0.5

-15

simulation result

— — — analytical compution
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 3.8. Trajectories of a team of six robots.

55

21

_15 T T T T T T
simulation result
— — — analytical compution
_2 - =
_2-5 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
22
26 T T T T T T T T T
2.4F R
22 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
23
0 T T T T T T T T T
_5 - -
_10 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.9. The optimal costates of the 2nd robot verse timeikaobots

system.

56

CHAPTER 4

BIFURCATION RESULTS OF A DISTRIBUTED SYSTEMS MADE OF
UNICYCLES

The second prototypical model we adopt is a simplified version of the kinematic

robotic unicycle. The kinematics of this kind of robot are described by

X = W (4.1)

y = U

In this chapter, the simplified unicycles we consider are arranged along a straight
line. The optimal motion planning problem is to minimize the cost function 3.2 as
defined in chapter 3, but subject to the constraints 4.1.

Similar procedure to the MICAbot, we obtain the optimal inputs

1
Ui = Epli

1
Ui = §p2i;

57

and equations of motion

1

% = SPu 4.2)
o1
Yi = 2 P2i
. 2k(x —%i—1) (di—aj—d) 2k(x —Xit1) (dijy1 —d)
P = +
dio1, dijt1
. 2k(Yi —Yi—1) (di—zj —d) 2k(yi —Yit1) (dij1 —d)
P2i = + ;
dio1, dijt1

wherek is a non-negative weighting factor adds the desired distance between two
adjacent unicycles. Because they correspond to the robots at the end of the formation,
the last two equations in Equation 4.2 only have the second term ivadhand they

only have the first term whein= n.

The cases considered in this thesis are limited to the following boundary conditions

x(0) = c+(i—14d, (4.3)
x(1) = 0,
yi(0) = 0O,

wherec is a constant. These boundary conditions correspond to an initial formation
with the robots arranged along tlxeaxis starting with the first robot at= ¢ with a
distanced between each robot and a final formation with the robots arranged along the
y-axis starting with the first robot gt= c with a distance ofl between each robot. It

Is important to note that if the initial and final formations are not parallel, then straight-
line trajectories satisfying the boundary conditions will not, in general, maintain the

desired distance between the robots.

58

For a distributed system containingobots, when the weighting constais given,
an optimal trajectory can be obtained numerically by solving the equations of motion
given by Equation 4.2 using the relaxation shooting method. Since each robot has its
own predefined initial state and final state, the procedure to find the optimal path is to
solve a boundary value problem for a set of second order nonlinear ordinary differential

equations. We show the solutions for three systems with different number of robots.

4.1 Bifurcation Results

Sincek is a parameter in the differential equations, it will clearly affect the solutions.
In fact, ask is varied, the nature and number of solutions changes. Section 4.3 shows
that there is a unique solution wh&ms small and in the limit ak approaches infinity,
the number of solutions also approaches infinity. In order to present the relationship
between the number of solutions akdve construct a bifurcation diagram as follows:
since a straight line connecting end points is the optimal solution \kkel, we will
designate that as a nominal trajectory. One measure of the difference between solutions
would be their deviation from the straight line nominal solution at some specified time.
As long as the different solutions are not intersecting at that time, this would provide
a measure of difference between different solutions. In all the bifurcation diagram
illustrated subsequently,= 0.25 is used. For different formations and different type
of robots, a different value df may be a better choice; however, for all the systems
studied in this thesid,= 0.25 appeared to adequately represent the relationship among
the solutions. Also, alternative measures of differences between the solutions may, in
general, be superior, this simple choice appears to suffice for all the cases considered in

this thesis.

59

4.1.1 Solutions for a Five Robot System

Figure 4.1 illustrates three different solutions that satisfy the equations of motion in
Equation 4.2 and boundary conditions in Equation 4.Xkfer24.5,c = 6 andd = 2 for
a formation of five robots. Since the differences among these trajectories are difficult
to distinguish on such a small graph, Figure 4.2 illustrates them for the third (middle)

robot with the difference magnified by a factor of 10.

14

14

Figure 4.1. Optimal paths for the five robot system vtk 24.5.

The plots in Figure 4.3 through Figure 4.7 illustrate this measure of the difference
between solutions for each robot in the five robot systerk igsvaried from 0 to 25.
In these bifurcation diagrams, the first robot is the one with the shortest trajectory, the

fifth robot is the one with the longest trajectory and they are ordered sequentially. The

60

Figure 4.2. Difference among the optimal paths for robotehre

bifurcation occurs nedt= 16.5. Observe that the bifurcation diagrams for robots 1 and
5 are symmetric to each other abalt= 0 axis and the bifurcation diagrams for robots
2 and 4 are similarly symmetric (even though each follows a trajectory with a different
length). Finally, the bifurcation diagram for robot 3 is symmetric to itself aloostO
axis.

A close analysis of the actual trajectories that the robots follow illustrated in the
figure on the right in Figure 4.1 reveals that the trajectories themselvawasym-
metric (the two trajectories with pronounced curves intersect, but not at a point on the
straight line solution). A measure that is based upon the deviation from the nominal so-
lution appears to be necessary to determine the real symmetric nature of the solutions.

Section 4.4 contains the analysis that these symmetries must, in fact, exist.

61

Robot one

Figure 4.3. Bifurcation diagrams for robot one in a 5-robastystem.

Robot two

-0.02 1

-0.04 1

-0.06

-0.08 |- 1

-0.12 1

-0.14f » 1

-0.16 1

-0.18]

Figure 4.4. Bifurcation diagrams for robot two in a 5-robaystem.

62

Robot three
0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06 [

-0.08

Figure 4.5. Bifurcation diagrams for robot three in a 5-rabsystem.

Robot four
0.2

0.16 1

0.14r : 1

0.12f 1

0.08 1

0.06

0.04 1

0.02| 1

Figure 4.6. Bifurcation diagrams for robot four in a 5-rolectystem.

63

Robot five

0.45

041

0.35f

0.3

0.25f

0.2

0.15f

0.1p

0.051

Figure 4.7. Bifurcation diagrams for robot five in a 5-robatystem.

4.1.2 Solutions for a Six Robot System

Figures 4.8 through 4.15 illustrate similar results for a six robot system. Figure 4.8
illustrates the trajectories whén= 24.5,c = 4 andd = 2. Again, because the differ-
ence is hard to distinguish in this figure, Figure 4.9 illustrates the trajectory with the
deviation from the nominal trajectory for the fifth robot magnified by a factor of five.
Figure 4.18 through Figure 4.24 illustrate the bifurcation diagrams for the solutions
versusk constructed in a manner identical to that of the system of five robots. The first
bifurcation we found occurs neér= 12.3, the second occurs ndar 16.1 and the
third occurs neak = 23.2. There might be other bifurcations we have not found due to
the limitation of simulation. Observe that, different than the five robot case, there is no
robot which bifurcation diagram is symmetric to itself abdut 0 axis. The bifurca-
tion diagrams for robots 1 and 6 are symmetric to each other abeW axis as is the

bifurcation diagrams for robots 2 and 5 and robots 3 and 4.

