
BIFURCATIONS AND SYMMETRIES OF OPTIMAL SOLUTIONS FOR

DISTRIBUTED ROBOTIC SYSTEMS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Baoyang Deng,

Bill Goodwine, Director

Graduate Program in Aerospace and Mechanical Engineering

Notre Dame, Indiana

March 2011

BIFURCATIONS AND SYMMETRIES OF OPTIMAL SOLUTIONS FOR

DISTRIBUTED ROBOTIC SYSTEMS

Abstract

by

Baoyang Deng

In this thesis, we consider the motion planning problem for a symmetric distributed

system which consists of a group of autonomous mobile robots operating in a two-

dimensional obstacle-free environment. Each robot has a predefined initial state and

final state and the problem is to find the optimal path between two states for every

robot. The path is optimized with respect to the control effort and the deviation from a

desired formation. Due to scaling issues, it becomes more and more difficult and some-

times infeasible to numerically find solutions to the problem as the number of robots

increases. One goal of this thesis is to exploit symmetries in distributed control systems

to reduce the computational effort to determine solutions for optimal control of such

systems. One way to characterize a distributed system is that it is a control system in

which the state space is naturally decomposed into multiple subsystems, each of which

typically only interacts with a limited subset of the other subsystems. A symmetric dis-

tributed system can be defined when the subsystems are diffeomorphically related. The

optimal control problem for distributed systems may not scale well with the size of the

overall system; hence, our efforts are directed toward exactly solving the optimization

problem for large scale systems by working with a reduced order model that is deter-

mined by considering invariance properties with respect to certain group actions of the

governing equations of the overall system.

Baoyang Deng

This thesis also studies bifurcations and multiple solutions of the optimal control

problem for mobile robotic systems. While the existence of multiple local solutions

to a nonlinear optimization problem is not unexpected, the nature of the solutions are

such that a relatively rich and interesting structure is present, which potentially could

be exploited for controls purposes. The bifurcation parameter is the relative weight

given to penalizing the deviation from the desired formation versus control effort. Nu-

merically it is shown that as this number varies, bifurcations of solutions are obtained.

Theoretic results of this paper relate to the symmetric properties of these bifurcations

and the number and existence of multiple solutions for large and small values of the

bifurcation parameter. Understanding the existence and nature of multiple solutions for

optimization problems of this type is also of practical importance due to the ubiquity of

gradient-based optimization methods where the search method will typically converge

to the nearest local optimum.

CONTENTS

FIGURES . iv

ACKNOWLEDGMENTS . vi

CHAPTER 1: INTRODUCTION . 1
1.1 Motion Planning . 3

1.1.1 Centralized Planners . 4
1.1.2 Decentralized Planners . 5

1.2 Formation Control . 7
1.2.1 Leader-following Method . 7
1.2.2 Behavior-based Methods . 9
1.2.3 Virtual Structure Methods . 11

1.3 Multiple Solutions of Second Order Ordinary Differential Equations . . 12
1.4 Organization . 16

CHAPTER 2: MATHEMATICAL BACKGROUND 18
2.1 Differential Geometry . 18
2.2 Group Theory . 20
2.3 Graph Theory . 23
2.4 Symmetric Distributed Systems . 24

CHAPTER 3: SYMMETRIC PROPERTIES OF A DISTRIBUTED SYSTEM
MADE OF MICABOTs . 31
3.1 Prototypical Model: MICAbots . 31
3.2 Problem Statement . 33
3.3 Equations of Motion . 36
3.4 Algorithm . 41
3.5 Symmetry in Distributed Systems . 47

ii

CHAPTER 4: BIFURCATION RESULTS OF A DISTRIBUTED SYSTEMS
MADE OF UNICYCLES . 57
4.1 Bifurcation Results . 59

4.1.1 Solutions for a Five Robot System 60
4.1.2 Solutions for a Six Robot System 64
4.1.3 Solutions for a Seven Robot System 69

4.2 Optimization Software iSIGHT . 69
4.3 Asymptotic Analysis . 76

4.3.1 Smallk . 78
4.3.2 Largek . 82

4.4 Symmetries in the Bifurcation Diagrams 83

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 89

APPENDIX A: RELAXATION SHOOTING METHOD PROGRAM 92

BIBLIOGRAPHY . 114

iii

FIGURES

2.1 Graph of the four component system given in Example 3.4.4. 27

2.2 Graph symmetryσ acting on the four component system. 28

3.1 Sketch of MICAbot. 32

3.2 Graph theoretic representation of the distributed system. 33

3.3 Lie symmetry. 41

3.4 Illustration of the algorithm. 43

3.5 Illustration of symmetry trajectories. 45

3.6 Five side regular polygon formation. 52

3.7 Trajectories of a team of five robots. 53

3.8 Trajectories of a team of six robots. 55

3.9 The optimal costates of the 2nd robot verse time for six robots system. . 56

4.1 Optimal paths for the five robot system withk = 24.5. 60

4.2 Difference among the optimal paths for robot three. 61

4.3 Bifurcation diagrams for robot one in a 5-robotic system. 62

4.4 Bifurcation diagrams for robot two in a 5-robotic system. 62

4.5 Bifurcation diagrams for robot three in a 5-robotic system. 63

4.6 Bifurcation diagrams for robot four in a 5-robotic system. 63

4.7 Bifurcation diagrams for robot five in a 5-robotic system. 64

4.8 Optimal paths for a six robot system withk = 24.5. 65

4.9 Difference among the optimal paths for robot three. 65

4.10 Bifurcation diagrams for robot one in a 6-robotic system. 66

4.11 Bifurcation diagrams for robot two in a 6-robotic system. 66

4.12 Bifurcation diagrams for robot three in a 6-robotic system. 67

4.13 Bifurcation diagrams for robot four in a 6-robotic system. 67

iv

4.14 Bifurcation diagrams for robot five in a 6-robotic system. 68

4.15 Bifurcation diagrams for robot six in a 6-robotic system. 68

4.16 Optimal paths for a seven robot system withk = 23. 70

4.17 Difference among the optimal paths for robot four magnified by a factor
of 5. 70

4.18 Bifurcation diagrams for robot one in a 7-robotic system. 71

4.19 Bifurcation diagrams for robot two in a 7-robotic system. 71

4.20 Bifurcation diagrams for robot three in a 7-robotic system. 72

4.21 Bifurcation diagrams for robot four in a 7-robotic system. 72

4.22 Bifurcation diagrams for robot five in a 7-robotic system. 73

4.23 Bifurcation diagrams for robot six in a 7-robotic system. 73

4.24 Bifurcation diagrams for robot seven in a 7-robotic system. 74

4.25 iSIGHT model layout. 75

4.26 Optimal trajectories solved by iSIGHT. 77

5.1 First bifurcation point versus the number of robots in a system. 91

v

ACKNOWLEDGMENTS

I would like to express my gratitude to those who made an important difference and

played a vital role in the successful completion of my Doctoral studies at the Univer-

sity of Notre Dame. I am grateful to my advisor Professor Bill Goodwine whose help,

stimulating suggestions and encouragement helped me in all the time of research and

writing of this thesis. Professor Mihir Sen provided valuable advice and insight towards

my work. I am very thankful for his opinion and guidance during the course of my the-

sis. I would like to thank Professor Panos Antsaklis, Professor John Renaud, Professor

Mihir Sen and Professor Bill Goodwine for agreeing to be the members of my thesis

committee and for taking the time to read my thesis and provide valuable suggestions.

I would like to thank my former and present colleagues, Brett McMickell, Neil

Petroff, Dayu Lv, Jason Nightingale and Alice Nightingale for all their help, support,

valuable hints.

I would like to give my special thanks to my husband whose patient love enabled

me to complete this work. Thanks to my parents who gave me the love, education,

skills, and constant support that enabled me to do this work.

vi

CHAPTER 1

INTRODUCTION

Research on multi-robot systems originates in the late 1980s and increased substan-

tially in the 1990s. Compared to a single-robot system, it may cost less in time and

money to construct multiple simple robots and have those robots can work simultane-

ously to perform cooperative tasks. Also, the multi-robot system may be more robust

and reliable than a single-robot system. Hence they have been the focus of increased

research effort and attention in recent years. The application of distributed systems

are everywhere: unmanned underwater vehicles [48], satellite clustering [36], electric

power system [44], search and rescue operations [25] and so on.