64

16

16

Figure 4.8. Optimal paths for a six robot system wkth 24.5.

Figure 4.9. Difference among the optimal paths for robotehre

65

1% robot (n=6)

0.1

Figure 4.10. Bifurcation diagrams for robot one in a 6-robgtistem.

2" robot (n=6)

0.6

05f 1
0af .
03f .

) 02f A
o1f .

0 : —

-0.1 \<——-—-
-0.2 o
0 5 10 15 20 25

Figure 4.11. Bifurcation diagrams for robot two in a 6-roloctystem.

66

3" robot (n=6)

08
06} 7
04} 1

0.2 1

Figure 4.12. Bifurcation diagrams for robot three in a 6-rabsystem.

4" robot (n=6)
0.8 T T

0.6 1

0.4 1

Figure 4.13. Bifurcation diagrams for robot four in a 6-rabalystem.

67

5" robot (n=6)

0.3
0.2 /
0.1 A
0 : J
-0.1 1
" oz ™~
-0.3r 1
-0.4f 1
-0.5 1
N

0 5 10 1‘5 20 25

Figure 4.14. Bifurcation diagrams for robot five in a 6-roloatystem.

6" robot (n=6)

Figure 4.15. Bifurcation diagrams for robot six in a 6-rolbatystem.

68

4.1.3 Solutions for a Seven Robot System

Figures 4.16 through 4.24 illustrate similar results for a seven robot system. Fig-
ure 4.16 illustrates the trajectories whier= 24.5,c = 4 andd = 2. Again, because
the difference is hard to distinguish in this figure, Figure 4.17 illustrates the trajectory
with the deviation from the nominal trajectory for the fifth robot magnified by a factor
of five. Figure 4.18 through Figure 4.24 illustrate the bifurcation diagrams for the solu-
tions versuk constructed in a manner identical to that of the system of five robots. The
first bifurcation occurs nede= 10.8, the second occurs nda+ 16.1 and the third oc-
curs neak = 20.6. Observe that, similar to the five robot case, the bifurcation diagrams
for robots 1 and 7 are symmetric to each other alwbtt 0 axis as is the bifurcation
diagrams for robots 2 and 6 and robots 3 and 5, and the bifurcation diagram for robot 4
is symmetric to itself aboud = 0 axis.

From the examples given above, we can find that when the number of robots in a
distributed system is odd, the number of solutions is odd. A straight line connecting end
points is one of trajectories of the robot located at the center of the system. Any other
remaining trajectories of this robot has a symmetric one to the straight line solution. In
one set of solution, two robots which have the same distance from the center one have
symmetric trajectories about the trajectory of the center robot. When the number of
robots in a distributed system is even, the number of solutions is even. No robot has
straight line solution, but two robots which have the same distance from the center of

the system still have symmetric solutions.

4.2 Optimization Software iISIGHT

In my Curricular Practical Training from October 2008 to April 2009, | utilized

ISIGHT software to solve some optimization problem. It is a Multi-Disciplinary Opti-

69

16

14

Figure 4.16. Optimal paths for a seven robot system Wwith23.

Figure 4.17. Difference among the optimal paths for robot foagnified by
a factor of 5.

70

0.8

0.6

0.4

0.2

Robot one

10

Figure 4.18. Bifurcation diagrams for robot one in a 7-robgtistem.

0.4

0.2

Robot two

T T T

10

Figure 4.19. Bifurcation diagrams for robot two in a 7-roloctystem.

71

Robot three

1 T T T T T
0.8} 4
0.6 /
-~
0.4 1

Figure 4.20. Bifurcation diagrams for robot three in a 7-rabsystem.

Robot four
1 , , : : :

08} /-
06} o
04l ! : , , A
02} :

©° 0 / —

\h
-02 7
04]
_0 6 ’-\
_O 8 \

o 5 10 15 20 25 30

Figure 4.21. Bifurcation diagrams for robot four in a 7-rabalystem.

72

Robot five

0.6 T T T T T

041 / 4

0.2 /
e -

-0.4 4
/\
06 ‘ \
-0.8 ; y
5 10 15 20 25 30

Figure 4.22. Bifurcation diagrams for robot five in a 7-roleatystem.

Robot six

1 T T T T T
0.8} / i
0.6 1
041 1

©
0.2 e
———
0 _.‘“
e
oz ‘ \
-0.4 .
5 10 15 20 25 30

Figure 4.23. Bifurcation diagrams for robot six in a 7-rolsatystem.

73

Robot seven

0.6

i | ‘ ‘ \
0

5 10 15 20 25 30

Figure 4.24. Bifurcation diagrams for robot seven in a 7-tabgystem.

mization software developed by Engineous Software Inc. The key functions of iISIGHT
are Automation, Integration and Optimization. We built the model (see Figure 4.25) by
utilizing iISIGHT integrating MATLAB code to solve our optimization problem.

The Optimization contains design variables, constraints and objectives. Input pa-
rameters in the problem formulation is used as design variables. Lower/upper bounds
specified on output parameters in the Problem Formulation will be used as lower/upper
bounds for constraints. Any parameter that has an objective defined in the Problem
Formulation will automatically be defined as an objective with the objective direction
(minimize/maximize/target) as specified in the Problem Formulation. In our problem,
the pre-defined initial and final positions of the robots, initial guesses of costates are
considered to be design variables. But the positions are fixed, the values of initial
guesses of costates are tunable. No constraint is defined for this problem, and objective

is the distance between the calculated final position and the pre-defined final position.

74

Figure 4.25. iSIGHT model layout.

75

The Loop component is a process component capable of exgautbflows based on
conditions. We use "For” loop to execute subflows while continuously incrementing
the value 0.1 of the paramet&rfrom 0 to 30. MATLAB code is used to solve the
motion equations. When the initial guesses are made for the costates, the boundary
value problem is converted to initial value problem. And it is easy to solve numerically.
MATLAB calculates the value of the objective. Optimization component will tune the
initial guesses of the costates based on the chosen optimization method. It will stop un-
til the optimal objective is found. The "For” loop will let the optimization component
repeat the process for different valuekof

We have an example for solving a five robot system.k=er24.5,c = 6 andd = 2,

the result is illustrated in Figure 4.26

4.3 Asymptotic Analysis

In the two cases of very sméatland very largek, we may use an asymptotic ex-
pansion to investigate the effectlobn the number of solutions to the boundary value
problem. As will be shown, this analysis is consistent with the existence of a unique
solution for small values ok and many solutions for very large which is the pat-
tern indicated in the numerical bifurcation results that show an increased number of

bifurcations and an increased number of solutionk gets large.

76

14

12

10k

Figure 4.26. Optimal trajectories solved by iSIGHT.