Although each robot in a distributed system may possess a simple and tractable

model and it may interact its neighbors in a very simple way, the resulting system

often displays a rich and complex behavior when viewed as a whole. Since the robots

in a distributed system work together to accomplish one task, coordination between

robots are needed. Having multiple robots in a limited area may cause interference and

collisions. Therefore, the control of a distributed system is more difficult than that of

a single robotic system and it is a challenging topic in recent years. Especially when

the number of the subsystems increases, the state space of the whole system becomes

huge.

In this thesis, the problem addressed is to control a formation of robots moving

along an optimal path between an initial configuration and a final configuration. The

1

path is optimized with respect to a combination of the controleffort and the deviation

from a desired formation. Using standard methods from optimization, since each robot

has its own predefined initial state and final state, the procedure to find the optimal

path is to solve a boundary value problem for a set of second order ordinary differential

equations. Since those equations are highly nonlinear, it is not feasible to determine

closed form solutions. We develop a relaxation shooting method to solve them numeri-

cally. Theoretically, the method will work for a system with arbitrary large state space.

But in fact, convergence issues prevent finding a solution when a system is too large.

So one task here is to find a way that reduces the dimension of the state space of a

large distributed system to a smaller one which is more manageable. The reduced state

space should be “equivalent” to the larger state space in some sense. We will discuss

the meaning of “equivalent” in later chapter. The idea behind this reduction is that a

distributed system could have symmetric structure since the subsystems are identical

to each other. We have the detailed definition of symmetric distributed system in this

thesis. We exploit the symmetric properties of the distributed system to reduce it to a

smaller one. Since the optimal control problem for distributed systems may not scale

well with the size of the overall system, we work on this reduced order model to find

the optimal trajectory for each robot in the reduced small system. Then, we can exactly

solve the optimization problem for the original large scaled system by considering in-

variance properties with respect to certain group actions of the governing equations of

the overall system reduced computational effort. Note that these results are general in

that they will apply to any optimization problem for any type symmetric systems, not

just for controls problems.

We defined the motion planning problem for a group of robots which result in solv-

ing a system nonlinear second order boundary value problems. The study for coordi-

2

nated control of distributed systems has been developed for many years and overview

of the literature appears in the next section. Also, the boundary value problem arises

in a variety of different areas of applied mathematics and physics and the existence of

nontrivial solutions has been paid much attention. These results are also outlined in the

next section.

1.1 Motion Planning

The problem of motion planning is to deal with finding a feasible trajectory for a

robotic system from a given initial configuration to a goal configuration, while satisfy-

ing some constraints.

Motion planning algorithms for single robot systems have been intensively dis-

cussed for years and the research on motion planning for mobile robots is vast. In the

area of mobile robots, time optimal motion planning for a single car-like robot has been

thoroughly studied. Dubins [14] proved the existence of shortest paths and provided a

sufficient family of trajectories containing an optimal path to link any two configura-

tions for a vehicle that can only move forward and is subject to curvature bounds. Paths

in this family are at most three pieces of either arcs of circles with minimum radius

or straight line segments. Reeds and Shepp [45] extended Dubins’ results to a vehicle

that can drive both forward and backward with a constant velocity. They proved that a

shortest path in a free environment may always be one of 48 simple paths which con-

sist of at most five pieces straight line segments or arcs of circle with minimum radius.

In 1991, Sussmann and Tang [50] gave new proof of Dubins’ results and Reeds and

Shepp’s results using Pontryagin’s Maximunm Principle. They reduced the path family

to 46 different paths and their result is an improvement of the Reeds and Shepp’s. In

1994, Buiet al. [54] performed a complete optimal path synthesis for Dubins robots.

3

Although most mobile robotic systems involving a single robot can operate alone in

its environment, many researchers have considered the problems and potential advan-

tages involved in having an environment inhabited by a team of robots which cooperate

in order to complete some required task. For some specific tasks such as search and

rescue operations [25], cleaning up toxic waste [34] and pushing boxes [35], it would

be more effective to send a number of smaller and simple robots to perform the task

than sending one very complex and expensive robot. Since each individual robot is

simple and cheap, using multiple robots can have several advantages such as the result-

ing system can be more economical and scalable and less susceptible to overall failure

than a system with one robot. In order to complete one whole task, the robot must com-

municate with others and the coordination of the robots is very important. However, as

the number of robots and degrees of freedom of the system become large, the control

of the system becomes difficult which has been the focus of much research interest in

recent years. On the other hand, broad applications in multiple robots systems call for

practical and efficient motion planning strategies.

The multi-robot motion planning algorithms can be roughly grouped into two cat-

egories: centralized motion planning [18] and decentralized motion planning [24] ac-

cording to the information handling structure among robots.

1.1.1 Centralized Planners

In a multi-agent system, a central planner designs the motion plan for all robots

based on full knowledge about the environment. This approach fits better purely com-

putational problems rather than tasks that rely on real-time feedback control. The ob-

vious advantage is its conceptual simplicity. It allows the possibility of global opti-

mization. The price for this convenience is the computationally intensity due to high

4

dimensional configuration spaces. Most of the literature on centralized approach con-

centrates on decreasing the computational cost. This is typically achieved at the expense

of completeness. In Kant and Zucker [26] the task is divided into two subtasks. Each

robot’s path is determined taking into account only stationary obstacles. With the paths

fixed, velocities of all the robots are then adjusted avoiding collisions. Erdmann and

Lozano-Perez [18] explore the motion planning problem for multiple moving robots.

The approach assigns priorities to robots in advance, then plans motions one robot at a

time. For each moving robot, the planner constructs a configuration space-time that rep-

resents the time varying constraints imposed on the moving robot by the other moving

and stationary robots. This approach was demonstrated in two domains: one domain

consisting of translating planar objects and the other one consisting of two link planar

articulated arms.

One merit of the centralized planners is that they allow the possibility of complete-

ness and global optimization. A drawback of most centralized planners is that they are

computationally intensive due to high dimensional configuration spaces. This leads to

search high dimensional configuration spaces quickly at the cost of losing optimality.

1.1.2 Decentralized Planners

Decentralized control has two obvious advantages. In principle, computational

complexity of a decentralized system can be made independent of the number of agents

in it, and it may be more stable and robust. Also a failure of one or few agents does

not necessarily affect the whole system. On the negative side the decentralized control

is less likely to deliver optimal performance since it might only use local information.

Hence, many decentralized algorithms exist that search for near-optimal solutions.

In decentralized methods, each robot plans individually for itself by means of col-

5

lecting information from other robots and environmental information around the robot.

Belta and Kumar [6] propose a modern geometric approach to design trajectories for

teams of robots. First, they consider the problem of generating minimum kinetic energy

motion for a rigid body in a 3D environment. Then, they illustrate a procedure of opti-

mal motion planning for groups of robots required to maintain a rigid formation. The

overall procedure is invariant with respect to both the local coordinates and the choice

of the inertial frame.

Guo and Parker [24] use altering velocity to produce a distributed planner that tries

to optimize trajectories. First, each robot plans its own trajectory independently. Then

a coordination diagram is constructed based on collision checks among all robot paths.

This scheme was demonstrated both in simulations and on physical Nomad robots.

One of the fundamental problems in the coordinated control of distributed systems

is consensus seeking among agents. In order for agents to coordinate their behaviors,

they have to use some shared knowledge about variables such as position, speed etc.

This shared information is a necessary condition for cooperation in multi-agent sys-

tems. Several consensus protocols have been proposed in the literature. Most con-

sensus protocols operate in a synchronized fashion [21], and each agents’s decisions

must be synchronized to a common clock shared by all other agents in the group. This

might not be natural in certain context, and Lei Fang, Panos Antsaklis [19, 20] proposed

an asynchronous consensus protocol, where each agent updates on its own pace, and

uses the most recently received information from other agents. It encompasses those

synchronous ones with various communication patterns.

6

1.2 Formation Control

The formation problem in multi-robot systems is defined as the coordination of a

team of robots to get into and maintain a formation with a certain shape. Current ap-

plications of formation control include unknown environments exploration [2], search

and rescue operations [25], traffic control [1, 53], satellite clustering [36] and holding

and transporting objects [11, 56].

Formation control is an important issues in coordinated control for a collection of

robots. Many control approaches have been used to solve the problems in formation

control, for example, leader-follower method [9, 10, 12, 13, 15, 28], behavior-based

method [2, 3, 32, 33, 49], virtual structure method [6, 29, 51, 55] and so on.