7

14

4.3.1 Smalk

We use a standard perturbation method (see [27]) to solve Equations &.&far

If we let

Xi

Yi

Pai

P2i

%0+ kX1 + K22+ K33+ -+ KX j+ -,
yi,0+ky|,1+ k2Yi,2+k3yi73+ e +kjyi,j PP
pli,0+kp1i,1+k2p1i,2+k3pli73.|_....|_kj Prij+-,

p2i’o+kp2i’l+k2p2i72—|—k3p2i,3‘|‘""|‘kjp2i,j+"'7

and substitute into the equations of motion (Equation 4.2), a set of linear differential

equations is obtained for each power of the expansion parakaierwe can consider

it term-by-term in powers ok.

Specifically, ifz represents eithetr or y, then the following table illustrates the re-

sulting recursive structure of the equations. Any entry that is zero corresponds to a

variable that is identically zero. Furthermore, as is the typical case in an asymptotic ex-

pansion, any variable only depends on lower order ones, which in this table correspond

to variables to the left of it. Specifically, we have

78

Zo Z1 Z2 Zim-1 Zm
20 1 212 21 m-1 Z1m
20 0 2 Zm-1 Zm
230 0 0 ZBZm-1 Bm
Zm,0 0 0 0 Zm,m
Zhn20| O 0 —Z3m-1 —Z3m
Zh-10| 0O -2 ~Zm-1 —2Zm
ho | —Aa1 —4p2 —Z1m-1 —4m

wheremis the smallest integer larger than or equag 180, ifzj is known and sincg

(j > 1) depends Or¥%_1 j_2,Z_1,j-1,% j-2,%,j-1,Z+1,j—2,Z+1,j—1, W€ can solve them

in the orderofj =i+ 1,i+2,---.

In detail, thej = 0 (K°) terms gives the set of linear equations

Xi0
Yi.0
P1i0

P2i0

79

1
5 Paii,o;

1
2p2|,05
0,

0,

with boundary conditions

X0(0) = x10(0)+ (i—1)d
Yio(0)

Xo(1) = 0

|
o

Yio(1) = yio(1)+ (i—1)d,

which have solutions

X0 = —X0(0)t+x0(0),
Yio = VYio(1)t,
prio = —2%0(0),
P2io = 2¥%o(1)

Naturally, these are straight lines, which is expected when the only component of the
cost function is the control effort and the Oth order solution does not cokitain

In all cases (all powers & and all robots), an analysis of the resulting expansion
shows that j = —Xqs+1-ij andyij = —Yni1-ij. Also, for 1< j<i <™ % ;=0
andy; j = O (the higher order terms for the “outer” robots are zero up to a certain order.

Hence we only need to consider the cases whete £ 5 andi < |.

80

In the case wherg=i=1,

X1 = }pll 1
) 2)
) 1
Y11 = §p21,1
pr1 = 2d(t—1) (1— ;)
’ 2A2_2t+1

P11 = —2dt (1——1)
' V22 -2t +1

Since the right hand sides of the last two equations are continuous and bounded func-
tions oft on the intervaly = [0,1], they are integrable and the integrals are differen-
tiable (see [8]), which indicates the integrals are continuous. Heinge/, 1 exist and

are unique since the right hand side of thequations may be directly integrated twice

to obtain thex andy solutions. Since we integrate twice, there are two undetermined
constants, which can be determined by the two zero boundary conditions.

Wheni = jandj > 1,

. 1
Xj = 5P
. 1
Yii = 5Paij]
. 2t _y'fl,'fl'i‘t X.*l,'fl'i'y'fl"fl
Pui,j = —2%-1,j-1+ (=) (%i-1,) 2 i—1,j))
(242 -2t +1)
20—1) (—=Vi—1.i— t(X_1i_ e
Paij = 2Y-1j-1+ (t—21) (=¥i-rj-1+Ht(X-1j-1+VYi-1 1)).

(22— 2t 4 1)%?

The right hand sides of the last two equations are the sum of integrable functions or
product of them, so they are differentiable (see [8]). Similar to the argumend for

andyy 1, i andy;; therefore exist and unique.

81

The off-diagonal terms have the same essential structuteftbaight hand side
of the co-state equations is a linear combination of the lower order solutions in the
expansion. Since all the lower order solutions are continuous and bounded functions of
t, they may be directly integrated to compute the actual solution.

Since all the terms in the expansion may be solved by direction integration of func-
tions that are continuous and bounded, a solution for each term exists. Hence, for
k < 1, this asymptotic analysis give a computable construction for the solutions, and
also indicates that the solution is unique. In other words, for sknalhly one solution

exists.

4.3.2 Largek

For largek (% < 1), a similar asymptotic expansion is used to solve Equations 4.1

but instead ok, € = % is used as the expansion parameter. Let

X = Xi,0+€Xi71+$2Xi72+£3m73+..._{_gjxhj +oe,
Vi = yi,O+$yi,1+£2yi’2+£3yi73+ .. +£jyi7j +een,
P1i = P10+ £P1ia+E°Pri2+ EPra+ -+ EPLij

P2i = P2i0+ EP2i1+ E°Pi2+ €7P2iz+ -+ & Paij+ o -

We obtain the following equation for leading orderayf

_ 1 _
X0 = épu,o
'. R 1 .
Yio = EpZI,O
2k(x,0 —Xi-1,0) (di0—d) = 2k(X0 —Xi+1,0) (dio—d)
0= N
di-10 dio
2k(yi0 —Yi-1.0) (di-10—d) 2K(yio—Vir10) (dio—d)
0= + .
di—10 dio

82

The last two equations may be simplified to

(X0 —Xi—1,0)%+ (Yio —Yi—10)2 =d", (4.4)

which transparently shows that the limit for largesimply requires that the distance
constraint be exactly maintained.

Since the third and fourth equations are algebraic (as is Equation 4.4), then the
costatesp are unconstrained and henary path that maintains the desired distance
between the robots and satisfies the boundary conditions is a solution. This makes
intuitive sense: in the limit ak — o, the control effort becomes negligible relative
to the distance constraint. Hence, in the limit of very lakgéhe asymptotic analysis
indicates that there is an infinite number of solutions. As long as the separation distance

is maintained and the boundary conditions are satisfied, any path is optimal.

4.4 Symmetries in the Bifurcation Diagrams

This section proves that the symmetries found in the numerically-constructed bi-
furcation diagrams must be present. This is of practical value because it reduces the
computation time necessary in a search over multiple solutions since a second solution
can always be found from any solution that is obtained (unless the solution is symmetric
with itself).

SupposeXxy, X2, - -+, %n,Y1,Y2, -+ ,Yn) iS & solution of Equation 4.1 with the bound-

ary conditions in Equation 4.3, and let

Xp = XS +Xdi7

Yi = Ys+VYd

83

where

Xs = (c+(i—1)d)1-1),

ys = (c+(i—21)dt.

The subscripts indicate a “straight-line” solution and the subscriptsndicate the
component of the solution that is a “deviation” from the straight line. Wft) =
(Xdy,Ydy» "+ s Xdn» Vo), thenxg,yg, i = 1,2,---,n, satisfy the following equations with

homogeneous boundary conditions:

X () = fi(v(t)), (4.5)

—Va(t) = gi(v(t)),
wherefy =hg, g1 =1, fn=—hn_1, O = —In-1, @and fori = (2,3,--- ,n—1)

fi = hi—hi_q,

g = li—lia

where, for alli = (1,2,---,n)

d = ((—a—l—at—i—xdi —Xd”l)z-i— (—at—i—Ydi _Ydi+1)2>

The system (4.5), is equivalent to the system of integral o

1
X4 = /OG(t,s)fi(v(s))ds, (4.6)
i = [Gtsuve)ds

whereG(t,s) is the Green’s function of the differential operateii = 0 with homoge-

neous boundary conditions, whare= x4 or u = yq, and

Git.s) = t(1—s), t<s

s(1-t), t>s

If Aj, Bi andF are maps such that

1
Av(t) = k/Gt,sfivs))ds
Biv(t) — k/Gtsg.))ds,

Fvt) = (Au(V)(1),B1(V)(),--,An(V) (1), Bn(V) (D),

then determining a solution to Equation (4.6) is equivalent to finding a fixed point to

equation
Fv(t) = v(t). (4.7)

The following proposition proves that if a solution is known, then the “opposite”
deviation from the straight-line solution is also a solution for the robot on the other side

of the formation.

85

Proposition 4.4.1: Supposev(t) is a fixed point of Equation 4.7. Let

)A(dn+17i = X (4.8)

ydn+17i = _ydi

andvi(t) = (Xg,,Ya,- - > Xdy» Ya,,)» thenv(t) is also a fixed point of Equation 4.7

Proof: The proof is by direct substitution. Substituting for the definition of the hat

terms for each gives:

d =\ (—ddtag =)+ (0t va.)
- \/(_a+at -)?dn+l—| +)?dn—|)2 + (__t o 9dn+1—i +ydnfi)
_ \/ (—d+dt+Rg, , — Ry 10y) + (— 0+ Ve, — Vo 10
= d\nfl
d I
hi = (al_]-) (_d+dt+xd| Xd|+l)
d I
= (T —1) <—d+dt_)2dn+1,i +an—|)
n—I
d o R
= (= — 1) (_d+dt+xdn—| Xdr‘lfiJrl)
n—I
= F1n7i
d _
= (gt (—dt+ (ya)i — (Ya)i+1)
d . X
- (— 1) (—dt— Y,y ; + o)
n—I
d . N
— (= . — 1) (_dt+ydn—| _ydr‘lfi+1)

86

and

fi = hp=hy4=—"fy

fi = h—h_1=hni—hni1i=—frp1

g = li—lig=li—hn1i=—6ni1i
fo = —hp1=—-h=-f
O = —Iho1=-l1=-G
which give us
fi = —for1i,
gi = —0Onr1i

for all i from O ton. Then

1 1 ~
Ry = —Xdyy | = —/0 G(t,S)fn+1idS:/() G(t,s)fids
1 1
o= Vo=~ | GE.Sm1-ds— [Gt.sgds
Hencev(t) = (X4;, Y4, - > Xdy» Yd,) iS @ Solution of Equation 4.7.
Equation 4.8 gives an algebraic expression for the symmetric solutions, which is

useful because the theorem proves they satisfy the boundary value problems and hence

reduces the computational burden of determining additional solutions. Note that the

87

relationship is not simply the opposite deviation from thaight line solution, but is

the opposite deviation from the straight line for a different robot.

88

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This research considers the optimal control problem for a group of autonomous mo-
bile robots operating in a 2-dimensional obstacle-free environment. The trajectory of
each robot is optimized with respect to a combination of the control effort and the devi-
ation from a desired formation, which in this thesis is simply a formation that maintains
a specified distance between adjacent robots.

The first part of the results is for a system consisting of multiple MICAbots which
are forming a regular polygon. We first present the symmetric properties of the cost
function related to this problem, and then prove the symmetry in the optimal trajecto-
ries of the robots. The second part is for a group of unicycle-like autonomous mobiles
in a straight line formation. We present numerical results illustrating the structure of
bifurcations and multiple solutions of the second order nonlinear boundary value prob-
lem associated with the optimal control problem. Then we show that an asymptotic
analysis indicates that there is a unique solution wkensmall and in the limit a&
approaches infinity, the number of solutions also approaches infinity. Then, it presents
a theoretical result relating to the existence of symmetric solutions. It guarantees that
for any solution, a corresponding symmetric solution exists. The practical benefit is
that if a solution found numerically, the symmetric solution can be computed from that
algebraically. Also, if a gradient-based search method is used, understanding of the

structure of the relationship among multiple solutions is necessary to find the desired

89

result. Finding multiple solutions may be desirable if thetdanction does not include
all the optimization criteria; for example, if obstacles are present but not accounted for
in the cost function.

Since common numerical solution techniques such as the shooting method are local
in nature and hence are difficult to use to find multiple solutions, an alternative formu-
lation of the problem will be used in the future that can be solved through homotopy
methods for polynomial systems. The key point of this method is to rewrite the dif-
ferential equations of motion into finite difference formulation, and finally convert the
differential equations to polynomials. A solver, Bertini [5], could be used to solve those
polynomials. Bertini uses homotopy continuation methods to find the roots of polyno-
mial system and also is capable of preprocessing the systems to reduce the possible
number of solutions based on system symmetries. This approach might find branches
that were were perhaps simply not found in our search using the shooting method or
solutions that are not numerically stable using the shooting method.

From our bifurcation diagrams, we found that the bifurcation happened early when
the number of robots in a system increased and we plotted the value of weighting pa-
rameterk at the first bifurcation point versus the number of robots in a system (see
Figure 5.1). Itis difficult to construct bifurcation diagram for high dimensional system,
and | did not find any bifurcation point for a system containing less than five robots
for a limited range ok (< 25). It will be a interested topic to investigate the relation-
ship between the value &fat the first bifurcation point with the number of robots in a

system.

An additional focus of future efforts is to generalize the results. The results pre-
sented in thesis thesis that are specific to the system studied are likely to be much more

general than the particular case presented in the thesis. Determining the most general

90

20

aNumerical
st glfflculty
5 *
F 167
f 14r
5
g 121 *
K]
2 *
£
101 —a 4
Numerical difficulty
8 ‘ ‘ ‘ ‘ ‘ ‘
3 4 5 6 7 8 9 10

Number of robots in a system

Figure 5.1. First bifurcation point versus the number of tsbio a system.

classes of robots and formations that maintain the symmetry properties of the results
and similar bifurcation structure is of interest. Also, the asymptotic analysis is only
of any use for the limiting values fd«. Determining conditions for the existence of a

bifurcation for any value o, similar to that for initial value problems, would be useful.