1.2.1 Leader-following Method

In the leader-follower method, each robot has at least one designated leader. Leaders

can be some robots in the group or virtual robots that represent pre-computed trajectory

supplied by a higher level planner. The other robots are followers that try to maintain

a specified relative configuration to their leaders. This method can control the team of

robots behaviors if the leader’s behavior is given. However there is no obvious feedback

from the followers to their leaders, so the whole system is more susceptible to overall

failure.

Desai,et al. [9, 10, 13] propose a graph theoretic framework for the control of a

team of robots moving in an terrain with obstacles while maintaining a desired forma-

tion. The behaviors of robots in the formation are defined by using a control graph.

This framework can handle transition between formations,i.e.,between control graphs,

and they define the transition matrix to model transition from one control graph to an-

other. It requires to enumerate and classify control graphs given in order to prove the

7

mathematical results. When the number of robots increases, the computations for con-

trol graphs will increase. But these computations are decentralized, which allows the

methods to be scalable to large number of robots.

In another paper, Desai,et al. [12] investigate feedback laws to control multiple

robots moving in a formation and propose a method for controlling formations that

uses only local sensor-based information. They assume that each robot has the ability

to measure the relative position of other robots that are immediately adjacent to it.

Once the motion for the lead robot is given, the remainder of the formation is governed

by local control laws based on the relative dynamics of each of follower robots and

the relative positions of the robots in the formation. These control laws can provide

easily computable, real-time feedback control with provable performance for the entire

system, and can be extended to control arbitrarily large numbers of robots moving in a

formation. This paper proves that the zero dynamics of the system are asymptotically

stable by using feedback linearizion to exponentially stabilize the relative distance and

orientation of the followers. They demonstrate their result by applying it to simulate

six robots moving around an obstacle.

Egerstedt and Hu [15] propose a model-independent coordination strategy for mov-

ing a group of robots in a desired formation over a given path. In the paper, the leader

robot is a given, nonphysical point. The paths for the real robots are defined by a for-

mation constraint in combination with the desired reference path for the virtual leader,

which is specified by the planners. They applied the method to rigid body constrained

motions. The paper shows that if the real robots track their reference points perfectly,

or the tracking error of the robots are bounded, their method can stabilize the formation

error.

Barfoot and Clark’s paper [4] is similar to the leader-following work in that they

8

use a reference trajectory and define the motion of each individual robot relative to this

trajectory. But they did not use any particular feedback control to enable each robot

to actually track its planning trajectory. The robot in the formation can not sense the

locations of other robots but can sense its own location relative to a common global

reference frame. They allow the distance between robots to change when the formation

turns. The paper shows that a formation can be treated in the same way as a single robot

is treated, which makes a great deal of single robot work relevant at the formation level.

The method allows the geometry of a formation to be considered separately from the

formation’s overall trajectory by providing a way to combine these two components It

was validated on the Stanford Micro-Autonomous RoverS (MARS) testbed.

In leader-following method, there is a explicit dependence of the motion of follow-

ers on their leaders, but the leaders motion is independent of their followers. This may

cause some problem. For example, if a robot fails or slows down, the motion of the

robots that are following it will be directly affected by its behavior, while its leaders are

not affected and continue their tasks. This method is modified by Pereira,et al. [42],

where a cooperative leader-follower method is introduced as a modification of the stan-

dard leader-following approach. In the new method, the motion of a robot is dependent

on both its leaders and its followers. Thus, the system is more robust to failures.

1.2.2 Behavior-based Methods

Behavior-based methods draw inspiration from biology. In nature, each animal in a

herd benefits by minimizing its encounters with predators. By grouping, they combine

their sensors to maximize the chance to detecting predators or to more efficiently forage

for food. Robotic researchers have developed formation behaviors for simulated robots

inspired by animals behaviors. This approach can derive control strategies easily, but it

9

can not define the whole team’s behaviors, obviously. Therefore it is difficult to analyze

the behaviors mathematically.

In a behavioral-based method, the behavior of each robot is prescribed and the final

control is derived by weighting the relative importance of each behavior. A behavior-

based architecture is exploited in [2] for multi-robot systems. In this study, each robot

computes its proper position in the formation based on the locations of the other robots.

Each robot is to simultaneously move to a goal position, avoid colliding with other

robots and obstacles, and maintain a formation. In the paper, the authors present reac-

tive behaviors for four formations (line, column, diamond and wedge) and three forma-

tion reference (unit-center-referenced, leader-referenced and neighbor-referenced). The

behaviors were validated both in the laboratory on mobile robots and outdoors on non-

holonomic 4-wheel-drive High Mobility Multipurpose Wheeled Vehicles (HMMWVs).

Balch and Hybinette [3] introduce a behavior-based approach to robot formation

problem, which provides scalability, locality and flexibility to the system. This idea is

inspired from the way molecules form crystals. In the formation, each robot has several

local attachment sites that other robots may be attracted to. This type of attachment

site geometry is similar to molecular covalent bonding. The robot formation shapes are

influenced by the attachment site geometries used. This approach is scalable to large

robot groups because global communication of robot position is not used and each robot

only relies on the locations of nearby robots.

Mataric [32] proposes a bottom-up methodology that produced the desired system

behavior as a result of the interaction dynamics between the robots and their environ-

ment and the biases and constraints introduced by the system designer. This approach

is more flexible and robust than the top-down methodology. The paper [33] presents

that the use of behaviors as the underlying control representation provides a useful en-

10

coding that both lends robustness to control and allows abstraction for handling scaling

in learning, of key importance to robot systems.

Su and Lu [49] improve the behavior-based method by combining it with formation

feedback. They design the main behaviors of the leader robot to avoid obstacles and

move to a goal point. The leader plans its path according to the current environment,

and then sends its formation through network to each follower robots. The follower

generates its own behavior based on the information given by the leader. The current

information, such as the positions of the robots and the shape of the formation is given

to the leader as feedback. The leader plans its behavior according to this feedback.

1.2.3 Virtual Structure Methods

The virtual structure method involves the maintenance of a geometric configuration

during robot movement using the idea that points in space should maintain fixed geo-

metric relationship. If robots behaved in this way, they would be moving inside a virtual

structure. The concept of virtual structure in the framework of cooperative robotics is

introduced in [51]. Tan and Lewis [29, 51] develop a control method to force an en-

semble of robots to behave as if they were particles embedded in a rigid body structure.

Their method has many merits: it is capable of high-precision control, inherently fault

tolerant, no leader election are required and it is reconfigurable for different kinds of

virtual structures. This method had been tested both using simulation and experimen-

tation with a group of three robots. Although it was only tested with robots moving on

a plane, there is no limitation to three dimensional space.

Yamaguchi,et al. [55] develop a distributed control scheme of a team of robotic ve-

hicles that guaranteed stability and controllability using only relative position feedback.

Each robots in this scheme has its own coordinate system and it can sense its relative

11

position and orientation to others. There is no supervisor and each robot moves based

on feedback from itself and its neighbors. The robots interact with each other directly

or indirectly through others by the relative position feedback. This scheme is validated

by computer simulations.

The formation control used in this thesis is most similar to the virtual structure

method in that we try to maintain the rigid body formation during the robots moving.

But as the geometrical distances between robots vary slightly with time, our approach

is flexible rather than rigid.

1.3 Multiple Solutions of Second Order Ordinary Differential Equations

The existence of multiple solutions to boundary value problems is a common feature

of the types of problems considered in this thesis. This section reviews the literature

related to multiple solutions of boundary value problems. Consider the equations of the

form

u′′ +a(t) f (u) = 0, 0≤ t ≤ 1, u(0) = u(1) = 0.

Define

f0 = lim
u→+0

f (u)

u
, f∞ = lim

u→+∞

f (u)

u
,

then, the properties of the solutions depend on the limiting behavior of the function

f (u). And, the fixed-point theorem of cone expansion/compression [23] is broadly

used in this area. The theorem is stated as follows.