91

APPENDIX A

RELAXATION SHOOTING METHOD PROGRAM

This appendix provides the program used to solve the highly nonlinear equations of

motion of the system.

#include "robot.h"

int main()
{double maxvalue(double array[], int);

FILE *fid, *fidi;

char filename[400];

int i,j,ip,im,J,n,k,row,column,ii;

double r=RADIUS, b=WIDTH, T_0=0.0, T_f=TFINAL, h, d_bar;
double K1=1,K2,Psi;

double t[Nstep+1];

double **A, **Phi,**phi, **inv_phi,**product_ptr, **d_x_f;
double d_p_0[3*N];

/* initial conditions --- starting point */

double x_O[N], y_O[N], theta_O[N];

/* initial guesses of Lagrange multipliers */

double p1_O[N]={1,0.5,1},p2_0[N]={1,0.5,1},p3_0[N]={0.5,0.5,0.5};

92

/* end
double
double
double
double
double
double
double
double
double
double
double

double

point */

x_f[N],y_f[N],theta_f[N];
X[N1,Y[N],Theta[N],P1[N],P2[N],P3[N],D[N];

X_inspace[N] [M+1],Y_inspace[N] [M+1],Theta_inspace[N] [M+1];
X_f[N] [M+1],Y_£f [N] [M+1],Theta_f [N] [M+1];

x[N] [Nstep+1],y[N] [Nstep+1],theta[N] [Nstep+1];

p1[N] [Nstep+1],p2[N] [Nstep+1],p3[N] [Nstep+1],d[N] [Nstep+1];
aa[N], ac[N], cc[N];

err=1E-9,max;

x6[6] [Nstep+1],y6[6] [Nstep+1],theta6[6] [Nstep+1];

p61[6] [Nstep+1] ,p62[6] [Nstep+1],p63[6] [Nstep+1];

d6[6] [Nstep+1];

intx,inty,intxy,inttheta;

A=(double **)malloc((unsigned) (6*N)*sizeof (double));

Phi=(double **)malloc((unsigned) (6*N)*sizeof (double));

phi=(double **)malloc((unsigned) (3*N)*sizeof (double));

inv_phi=(double **)malloc((unsigned) (3*N)*sizeof (double));

d_x_f=(double **)malloc((unsigned) (3*N)*sizeof (double));

product_ptr=(double **)malloc((unsigned)6*N*sizeof (double));

for(i=0;i<6%N;i++)

product_ptr[i]=(double *)malloc((unsigned)

93

6xN*sizeof (double));

for(i=0;i< (6*N);i++) {
Ali]=double *)malloc((unsigned) (6*N)*sizeof (double));
Phi[i]=(double *)malloc((unsigned) (6*N)*sizeof (double));

}

for(i=0;i<(3*N);i++) {
phi[i]=(double *)malloc((unsigned) (3*N)*sizeof (double));
inv_phi[i]=(double *)malloc((unsigned) (3*N)*sizeof (double));

d_x_f[i]=(double *)malloc((unsigned) l*sizeof (double));

h=(T_£-T_0) /Nstep;
for(i=0;i<=Nstep;i++)

t [1]=T_O+h*i;
d_bar=sqrt (pow (2*R*sin(PI/N),2));

Psi=PI/2.0;

for(i=0;i<N;i++){
x_0[1]1=XX0+R*cos (2*xPI*i/N) ;
y_0[i]=YYO+R*sin (2*PI*i/N);
theta_O[i]l=atan2(Psix*(x_0[i]-XX0)+(YYf-YYO),
-Psi*(y_0[i]-YYO)+(XXf-XX0));

theta_O[i]=fmod(theta_0[i],62*PI);

94

x_f[i]=XXf+R*cos (2*%PI*i/N+Psi);

y_f[i]=YYf+R*sin(2*PI*i/N+Psi);

theta_f[i]=atan2(Psi*(x_0[i]-XX0)*cos(Psi)
-Psix(y_0[i]-YY0)*sin(Psi)+(YYf-YYO),
-Psix(x_0[1i]-XX0)*sin(Psi)
-Psix(y_0[i]-YYO0)*cos(Psi)+(XXf-XX0));

theta_f[i]=fmod(theta_f[i],6 2*PI);

/*Search the 1st point I shoot:*/
for(i=0;i<N;i++){
X[il=x_0[i];
Y[il=y_0[il;
Theta[il=theta_0[i];
Lambdal[i]=lambdal_0[i];
Lambda2[i]=lambda2_0[i];
Lambda3[i]=lambda3_0[i];}
for(i=0;i<N;i++)

D[i]=sqrt (pow(2*R*sin(PI/N),2));

for (n=0;n<Nstep;n++) {
for(i=0;i<N;i++){
X[i]+=h*(r*r/4/K1*(Lambdal [i]*cos(Thetali])
+Lambda2[i]*sin(Thetali]))*cos(Thetalil));

Y[i]+=h*(r*r/4/K1* (Lambdal [i]*cos(Thetal[i])

95

+Lambda2[i]*sin(Theta[i]))*sin(Thetalil));
Theta[i]+=h* (r*r/ (4xb*b*K1))*Lambda3[i];
Theta[i]=fmod (Thetal[i],2%PI);
if (1==0)
im=N-1;
else
im=i-1;
if (1==N-1)
ip=0;
else
ip=i+1;
Lambdai [i]+=h*2xK2% ((X[1]-X[im])* (D [im]-d_bar) /D [im]
+(X[i1-X[ip])*(D[i]l-d_bar)/D[il);
Lambda2 [i]+=h*2%K2* ((Y[i]-Y[im])*(D[im]-d_bar) /D [im]
+(Y[i]-Y[ip]l)*(D[il-d_bar)/D[i]);
Lambda3 [i]+=h* (r*r/4/K1*(Lambdal [i]*cos(Thetal[il)
+Lambda2[i]*sin(Thetalil))
*(Lambdal[i]*sin(Thetali])

-Lambda2[i]*cos(Thetal[il)));

for(i=0;i<N;i++) {
if (i==N-1) 1ip=0;
else ip=i+l;

D[i]=sqrt (pow(X[i]-X[ip],2)+pow(Y[i]-Y[ip],2));

96

for(i=0;i<N;i++){
for(j=0;j<=M; j++){
X_inspace[1] [j1=X[i]+(x_f[i]-X[i])*j/M;
Y_inspace[i] [j1=Y[i]l+(y_£[i]-Y[i])*j/M;
Theta[i]=fmod(Theta[i],2+PI);
if (sqrt(pow(Thetal[i]-theta_f[i],2))<=PI)
Theta_inspace[i] [j]1=Thetal[il
+(theta_f[i]-Theta[i])*j/M;
else if (Thetal[il>theta_f[i])
Theta_inspace[i] [j]=Thetali]
+(theta_f [i]+2+PI-Thetal[i])*j/M;
else
Theta_inspace[i] [j]=Thetali]

+(theta_f [i]-2#PI-Thetal[i])*j/M;

for(j=0;j<=M; j++){
for(i=0;i<N;i++){
X_f[i] [j1=X_inspace[i] [j];
Y_f[i] [j1=Y_inspace[i] [j];

Theta_f[i] [j]=Theta_inspace[i] [j];

97

for (k=0;k<=M;k++){
sprintf(filename, "fileld.dat",k);
fid=fopen(filename,"w");
for(i=0;i<N;i++){
x_fli]=X_f[i] [k];
y_flil=Y_£[i] [k];

theta_f[i]=Theta_f[i] [k];

/* create these variables in advance in case of
x/breaking down in condition judging
d_lambda_0[0]=1;
max=0.1,;

J=0;

while (max>err)q{
system("date") ;
for(i=0;i< (6xN);i++) {
for(j=0;j< (6*N);j++){

A[i][j1=0.0;

98

if (i==3)
Phi[i] [j]1=1.0;
else

Phi[i] [j]=0.0;%}

for(i=0;i<N;i++){
x[1] [0]=x_0[i];
y[i]l [0]=y_0[i];
theta[i] [0]=theta_0[i];
lambdal[i] [0]=1lambdal_O[il;
lambda2[i] [0]=1ambda2_0[i];

lambda3[i] [0]=lambda3_0[i];

for(i=0;1i<N;i++){
if (i==N-1)
ip=0;
else
ip=i+1;
d[i] [0]=R;
+

Integration process */

for (n=1;n<=Nstep;nt++) {

99

for (j=0;j<N;j++){
if (j==N-1)
ip=0;
else
ip=j+1;
aa[j]=2*K2x(d[j] [n-1]-d_bar)/d[j] [n-1]
+2%K2+pow (x [§] [n-11-x[ip] [n-1]1,2)
*d_bar/pow(d[j] [n-1],3);
ac[jl=2*K2x(x[j] [n-1]-x[ip] [n-1])
*(y[j] [n-1]-y[ip] [n-11)
*d_bar/pow(d[j] [n-1],3);
cc[j1=2%K2*(d[j] [n-1]-d_bar)/d[j] [n-1]
+2xK2*pow (y [j] [n-1]-y[ip] [n-1]1,2)

*d_bar/pow(d[j] [n-11,3);

for(i=0;i<N;i++){
A[i] [2#N+i]=r*r/4/K1*(-lambdal[i] [n-1]
*sin(2*theta[i] [n-1])
+lambda2[i] [n-1]*cos(2*thetali] [n-1]));
A[i] [3*N+il=r*r/4/Kl*pow(cos(thetali] [n-1]),2);
A[i] [4*N+il=r*r/4/K1xsin(thetali] [n-1])
*cos (thetali] [n-1]1);
A[N+i] [2*N+i]=r+*r/4/K1*(lambdal[i] [n-1]

*cos (2xthetali] [n-1])

100

+lambda2[i] [n-1]*sin(2*thetali] [n-11));
A[N+i] [3*N+i]=r*r/4/K1*sin(theta[i] [n-1])

*cos (thetalil [n-11);
A[N+i] [4*N+il=r*r/4/Kixpow(sin(theta[i] [n-11),2);

A[2*N+i] [5*N+i]=r*r/ (4*b*b*K1) ;

if (i==0)
im=N-1;
else
im=i-1;
if (i==N-1)
ip=0;
else

ip=i+1;

A[3*N+i] [im]=-aa[im] ;
A[3*N+i] [i]=aal[im]+aa[i];
A[3*N+i] [ip]=-aa[i];
A[3*N+i] [N+im]=-ac[im];
A[3*N+i] [N+i]l=ac[im]+ac[i];
A[3*N+i] [N+ip]l=-ac[il;
A[4xN+i] [im]=-ac[im] ;
A[4xN+i] [i]=ac[im]+ac[i];
A[4xN+i] [ip]l=-ac[i];

A[4*N+i] [N+im]=-cc[im] ;

101

A[4*N+i] [N+il=cc[im]+cc[i];

A[4*N+i] [N+ip]=-cc[i];

A[5*N+i] [2%N+i]=r*r/4/K1* (pow(lambdal[i] [n-1]
*xcos (thetali] [n-1])+lambda2[i] [n-1]
*sin(thetali] [n-1]),2)-pow(lambdal[i] [n-1]
*sin(thetali] [n-1])-lambda2[i] [n-1]

*cos (thetali] [n-11),2));

A[5*N+1] [3*N+i]=r*r/4/K1*(lambdal[i] [n-1]
*sin(2xthetali] [n-1])

-lambda2[i] [n-1]*cos(2*thetali] [n-11));

A[5*N+i] [4#N+i]l=-r*r/4/K1*(lambdal[i] [n-1]

*cos (2xtheta[i] [n-1])

+lambda2[i] [n-1]*sin(2*thetali] [n-11));

for(i=0;i<N;i++){

x[i] [n]=x[i] [n-1]+h* (r*r/4/K1*(lambdal [i] [n-1]
*cos (thetali] [n-1])+1lambda2[i] [n-1]
*sin(thetal[i] [n-1]))*cos(thetali] [n-1]));

y[il [nl=y[i] [n-1]+h*(r*r/4/K1*(lambdal[i] [n-1]
*cos (thetali] [n-1])+lambda2[i] [n-1]
*sin(theta[i] [n-1]))*sin(theta[i] [n-1]1));

thetal[i] [n]=thetali] [n-1]+h* (r*r/(4xb*b*K1))
*lambda3[i] [n-1];

thetal[i] [n]=fmod(thetali] [n],2%PI);

102

if (i==0)
im=N-1;
else
im=i-1;
if (i==N-1)
ip=0;
else

ip=i+1;

lambdal[i] [n]=lambdal[i] [n-1]+h*2+K2*((x[i] [n-1]
-x[im] [n-1])*(d[im] [n-1]-d_bar)/d[im] [n-1]
+(x[1] [n-1]-x[ip] [n-1])

*(d[i] [n-1]1-d_bar)/d[i] [n-11);

lambda2[i] [n]=lambda2[i] [n-1]+h*2xK2* ((y[i] [n-1]
-y [im] [n-11)*(d[im] [n-1]-d_bar)/d[im] [n-1]
+(y[i]l [n-1]-y[ip] [n-11)

*(d[i] [n-1]-d_bar)/d[i] [n-1]);

lambda3[i] [n]=lambda3[i] [n-1]+h* (r*r/4/K1
*(lambdal[i] [n-1]*cos(theta[i] [n-1])
+lambda2[i] [n-1]*sin(thetali] [n-1]))
*(lambdal[i] [n-1]*sin(theta[i] [n-11)

-lambda2[i] [n-1]*cos(thetal[i] [n-11)));

for(i=0;i<N;i++) {

103

if (i==N-1)
ip=0;
else
ip=i+1;
d[i] [n]=sqrt (pow(x [i] [n-11-x[ip] [n-1],2)