THEOREM 1.3.1 Let E be a Banach space, and let K⊂ E be a cone in E. AssumeΩ1,

12

Ω2 are open subsets of E with0∈ Ω1, Ω1 ⊂ Ω2, and let

A : K∩
(
Ω2\Ω1

)
→ K

be a completely continuous operator such that either

(i) ‖ Au‖ ≤ ‖ u ‖, u∈ K∩∂Ω1, and‖ Au‖ ≥ ‖ u ‖, u∈ K∩∂Ω2; or

(ii) ‖ Au‖ ≥ ‖ u ‖, u∈ K∩∂Ω1, and‖ Au‖ ≤ ‖ u ‖, u∈ K∩∂Ω2.

Then A has a fixed point in K∩
(
Ω2\Ω1

)
.

The proof of the fixed point theorem can be found in [23]. And the following application

of the theorem can also be found in [23].

Example 1.3.2: Consider the two-point boundary value problem of an ordinary

differential equation:

x′′ + f (x) = 0, 0≤ t ≤ 1, x(0) = x(1) = 0,

where f (x) is continuous and nonnegative forx≥ 0 and f (x) = 0. The above equation

has at least one nontrivial solutionx(t) ∈C2[0,1] if f0 = 0, f∞ = ∞ or f0 = ∞, f∞ = 0.

Proof: Now, we apply Theorem 1.3.1 to prove it. Obviouslyx(t) = 0 is the trivial

solution of the problem.

The Green’s function of the differential operation−x′′ with x(0) = x(1) = 0 is

G(t,s) =







t(1−s), t ≤ s

s(1− t), t > s

.

Let Ax(t) =
∫ 1

0 G(t,s)f (x(s))ds, andPε be the cone inE = C[0,1] given by

13

Pε = {x(t) ∈C[0,1] : x(t) > 0,min1
2−ε≤t≤ 1

2+ε x(t) ≥ (1
2 − ε) ‖ x ‖} where 0≤ ε ≤ 1

2,

‖ x ‖= sup[0,1]|x|.

When 1
2 − ε ≤ t ≤ 1

2 + ε

G(t,s) =







t(1−s)≥
(1

2 − ε
)
(1−s), t ≤ s

s(1− t) ≥ s
(1

2 − ε
)
, t > s

.

Therefore,G(t,s)≥
(1

2 − ε
)

s(1−s) =
(1

2 − ε
)

G(s,s), ∀1
2 − ε ≤ t ≤ 1

2 + ε and

0≤ s≤ 1.

Then

min
1
2−ε≤t≤ 1

2+ε
Ax = min

1
2−ε≤t≤ 1

2+ε

∫ 1

0
G(t,s)f (x(s)ds

≥
(

1
2
− ε
)∫ 1

0
G(s,s)f (x(s)ds

≥
(

1
2
− ε
)∫ 1

0
G(t,s)f (x(s)ds

≥
(

1
2
− ε
)

‖ Ax.) ‖

SoAx∈ Pε , andA(Pε) ⊂ Pε , ∀ 0 < ε < 1
2.

Since f0 = 0, we can chooser1 > 0, such that| f0| ≤ η , for |x| < r1, whereη > 0

satisfiesη
∫ 1

0 G(s,s)ds≤ 1

Ax =
∫ 1

0
G(t,s)f (x(s))ds

≤
∫ 1

0
G(t,s)| f (x(s))|ds

≤ η ‖ x ‖
∫ 1

0
G(t,s)ds

≤ ‖ x ‖,

14

which means‖ Ax ‖≤‖ x ‖, whenx∈ Pε ∩∂Ω1, whereΩ1 := {x∈ E :‖ x ‖< r1}.

For f∞ = ∞, choose ˆr2, such that| f∞| ≥ µ, for |x| ≥ r̂2, whereµ > 0 satisfies
(1

2 − ε
)

µ
∫ 1

2+ε
1
2−ε

G(1
2,s)ds≥ 1.

Let r2 = max{2r1,
r̂2

1/2−ε } andΩ2 := {x : |x| < r2}. Forx∈ Pε ∩∂Ω2,

min
f req12−ε≤t≤ 1

2+ε
x(t) ≥

(
1
2
− ε
)

‖ x ‖=
(

1
2
− ε
)

r2 ≥ r̂2.

Ax

(
1
2

)

=
∫ 1

0
G

(
1
2
,s

)

f (x(s))ds

≥ µ
∫ 1

0
G

(
1
2
,s

)

x(s)ds

≥ µ
(

1
2
− ε
)

‖ x ‖
∫ 1

0
G

(
1
2
,s

)

ds

≥ ‖ x ‖ .

So‖ Ax‖≥‖ x ‖, whenx∈ Pε ∩∂Ω2, whereΩ2 := {x∈ E :‖ x ‖< r2}.

The proof for sublinear case is similar to the suplinear case as stated. �

Erbe and Wang [16] studied the existence of positive solutions of the equation with

linear boundary conditions. They showed the existence of at least one positive solu-

tion in two cases, superlinearity (f0 = 0, f∞ = ∞) or sublinearity (f0 = ∞, f∞ = 0) by

application of the fixed point theorem. A simple superlinearity exmaple isf (s) = s2

and a simple sublinearity example isf (s) =s1/2. In [31], Ma and Thompson extended

the function f to be a continuous function satisfyings f(s)> 0. And proved that the

problem had two solutions for superlinearity or sublinearity. And further, in [17], Erbe,

Hu and Wang showed that there were at least two positive solutions in the case of su-

perlinearity at one end (zero or infinity) and sublinearity at the other end.

15

Naito and Tanaka [40] and Ma and Thompson [30] established precise condition

concerning the behavior of the ratiof (s)/s for the existence and nonexistence of solu-

tions. Their main results were that the boundary value problem had at leastk solutions

if the ratio f (s)/s crossed thek eigenvalues of the associated eigenvalue problem.

1.4 Organization

In this thesis, we focus on solving the motion planning problem for a group of

robots with the goal of optimizing a suitable cost function. We assume those robots

move in a two dimensional obstacle-free environment. We encounter boundary value

problems when solving equations of motion of the system, where there exists more

than one solution for some cases. The main contributions of this thesis are finding

the symmetric properties of the results, asymptotically analyzing the results for some

special cases, numerically analyzing the bifurcation phenomena in multiple solutions

and proving symmetry of bifurcations. The remainder of this thesis is organized as

follows.

In Chapter 2, a brief mathematical background of differential geometry, group the-

ory, graph theory and symmetric distributed systems is presented. Chapter 3 defines the

optimal problem considered in this thesis and presents the properties of the cost function

related to this problem and the algorithm to solve the problem. It also gives the results

illustrating the properties of the optimal problem in a distributed system. Chapter 4

first presents numerical results illustrating bifurcations and multiple solutions of the

boundary value problem associated with the optimal control problem. Then, it presents

a theoretical result relating to the existence of multiple solutions in the limiting cases

of small and large values of the bifurcation parameter. Finally, it proves the existence

of symmetric solutions which guarantees that for any solution, a corresponding sym-

16

metric solution exists. The practical benefit of this result is that if a solution is found

numerically, the symmetric solution can be computed from that algebraically. Finally,

Chapter 5 presents conclusions and provides an outline of future work in this area.

17

CHAPTER 2

MATHEMATICAL BACKGROUND

This chapter provides an introduction to the mathematical terms used throughout

this thesis. In section 2.1, we introduce some basic concepts from differential geometry,

which is a wide area for study. Those who are interested in this area are referred to [7,

41, 47]. Some useful definitions of group theory and graph theory are presented in

section 2.2 and section 2.3 respectively.

2.1 Differential Geometry

A manifold is the fundamental object in differential geometry. Roughly speaking,

it is a set of points that locally “looks like” an open subset of Euclidean space. The

formal definition of manifold is more challenging than the previous description and it

is defined as follows.

Definition 2.1.1: [47] A m-dimensional manifold is a setM together with coordinate

charts(Ua,φa) with the property thatM = ∪aUa and that, wheneverUa∩Ub 6= /0, we

have

1. the overlap mapφab := πb◦φ−1
a |φa(Ua∩Ub) is a diffeomorphism from

φa(Ua∩Ub) to φb(Ua∩Ub).

2. if x∈Ua, y∈Ub are distinct points ofM, then there exist open subsetW ⊂ Rm,

V ⊂ Rm, with φa(x) ∈W, φb(y)∈V, satisfyingφ−1
a (W)∪φ−1

b (V) = /0.