+pow(y[i] [n-1]-y[ip] [n-1],2));

product_ptr=matrixmultiply(A,6%N,6*N,Phi,6%N,

6*N,product_ptr) ;

for (row=0;row<6*N;row++){

for (column=0;column<6+*N;column++){

Phi [row] [column]+=h*product_ptr[row] [column] ;

}
} // n loop

for (row=0;row<3*N;row++){
for(column=0;column<3*N; column++){

phi [row] [column]=Phi [row] [column+3*N] ;

for(i=0;i<N;i++){

104

d_x_f[i] [0]=x_f[i]-x[i] [Nstep];
d_x_f [N+i] [0]=y_f[i]-y[i] [Nstep];

d_x_f [2#N+i] [0]=theta_f[i]-thetal[i] [Nstep];

matrixinverse(phi,inv_phi,3x*N);
product_ptr=matrixmultiply(inv_phi,3*N,3*N,d_x_£f,3x*N,

1,product_ptr);

for (row=0;row<3*N;row++)

d_lambda_O [row]=product_ptr [row] [0];

for(i=0;i<N;i++){
lambdal_O[i]+=d_lambda_O[i];
lambda2_0[i]+=d_lambda_O[i+N];

lambda3_0[i]+=d_lambda_0[i+2*N];

max=0.0;
for(i=0;i<N;i++){
max+=sqrt (pow (x[1] [Nstep] -X_f [i] [k],2)
+pow (y[1] [Nstepl-Y_£f[i] [k],2)

+pow(thetal[i] [Nstep]-Theta_f[i] [k],2));

105

} // while

for(i=0;i<=Nstep;i++){
fprintf(fid,"%13.9f ",t[i]);
for(j=0;j<N;j++) {
fprintf (fid,"%18.13f %18.13f %18.13f %18.13f %18.13f
%18.13f %18.13f",x[j1[i],y[j][i],thetalj][i],
lambdal[j][i],lambda2[j] [i],lambda3[j] [i],d[j][i]);}
fprintf (fid,"\n");
¥
fclose(fid);
} // k loop

return(0) ;

double maxvalue(double array[],int n) { int j;
double max;
max=0;
for(j=0; j<n;j++)

if (sqrt(pow(arrayl[jl,2))>max) max=sqrt(pow(arraylj]l,2));

return(max) ;

106

/%

#i

This file is "matrixinverse.c".

This program computes the inverse of a matrix using Gauss-Jordan

elimination. Row shifting is only utilized if a diagonal element
of the original matrix to be inverted has a magnitude less than
DIAGONAL_EPS, which is set in "inversekinematics.h".

The inverse matrix is stored in y[][], and a pointer to y is
returned.

Copyright (C) 2003 Bill Goodwine.

/
nclude "robot.h"

double **matrixinverse(double **a, double **y, int n) {

double temp,coef;
double max;
int max_row;

int 1,]j,k;

/* Initialize y[][] to be the identity element. */

for(i=0;i<n;i++) {

for(j=0;j<n;j++) {

107

if (i==j)

y[il [j] = 1;
else
y[il[j] = 0;

/* Gauss-Jordan elimination with selective initial pivoting */

/* Check the magnitude of the diagonal elements, and if one
* is less that DIAGONAL_EPS, the search for an element lower

*/ in the same column with a larger magnitude.

for(i=0;i<n;i++) {
if (fabs(a[i] [i]) < DIAGONAL_EPS) {
max = al[i] [i];
max_row = i;
for(j=i;j<n;j++) {
if (fabs(aljl[1]) > max) {
max = fabs(al[j][i]);

max_row = j;

if (max < DIAGONAL_EPS) {

108

printf("Ill-conditioned matrix encountered.

exit(1);

/* This loop switches rows if needed. */
for (k=0;k<n;k++) {

temp = al[max_row] [k];

al[max_row] [k] = al[i] [k];

ali] [k] = temp;

temp = y[max_row] [k];
y [max_row] [k] = y[i] [k];

y[i] [k] = temp;

/* This is the forward reduction. */

for(i=0;i<n;i++) {

coef = ali][i];
for(j=n-1;3j>=0;j--) {
y[il[j] /= coef;

alil [j1 /= coef;

109

Exiting. .

An");

for(k=i+1;k<n;k++) {
coef = alk][il/alil[i];
for(j=n-1;3j>=0;j--) {

y[k1[j] -= coef*y[i][j];

alk] [j] -= coef*alil[j];
}

/* This is the back substitution. */

for(i=n-1;i>=0;i--) {

for(k=i-1;k>=0;k--) {
coef = alk][il/alil[i];
for(j=0;j<n;j++) {

y[k]1[j] -= coefxy[i] [j];

alk] [j] -= coef*alil[j];
3

// printf("%f\n",y);

return y;

110

#include "robot.h"

double **matrixmultiply(doublex* left, int row_left, int
column_left,
double** right, int row_right, int column_right,
double** product_ptr) {

int 1,]j,k;

if (column_left !'= row_right) {
printf ("\n The matrices cannot be multiplied! Exiting...\n");

exit(1);

for(i=0;i<row_left;i++)
for(j=0; j<column_right;j++)
for (k=0,product_ptr[i] [j]=0.0;k<column_left;k++)

product_ptr[i] [j] += left[i] [k]*right[k] [j];

return product_ptr;

The following C-code is named "robot.h” which defines the constants and declares

functions used by the main code.

111

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#define

#define

#tdefine

#define

#define

#define

#define

#tdefine

#define

#define

#define

#define

#define

#define

#define

#define

#define

RADIUS 3.0
WIDTH 1.0
GAIN 0.01
TFINAL 1

N 3

M 10

Nstep 5000

PI 4xatan(1.0)

R 1.

XX0 -2.

YYO 0. //Initial coordinate of the center
XXf 0.

YYE 2. //Final coordinate of the center
MAX_ITERATIONS 1000

EPS 0.0000000001
PERTURBATION 0.001

DIAGONAL_EPS 0.0001

112

double** matrixinverse(double **J, double **Jinv, int n); doublex*x
matrixmultiply(double** left,int row_left,int column_left,
double** right,int row_right,int column_right,

doublex** product_ptr);

113

BIBLIOGRAPHY

L. Aguilar, R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Ten au-
tonomous mobile robots (and even more) in a route network like environment. In
In Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 260-267, 1995.

. T. Balch and R. Arkin.IEEE Transactions on Robotics and Automatidd(6):
926-934, 1998.

. T. Balch and M. Hybinette. Behavior-based coordination of large-scale robot for-

mations. InFourth International Conference on MultiAgent Systeg@0o0.
. T. D. Barfoot and C. M. ClarkRobotics and Autonomous Systed®{(2), 2004.

D. Bates, J. Hauenstein, A. Sommese, and C. Wampigtp : // www. nd. edu/

~sommese/bertini/.

. C. Belta and V. KumaiGeometric Methods for Multi-Robot optimal Motion Plan-
ning, Handbook of Computational Geometry for Pattern Recognition, Computer

Vision, Neurocomputing and RoboticSpringer—Verlag, Berlin, 2005.

F. Bullo and A. D. Lewis.Geometric Control of Mechanical SystentSpringer,

2005.

R. Carlson A Concrete Introduction to Real AnalysiSRC, Boca Raton, 2006.

114

9. J. P. DesaiJournal of Robotic System$9(11):511-525, 2002.

10. J. P. Desai. Modeling multiple teams of mobile robots: a graph theoretic ap-
proach. InProceedings of the 2001 IEEE/RSJ International Conference on In-

telligent Robots ans Systenpages 381-386, 2001.
11. J. P. Desai and V. Kumatournal of Robotic System$0:557-579, 1999.

12. J. P. Desai, J. Ostrowski, and V. Kumar. Controlling formation of multiple mobile
robots. INIEEE International Conference on Robotics and Automatiages 16—

21, 1998.

13. J. P. Desai, J. P. Ostrowski, and V. Kum#EEE Transzctons on Robotics and

Automation, 17(6), 2001.
14. L. E. Dubins.American Journal of Mathematicg9:497-516, 1957.

15. M. Egerstedt and X. HUIEEEE Transactions on Robotics and Automafiaii(6):
947-951, 2001.

16. L. Erbe and H. Wang. On the existence of positive solutions of ordinary differential
equations. Irpreceedings of the American Mathematical Socipages 743—748,
1994.

17. L. Erbe, S. Hu, and H. WandJathematical Analysis and Applications34:640—
648, 1994.

18. M. Erdmann and I. Lozano-Perez. On multiple moving objectsProteedings
of IEEE International Conference on Robotics and Automatiages 1419-1424,

1986.

115

19

20.

21.

22.

23.

24,

25.

26.

27.

L. Fang and P. J. Antsaklis. Information consensus of@spnous discrete-time

multi-agent systems. IRroceedings of AC(pages 1883—-1888, 2005.

L. Fang, P. J. Antsaklis, and A. Tzimas. Asynchronous consensus protocols: pre-
liminary results, simulations and open questions. Placeedings of 44th IEEE

Conference on Decision and Control, pages 2194-2199, 2005.

A. Frommer and D. B. SzyldJournel of Computational and Applied Math23:
201-206, 2000.

T. Gross, Jonathan L. and T. Wopological Graph Theory. Wiley Interscience

series in Discrete Mathematics and Optimization, 1987.

D. Guo and V. LakshmikanthamNonlinear Problems in Abstract Cone#\ca-

demic Press, Orlando, FL, 1998.

Y. Guo and L. E. Parker. A distributed and optimal motion planning approach for
multiple mobile robots. IfProceedings of the 2002 IEEE Internatioanl Conference

on Robotics and Automatippages 2612—-2619, 2002.

J. Jennings, G. Whelan, and W. Evans. Cooperative search and rescue with a team
of mobile robots. INEEE International Conference on Advanced Robotiegyes

193-200, 1997.

K. Kant and S. Zuckerinternational Journal of Robotics Reseaydh(3):72-89,
1986.

J. Kevorkian. Perturbation Methods in Applied MathematicSpringer—\Verlag,
New York, 1981.

116

28

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

N. E. Leonard and E. Fiorellin 40th IEEE Conference on Decision and Control

pages 2968-2973, 2001.
M. A. Lewis and K. H. TanAutonomous Robqt4:387—-403, 1997.
R. Ma and B. Thompsoi\pplied Mathematics Letterd8(5):587-595, 2005.

R. Ma and B. Thompsomonlinear Analysis: Theory, Methods and Applications
303(2):726-735, 2005.

M. J. Mataric.IEEE Intelligent Systemgages 6-8, 1998.
M. J. Mataric.Cognitive Systems Researéif1):81-93, 2001.
M. J. Mataric.Autonomous Robaqtd:73—-83, 1997.

M. J. Mataric, M. Nilsson, and K. T. Simsarin. Cooperative multi-robot box-
pushing. Ininternational Conference on Intelligent Robots and Systgrages

556-561, 1997.

C. R. Mclnnes.AlAA Journal of Guidance Control and Dynamids3(5):1215—-
1217, 1995.

M. McMickell. Reduction and control of nonlinear symmetric distributed robotic

systems. PhD thesis, University of Notre Dame, 2003.

M. McMickell and B. GoodwinelEEE International Conference on Robotics and

Automation, pages 4228-4233, 2003.

M. McMickell, B. Goodwine, and L. MontestruquéEEE International Confer-
ence on Robotics and Automatjéh1600-1605, 2003.

Y. Naito and S. Tanakaonlinear Analysis56(4):919-935, 2004.

117

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

P. J. OlverApplications of Lie Groups to Differential EquatianSpringer-Verlag,

second edition, 1993.

G. Pereira, A. Das, V. Kumar, and M. Campos. Formation control with configura-
tion space constraints. Iroceedings of the IEEE/RJS International Conference

on Intelligent Robots and Systerpages 2755-2760, 2003.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlibgmerical
Recipes in C : The Art of Scientific Computichapter 17. Cambridge University,
1992.

H. Puttgen, P. MacGrego, and F. Lamb&BEE Power and Energy Magazing:
22-29, 2003.

J. A. Reeds and R. A. Shepacific Journal of Mathemati¢4.990.
S. SastryNonlinear Systems: Analysis, Stability, and Contfbringer, 1999.
R. W. SharpeDifferential Geometry. Springer, 1997.

T. R. Smith, H. Hanssmann, and N. E. Leonaitd.40th IEEE Conference on
Decision and Control, pages 4598-4603, 2001.

Z. Su and J. LuJounal of Beijing Institute of Technolog}3(2):190-193, 2004.

H. J. Sussmann and W. Tang. Shortest paths for the reeds-shepp car: a worked out

example of the use of geometric techniques in nonlinear optimal control. Technical

Report SYCON-91-10, Rutgers, 1991.

K.-H. Tan and M. A. Lewis.International Conference on Intelligent Robots and

Systems, pages 132-139, 1996.

118

52.

53.

54.

55.

56.

W. Tutte.Graph Theory. Cambridge University Press, 2001.

N. Utamaphethai and S. GhodEEE Transactions on Intelligent Transportation

Systems, 31(3), 1998.

J.-D. B. X-N. Bui, P. Scerés and J.-P. Laumon. The shortest paths synthesis
for nonholonomic robots moving forwards. IBEEE International Conference on

Robotics and Automatioi993.

H. Yamaguchi, T. Arai, and G. BenRobotics and Autonomous SysteB8&125—
147, 2001.

A. Yamashita, T. Arai, J. Ota, and H. AsamiBEE Transactions on Robotics and
Automation, 19(2):223-237, 2003.

This document was prepared & typeset WHTEX 2¢, and formatted with
NDdiss2¢ classfile (v3.0[2005/07/27]) provided by Sameer Vijay.

119