18

�

Example 2.1.2:[47] An n-sphere is a manifold. The unit sphere

Sn = {x∈ R
n+1| ‖x‖

Rn+1 = 1},

is a n-dimensional manifold realized as a surface inR
n+1. LetU1, U2 be the subsets

obtained by deleting the north and south poles respectively. Let

φi : Ui → R
n, i = 1,2,

be projections from the respective poles, so

φ1(x) =

(
x1

1−xn+1
,

x2

1−xn+1
, · · · xn

1−xn+1

)

,

φ2(x) =

(
x1

1+xn+1
,

x2

1+xn+1
, · · · xn

1+xn+1
,

)

.

It can be easily checked that on the overlapU1∪U2,

φ12 = φ1◦φ−1
2 : R

n\{0}→R
n\{0}

is a smooth diffeomorphism, given by the inversion

φ12(x) =

(

x1

1−x2
n+1

,
x2

1−x2
n+1

, · · · xn

1−x2
n+1

)

.

�

In this thesis, we always consider that the configuration of an object is in a manifold,

19

so the trajectory of the object is a curve on the manifold. The velocity, which lies in the

tangent space of the manifold, at a given time is a tangent vector to the curve evaluated

at the same time. Now, we present the definitions of curve, tangent vector, tangent

space and tangent bundle mathematically.

Definition 2.1.3: A curveon an-dimensional manifoldM is a mapc : I → M, whereI

is a subinterval ofR. At each pointx = c(t), the curve hasa tangent vector

X = c′(t) = (ẋ1, ẋ2, · · · , ẋn). The collection of tangent vectors to all possible curves

passing through a given pointp onM is an-dimensionaltangent space, denotedTpM.

The collection of tangent spaces for all points onM is thetangent bundleof M,

denotedTM. �

Definition 2.1.4: [47] AssumeM is a manifold,a vector field XonM is a map

X : M → TM, such thatπ ◦X = idM, i.e.,∀p∈ M, X(p)∈ TpM. Hereπ is the natural

projection fromTM ontoM. A smooth vector fieldis a smooth mapX : M → TM,

such thatπ ◦X = idM. �

Definition 2.1.5: [47] If V is a finite-dimensionalR-vector space,the dual spaceto V

is the setV∗ = L(V;R) of linear maps fromV to R. If (e1,e2, · · ·en) is a basis forV,

then a basis forV∗ can be denoted(e1,e2, · · ·en), defined byei(ej) = δ i
j . �

2.2 Group Theory

In this section, we present some definitions and notations in group theory and they

are from[41, 46].

20

Definition 2.2.1: A group G is a set together with a binary operation(·) : G×G 7→ G,

such that the following properties are satisfied:

1. Associativity:(a·b)·c = a· (b·c), for all a,b,c∈ G.

2. Identity:∃ an identityesuch thate·a = a·e= a, for every elementa∈ G.

3. Inverse: For alla∈ G, there exists an inversea−1, such thata·a−1 = a−1 ·a = e.

�

Example 2.2.2: The set of all invertiblen×n matricesGL(R,n) with matrix

multiplication is a group. �

Definition 2.2.3: Let G be a group andSbe a set. Aleft actionof G onM is a map

φ : G×M → M satisfying

• φ(e,x) = x, wheree is the identity element ofG, for all x∈ M.

• φ(g,φ(h,x)) = φ(g·h,x), for all g,h∈ G, x∈ M.

Similarly, aright actionof G onS is a mapφ : S×G→ M satisfying

• φ(x,e) =x, wheree is the identity element ofG, for all x∈ M.

• φ(φ(x,g),h) = φ(x,g·h), for all g,h∈ G, x∈ M.

G is called a transformation group, andφ is called the left (resp. right) group action.�

21

Definition 2.2.4: Let φ be a smooth group action ofG onM, a function f : M → R is

invariant under group actionφ if, for all g∈ G, φ(f ,g) = f , if φ is a left action or

φ(g, f) = f , if φ is a right action. �

Definition 2.2.5: A permutationof a setS= {1,2,· · · ,n} is a one-to-one mapping of

S into itself and is usually written as

P =






1 2 3 · · · n

i1 i2 i3 · · · in




 .

which indicates that 17→ i1, 2 7→ i2, · · · , n 7→ in. A permutation groupis a finite group

G whose elements are permutations of a given setSand whose operation is

composition of permutations inG. �

The dihedral groupDn is an example of permutation groups. It is the symmetry

group of an n-sided regular polygon centered about the origin in the plane forn > 1.

The group order ofDn is 2n. Dihedral groupsDn are non-Abelian permutation groups

for n > 2. A reducible two-dimensional representation of dihedral group using real

matrices has generators given byf andr, where f is a rotation byπ radians about an

axis passing through the center of a regularn-gon and one of its vertices andr is a

rotation by 2π/n about the center of then-gon, ı.e.,

f =






1 0

0 −1




 , r =






cos2π
n −sin 2π

n

sin 2π
n cos2π

n




 .

Then,Dn = {e, r, r2, · · · , rn−1, f , f r, f r2, · · · , f rn−1}.

22

2.3 Graph Theory

Graph theory is a powerful tool to represent the structure of the distributed systems.

In this section, we provide some definitions and notations in graph theory that allow

us to identify symmetries in distributed systems. For more information about graph

theory, the reader is referred to [22, 52].

Definition 2.3.1: A graph Gconsists of

1. A setV whose members are called vertices (also called “nodes” or simply

“points”).

2. A setE whose members are called edges.

3. A function (the endpoint function) which assigns to each edgee in E an

unordered pair of vertices called the endpoints ofe, i.e.,

f : E →{(Vi,Vj)|Vi,Vj ∈V}.

We may writeG = (V,E, f) to represent graphG with the vertex setV, edge setE and

the endpoint functionf . �

An edge is said toconnectits two endpoints, and it isincidenton each of its endpoints.

A loop is an edge which joins a vertex to itself. Two edges which connect the same

pair of endpoints are calledmultiple edgesor parallel edges. A graph with no loops

and no multiple edges is called asimple graph. Two vertices areadjacentif there is

an edge connecting them. If both the vertex set and the edge set are finite, then the

graphG is said to befinite. A directed graphor digraph is one where each edge has

a specified direction. For a directed graph the edge-endpoint function assigns to each

edge an ordered pair of vertices. The first member of the pair is called the initial vertex

(or start) and the second is called the terminal vertex (or finish). Unless otherwise

23

specified, the graphs discussed here are directed graph and are implicitly considered to

be simple and finite.

2.4 Symmetric Distributed Systems

We adopt the definition of symmetric distributed system in [37, 38]. This definition

is defined for a system without drift, then extended to the drift system. Consider a

driftless system of the form

Σ : ẋ =
n

∑
i=1

gi(x)ui . (2.1)

We can use a graph to represent the systemΣ. In the graph, each node represents

a subsystem and the lines between nodes are interactions between subsystems. If the

systemΣ is symmetric, then there exists a graph symmetry ofΣ, which defined as

follows.

Definition 2.4.1: Let GΣ = (V,E, f) be the graph of a distributed systemΣ given by

Equation 2.1. Agraph symmetryor automorphismof GΣ is a permutation,σ , on the

set of verticesV given by,

σ(Vi) = Vj , Vi,Vj ∈V

that preserves adjacency:

∀Vi,Vj ∈V : (Vi,Vj) ∈ E ⇔ (σ(Vi),σ(Vj)) ∈ E

The group of all such permutations together with composition is called the

automorphism group Aut(G) of the graph. �

24

Sinceσ is a permutation of the vertices, we need to define the permutation on the states

induced fromσ . Let α(V1, . . . ,Vn) = [x1, . . . ,xn]
T be the canonical mapα : V 7→ M.

The action of a graph automorphism naturally induces a permutation,σ♯ : M 7→ M, of

states given by,

σ♯(x) = α(σ(V)) = α






V1 V2, . . . , Vn

Vi1 Vi2, . . . , Vin




=






x1, x2, . . . , xn

xi1, xi2, . . . , xin




 ,

whereVi1, . . . ,Vin andxi1, . . . ,xin are rearrangements of the vertex set and state vector,

respectively. Note, the elementsxi may be vectors if dim(Mi) > 1. Vector fields are

mapped under the induced permutationσ♯ using the usual push-forward,

(σ♯)∗g
j
i = Tσ♯ ◦g j

i ◦σ−1
♯ (x).

The induced permutation defines an equivalence relation between vector fields.

Definition 2.4.2: Two vector fields,gi(x) andg j(x) areequivalent,denotedgi ∼ g j , if

there exists aσ ∈ Aut(G) such that the corresponding induced permutation,σ♯ is such

that,

gi(x) = (σ♯)∗g j(x). (2.2)

�

Given an equivalence relation among vector fields, a symmetric nonlinear distributed

system is defined as follows.

Definition 2.4.3: Let GΣ = (V,E, f) be the graph of the distributed systemΣ given by

Equation 2.1. The system,Σ is symmetric if there exists a graph symmetry,

25

σ ∈ Aut(GΣ) other than the identity, such that ifσ(Vi) = Vj , then

gi ∼ g j .

�

The following example is to illustrate theses concepts.

Example 2.4.4: [37] Consider a four component system that can be represented by a

graph shown in Figure 2.1 and described by the following equation












ẋ1

ẋ2

ẋ3

ẋ4












=












sinx1

x2
2

x2
3

x2
4












u1 +












x1

cosx2

x2 +1

x2x4












u2 +












x1

x3x2

cosx3

x3 +1












u3 +












x1

x4 +1

x4x3

cosx4












u4,

Choose a graph symmetryσ , which corresponds to a cyclic counter-clockwise

permutation of the outer components of the graph shown in Figure 2.2. Then,

σ(V1,V2,V3,V4) = (V1,V4,V2,V3),

which creates an induced permutation given by

σ♯(x1,x2,x3,x4) = (x1,x4,x2,x3)

26

4

23

1

Figure 2.1. Graph of the four component system given in Example 3.4.4.

Consider the vector fieldsg2 andg3 in the given system,

(σ♯)∗g2(x1,x2,x3,x4) = Tσ♯ ◦g2◦σ−1
♯ (x1,x2,x3,x4)

= Tσ♯ ◦g2(x1,x3,x4,x2)

= Tσ♯ ◦












x1

cosx3

x3 +1

x3x2












=












1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0























x1

cosx3

x3 +1

x3x2












=












x1

x3x2

cosx3

x3 +1












= g3(x1,x2,x3,x4).

So the vector fieldsg2 andg3 are equivalent and this result can be extended to other

27

σ

1 1

2 4

4 3 23

Figure 2.2. Graph symmetryσ acting on the four component system.

vector fields, the given system is symmetric. �

Now, consider a general nonlinear system of the form,

Σ : ẋ = f (x)+
n

∑
i=1

gi(x)ui (2.3)

In order to define the symmetry in a distributed system with drift, we partitioning the

drift vector field such that

f =
n

∑
i=1

fi(x),

where fi is associated with the subsystemΣi . Thekth component of the vector fieldfi

satisfies,

fi,k(x1,x2, . . . ,xi, . . . ,xk, . . . ,xn) = fi,k(y1,y2, . . . ,xi, . . . ,xk, . . . ,yn), (2.4)

for all {xp,yq|p,q∈ {1, . . . ,n}}. Then we can define the symmetric distributed system

28

as follows.

Definition 2.4.5: Let GΣ = (V,E, f) be the graph of the distributed systemΣ given by

Equation 2.3. The system,Σ is symmetric if there exists a graph symmetry,

σ ∈ Aut(GΣ) other than the identity, such that ifσ(Vi) = Vj , then

gi ∼ g j , fi ∼ f j .

�

Here is the example of symmetric distributed system with drift.

Example 2.4.6: Consider a four component system described by the following

equation












ẋ1

ẋ2

ẋ3

ẋ4












=












x2
1

x1 +x2

x1 +x3

x1 +x4












+












sinx1

x2
2

x2
3

x2
4












u1 +












x1

cosx2

x2 +1

x2x4












u2 +












x1

x3x2

cosx3

x3 +1












u3 +












x1

x4 +1

x4x3

cosx4












u4,

where the vector fieldf can be partitioned as following:

f =












x2
1

x1 +x2

x1 +x3

x1 +x4












=












x2
1

0

0

0












+












0

x1 +x2

0

0












+












0

0

x1 +x3

0












+












0

0

0

x1 +x4












.

29

We use the same graph symmetryΣ in example 3.4.4, then

(σ♯)∗ f2(x1,x2,x3,x4) = Tσ♯ ◦ f2◦σ−1
♯ (x1,x2,x3,x4)

= Tσ♯ ◦g2(x1,x3,x4,x2)

= Tσ♯ ◦












0

x1 +x3

0

0












=












1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0























0

x1 +x3

0

0












=












0

0

x1 +x3

0












= f3(x1,x2,x3,x4).

This result can also be extended to other vector fields exceptf1 and from example

3.4.4, we knowgi ∼ g j . So the given system in this example is a distributed system

with drift. �

30

CHAPTER 3

SYMMETRIC PROPERTIES OF A DISTRIBUTED SYSTEM MADE OF

MICABOTs

This thesis considers large distributed systems made up of a group of identical

robots which attain certain formations. We adopt two types of robotics: MICAbots [39]

(see Figure 3.1) and unicycle-like autonomous mobile robots. In this chapter, we focus

on the MICAbots. We will introduce the other prototypical model in next chapter.

3.1 Prototypical Model: MICAbots

The kinematics of MICAbot are described by

ẋ− r
2

cosθ (u1 +u2) = 0

ẏ− r
2

sinθ (u1 +u2) = 0 (3.1)

θ̇ − r
2b

(u1−u2) = 0

wherei is the index of the MICAbot,u1 (u2) is the angular velocity of the right (left)

wheel of the robot,b andr are geometric parameters of the robot as illustrated in Fig-

ure 3.1.

Consider a formation when a group ofn identical MICAbots form an side regu-

lar polygon, but they are considered heterogeneous since each MICAbot has a unique

31

u1

b

u2

θ(x,y)

x

y

(0,0)

r

Figure 3.1. Sketch of MICAbot.

identification number (index). The graph theoretic representation of this system is il-

lustrated in Figure 3.2.

Each vertex represents a MICAbot, and the edges between vertices represent the

communications between the robots. For the distributed system containingn identical

MICAbots, the configuration spaceQ is a submanifold ofR3n,

Q = {R2×S1×R
2×S1×·· ·×R

2×S1
︸ ︷︷ ︸

n copies

} ⊂ R
3n.

The configuration spaceQ can be partitioned into a set ofn submanifolds,Qi = {R
2×

S1}, where i ∈ {1, . . . ,n}, such thatQ is the Cartesian product of theQi, i.e. Q=

∏n
i=1 Qi . The submanifold,Qi is the configuration space of theith MICAbot, i.e. Qi =

(xi ,yi,θi).

32

V1

V2

Vn−1 Vn

V4

V3

Figure 3.2. Graph theoretic representation of the distributed system.

3.2 Problem Statement

The optimal control problem we are investigating is defined as follows:

Find a sequence of controlsu1i(t),u2i(t) for each roboti which steer the formation

from a predefined configurationq0 to its goal configurationqf , while maintaining a

rigid body formation at the start and end points and minimizing the global performance

index

J =
∫ t f

0

n

∑
i=1

(

(u1i)
2 +(u2i)

2
)

+
m

∑
i=1

k
(
di,i+1 −d

)2
dt (3.2)

subject to the robot kinematic constraints 3.1 wheren > 2 is the number of robots,

di, j =
√

((xi −x j)2 +(yi −y j)2) is the Euclidean distance fromith to jth robots,d is

the desired distance between two adjacent robots, andk is a non-negative weighting

constant. For a closed formation such as a regular polygon,m= n; for an open forma-

tion such as a straight line,m= n−1.

The definition of a rigid body formation is that the distances between chosen ref-

33

erence points on robots remain fixed. The relative orientation of each robot is not re-

stricted in such a formation. The rigid body formation constraint is restrictive in many

applications. We allow the robots to break formation in the middle of the trajectory,

and to achieve a desired formation at the destination. The second summation in the

cost function is the deviation from a desired formation. It is natural to minimize the the

combination of the control effort (first summation) and the deviation in our case.

Remark 3.2.1:The cost functionJ for a regular polygon formation is invariant under

the action of dihedral groupDn.

Proof: Let r, f be the two generators of the dihedral group, such thatr(Vi) = Vi+1,

f (Vi) = Vn+2−i, (note thatVn+1 = V1).

The cost function may be written as

J(V1,V2, · · ·Vn) =
∫ 1

0

n

∑
i=1

(u1i
2 +u2i

2)+
n

∑
i=1

k(di,i+1 −d)2dt

then

J◦φr(V1,V2, · · ·Vn) = J(V2,V3, · · ·Vn,V1)

=
∫ 1

0

n+1

∑
i=2

(u1i
2 +u2i

2)+
n+1

∑
i=2

k(di,i+1 −d)2dt

=
∫ 1

0

n

∑
j=1

(u1 j
2 +u2 j

2)+
n

∑
j=1

k(d j, j+1−d)2dt

= J(V1,V2, · · ·Vn),

34

and

J◦φ f (V1,V2, · · ·Vn) = J(Vn+1,Vn, · · ·V3,V2)

=
∫ 1

0

2

∑
i=n+1

(u1i
2 +u2i

2)+
2

∑
i=n+1

k(di,i+1 −d)2dt

=
∫ 1

0

n+1

∑
i=2

(u1i
2 +u2i

2)+
n+1

∑
i=2

k(di−1,i −d)2dt

=
∫ 1

0

n

∑
j=1

(u1 j
2 +u2 j

2)+
n

∑
j=1

k(d j, j+1−d)2dt

= J(V1,V2, · · ·Vn).

For each elementσ ∈ Dn, σ can be written asσ = f prq, where p = 0,1 andq =

0,1,· · · ,n−1.

If p = 0,q = 0, σ = eand it is a trivial permutation.

If p = 0,q > 0, σ = rq. In this case, we use induction method to prove that the cost

function under the action ofσ is invariant.

We already proved thatJ ◦ φr(V1,V2, · · · ,Vn) = J(V1,V2, · · ·Vn). Now, we assume

thatJ◦φrs(V1,V2, · · · ,Vn) = J(V1,V2, · · ·Vn), wheres is a positive integer. Then

J◦φrs+1(V1,V2, · · ·Vn) = J◦ r ◦ rs(V1,V2, · · ·Vn)

= J◦ rs(V1,V2, · · ·Vn

= J(V1,V2, · · ·Vn).

35

If p = 1,q > 0, σ = f rq. The cost function under the action ofσ may be given by

J◦φσ (V1,V2, · · · ,Vn) = J◦φ f ◦φrq(V1,V2, · · · ,Vn)

= J◦φrq(V1,V2, · · · ,Vn)

= J(V1,V2, · · ·Vn).

In summary, for allσ ∈ Dn, the cost function does not change under the action of

σ . �

3.3 Equations of Motion

We adopt Pontryagin’s Maximum Principle (PMP) to solve the optimal control

problem stated in last section. The Hamiltonian associated with this problem is

H =
n

∑
i=1

{
−
(
u1i

2 +u2i
2 +k(di,i+1 −d)2)

+ p1i(
r
2
(u1i +u2i)cosθi)+ p2i(

r
2
(u1i +u2i)sinθi)+ p3i(

r
2b

(u1i −u2i))
}

,

where(ẋi(t), ẏi(t), θ̇i(t)) ∈ TQi and(p1i, p2i, p3i) ∈ T∗Qi are the system costates.

Remark 3.3.1:The HamiltonianH is invariant under the action of dihedral groupDn.

The proof of this remark is similar to that of the previous one.

According to PMP, we know the optimalu1,u2 should satisfy

(u1,u2) = argmax
u1,u2

H.

36

Applying PMP to our problem, we have

(u1i,u2i) = arg max
u1i ,u2i

{

−
(
u1i

2 +u2i
2)+ p1i(

r
2
(u1i +u2i)cosθi)

+p2i(
r
2
(u1i +u2i)sinθi)+ p3i(

r
2b

(u1i −u2i))
}

= arg max
u1i ,u2i

−
{(

u1i − (
r
4

p1i cosθi +
r
4

p2i sinθi +
r

4b
p3i)
)2

+
(

u2i − (
r
4

p1i cosθi +
r
4

p2i sinθi −
r

4b
p3i)
)2
}

,

which gives

u1i =
r
4

p1i cosθi +
r
4

p2i sinθi +
r

4b
p3i (3.3)

u2i =
r
4

p1i cosθi +
r
4

p2i sinθi −
r

4b
p3i. (3.4)

The adjoint equation forp(t) is

ṗ1i(t) = −∂H
∂xi

, ṗ2i(t) = −∂H
∂yi

, ṗ3i(t) = −∂H
∂θi

.

The solutions to these equations together with state equations are

ẋi =
r2

4
cosθi (p1i cosθi + p2i sinθi)

ẏi =
r2

4
sinθi (p1i cosθi + p2i sinθi)

θ̇i =
r2

4b2 p3i (3.5)

ṗ1i =
2k(xi −xi−1)

(
di−1,i −d

)

di−1
+

2k(xi −xi+1)
(
di,i+1 −d

)

di,i+1

ṗ2i =
2k(yi −yi−1)

(
di−1,i −d

)

di−1
+

2k(yi −yi+1)
(
di,i+1 −d

)

di,i+1

ṗ3i =
r2

4
(p1i sinθi − p2i cosθi)(p1i cosθi + p2i sinθi) ,

37

wherei = {1,2,· · · ,n}, andn is the number of robots. The initial conditionsxi(0) =

xi0, yi(0) =yi0, θi(0) =θi0, and final conditions,xi(t f) = xi f , yi(t f) = yi f , θi(t f) = θi f

are given.

Our goal here is to find curvesci(t) = (xi(t),yi(t),θi(t)) ∈ Qi, i = {1,2,· · · ,n} sat-

isfying the Equations 3.5 withci(0) = (xi0,yi0,θi0) andci(t f) = (xi f ,yi f ,θi f).

Remark 3.3.2: There exists a three parameters Lie groupG, such that the differential

equations 3.5 are invariant under the action of the Lie group. Any elementg∈ G is

defined as follows: for any(xi ,yi,θi, p1i, p2i, p3i)
T ∈ Mi satisfying Equations 3.5,

(x̂i , ŷi, θ̂i, p̂1i, p̂2i , p̂3i)
T = g(xi ,yi,θi, p1i, p2i, p3i)

T ∈ Mi and



















x̂i

ŷi

θ̂i

p̂1i

p̂2i

p̂3i



















= g



















xi

yi

θi

p1i

p2i

p3i



















=



















cosψ −sinψ 0 0 0 0

sinψ cosψ 0 0 0 0

0 0 0 0 0 0

0 0 0 cosψ −sinψ 0

0 0 0 sinψ cosψ 0

0 0 0 0 0 1





































xi

yi

θi

p1i

p2i

p3i



















+



















qx

qy

ψ

0

0

0



















,

whereqx,qy,ψ are three parameters.

38

Proof:

˙̂xi =
d
dt

(xi cosψ −yi sinψ +qx)

= ẋi cosψ − ẏi sinψ

=
r2

4
cosθi (p1i cosθi + p2i sinθi)cosψ − r2

4
sinθi (p1i cosθi + p2i sinθi)sinψ

=
r2

4
(p1i cosθi + p2i sinθi)cos(θi +ψ)

=
r2

4

(
(p1i cosψ − p2i sinψ)cosθ̂i +(p1i sinψ + p2i cosψ)sinθ̂i

)
cosθ̂i

=
r2

4
cosθ̂i

(
p̂1i cosθ̂i + p̂2i sinθ̂i

)
.

Similarly

˙̂yi =
r2

4
sin θ̂i

(
p̂1i cosθ̂i + p̂2i sinθ̂i

)
.

˙̂θi is easy to verify:

˙̂θi =
d
dt

(θi +ψ) = θ̇i =
r2

4b2 p3i =
r2

4b2 p̂3i,

d̂i−1,i =
√

(x̂i−1 − x̂i)2 +(ŷi−1 − ŷi)2

=
√

((xi−1 −xi)cosψ − (yi−1 −yi)sinψ)2 +((xi−1 −xi)sinψ +(yi−1 −yi)cosψ)2

=
√

(xi−1 −xi)2 +(yi−1 −yi)2 = di−1,i

39

˙̂p1i =
d
dt

(p1i cosψ − p2i sinψ)

= ṗ1i cosψ − ṗ2i sinψ

=

(

2k(xi −xi−1)
(
di−1,i −d

)

di−1,i
+

2k(xi −xi+1)
(
di,i+1 −d

)

di,i+1

)

cosψ

−
(

2k(yi −yi−1)
(
di−1,i −d

)

di−1,i
+

2k(yi −yi+1)(di,i+1 −dn)

di,i+1

)

sinψ

=
2k((xi cosψ −yi sinψ)− (xi−1 cosψ −yi−1 sinψ))

(
d̂i−1,i −d

)

d̂i−1,i

+
2k((xi cosψ −yi sinψ)− (xi+1 cosψ −yi+1 sinψ))

(
d̂i,i+1 −d

)

d̂i,i+1

=
2k(x̂i − x̂i−1)

(
d̂i−1,i −d

)

d̂i−1,i
+

2k(x̂i − x̂i+1)
(
d̂i,i+1 −d

)

d̂i,i+1
.

Similarly

˙̂p2i =
2k(ŷi − ŷi−1)

(
d̂i−1,i −d

)

d̂i−1,i
+

2k(ŷi − ŷi+1)
(
d̂i,i+1 −d

)

d̂i,i+1
,

and

˙̂p3i = ṗ3
i =

r2

4
(p1i sinθi − p2i cosθi)(p1i cosθi + p2i sinθi)

=
r2

4
(p1i sin(θ̂i −ψ)− p2i cos(θ̂i −ψ))(p1i cos(θ̂i −ψ)+ p2i sin(θ̂i −ψ))

=
r2

4
(p̂1i sin θ̂i − p̂2i cosθ̂i)(p̂i cosθ̂i + p̂2i sinθ̂i).

Since(x̂i, ŷi, θ̂i, p̂1i, p̂2i, p̂3i)
T satisfy the motion equations 3.5, the equations are invari-

ant under the specified Lie group, in other words, the system has Lie group symmetry,

which illustrated in Figure 3.3. �

40

−4 −3 −2 −1 0 1 2 3

−1

0

1

2

3

4

x

y

trajectory of 1st robot

trajectory of 2nd robot

trajectory of 3rd robot

(0,0)

(2,2)

(−1,3)

(−3,1)

Figure 3.3. Lie symmetry.

3.4 Algorithm

We develop a relaxation shooting method to solve the equations of motion and ob-

tain the trajectory of each robot. Letz represent the state andp stand for costate, the

algorithm of this method is as follows.

1. Choose initial guesspi(0) = pi0 for the costate.

2. Numerically solve the equations of motion with the initial conditions{zi0, pi0}.

Obtain the final statesz0
i f based on the initial guess.

3. Comparez0
i f with zi f . Divide the straight line segment fromz0

i f to zi f into several

41

small intervals. Let

Z j
i = z0

i f +(zi f −z0
i f)

j
m

,

where j = 0,1,· · · ,mandm is the number of the intervals.

4. Treatzi0 and Z0
i as new initial and final boundary conditions of equations of

motion. Use the shooting method [43] to solve the two points boundary value

problems. We can obtain the proper initial values of the costates for this specified

problem after solved the equations.

5. Use the initial value of the costate from fourth step as the new initial guess for

the differential equations whose initial conditions arezi0 and final conditions are

Z1
i .

6. Repeat the fifth step untilj = m. Then the whole problem is solved.

We give an example to illustrate the algorithm presented above. The initialq0 and final

configurationsqf (positions and orientations) are given for each robots in the system.

We make initial guesses for all the costates, and we could get the final configurations

q0
f and the trajectories of each robot could be found based on these initial guesses,

which is shown as dashed lines in Figure 3.4. We divide the difference between the

given final configurationsqf and calculated final configurationsq0
f into several parts

q0
f ,q

1
f ,q

2
f , · · · ,qf . Considerq1

f as the new desired final configurations, we use shooting

method to get new trajectories, which are the closest lines to the dashed lines in Fig-

ure 3.4. Step by step, we can obtain the desired trajectories, thick lines in Figure 3.4.

For a distributed system, it becomes more and more difficult and sometimes infea-

sible to numerically find solutions to the problem as the number of robots increases.

42

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 3.4. Illustration of the algorithm.

We may predict unknown trajectories of some robots based on the knowledge of other

robots as stated in Proposition 3.4.1

Proposition 3.4.1:Consider a robotic system containingn robots and letC be the

center of the regular polygon, which vertices represents MICAbots (see Figure 3.5).

Suppose the trajectories of roboti and robotj are reflection backward in time about

the perpendicular bisector to the straight line segment connecting initial point

C(X0,Y0) and final pointC(Xf ,Yf), which slope isa. Then,

43



















xi(t)

yi(t)

θi(t)

p1i(t)

p2i(t)

p3i(t)



















=



















a2−1
a2+1 − 2a

a2+1 0 0 0 0

− 2a
a2+1 −a2−1

a2+1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −a2−1
a2+1

2a
a2+1 0

0 0 0 2a
a2+1

a2−1
a2+1 0

0 0 0 0 0 1





































x j(t f − t)

y j(t f − t)

θ j(t f − t)

p1j(t f − t)

p2j(t f − t)

p3j(t f − t)



















+



















Xf −X0

Yf −Y0

2arctana

0

0

0



















.(3.6)

Proof: Let α = arctana andτ = t f − t, then

sin(2α) =
2a

1+a2 , cos(2α) =
1−a2

1+a2 .

After some simple but tedious computations, we obtain

p1 j(τ)cosθ j(τ)+ p2 j(τ)sinθ j(τ) = p1i(t)cosθi(t)+ p2i(t)sinθi(t),

d j−1, j(τ) = di−1,i(t),

44

*
*

*

*
β

β
θi(t)

θ j(t f − t)

slope=a=tanα
x

y

C(X0,Y0)

C(Xf ,Yf)(xi(t),yi(t))

(x j(t f − t),y j(t f − t))

ith robot
ith robot

jth robot

jth robot

Figure 3.5. Illustration of symmetry trajectories.

ẋi =
d
dt

(
a2−1
a2 +1

x j(τ)− 2a
a2 +1

y j(τ)+(Xf −X0)

)

= −a2−1
a2 +1

dx j(τ)

d(τ)
+

2a
a2 +1

dy j(τ)

d(τ)

= −a2−1
a2 +1

(
r2

4
cosθ j(τ)

(
p1 j(τ)cosθ j(τ)+ p2 j(τ)sinθ j(τ)

)
)

+
2a

a2 +1

(
r2

4
sinθ j(τ)

(
p1 j(τ)cosθ j(τ)+ p2 j(τ)sinθ j(τ)

)
)

=
r2

4
(p1i(t)cosθi(t)+ p2i(t)sinθi(t))

(

−a2−1
a2 +1

cosθ j(τ)+
2a

a2 +1
sinθ j(τ)

)

=
r2

4
cos(2α −θ j(τ))(p1i(t)cosθi(t)+ p2i(t)sinθi(t))

=
r2

4
cos(θi(t))(p1i(t)cosθi(t)+ p2i(t)sinθi(t)) .

45

Similarly

ẏi =
d
dt

(

− 2a
a2 +1

x j(τ)− a2−1
a2 +1

y j(τ)+(Yf −Y0)

)

=
r2

4
(p1i(t)cosθi(t)+ p2i(t)sinθi(t))

(
2a

a2 +1
cosθ j(τ)+

a2−1
a2 +1

sinθ j(τ)

)

=
r2

4
sin(2α −θ j(τ))(p1i(t)cosθi(t)+ p2i(t)sinθi(t))

=
r2

4
sin(θi(t))(p1i(t)cosθi(t)+ p2i(t)sinθi(t)) ,

θ̇i =
d
dt

(−θ j(τ)+2arctana) =
d(θ j(τ))

d(τ)
=

r2

4b2 p3i(τ) =
r2

4b2 p3i,

ṗ1i =
d
dt

(

−a2−1
a2 +1

p1 j(τ)+
2a

a2 +1
p2 j(τ)

)

=
a2−1
a2 +1

d(p1 j(τ))

d(τ)
− 2a

a2 +1
d(p2 j(τ))

d(τ)

=
a2−1
a2 +1

(

2k
(
x j(τ)−x j−1(τ)

)(
di−1,i(t)−d

)

di−1,i(t)

+
2k
(
x j(τ)−x j+1(τ)

)(
di,i+1(t)−d

)

di,i+1(t)

)

− 2a
a2 +1

(

2k
(
y j(τ)−y j−1(τ)

)(
di−1,i(t)−d

)

di−1,i(t)

+
2k
(
y j(τ)−y j+1(τ)

)(
di,i+1(t)−d

)

di,i+1(t)

)

=
2k(di−1,i(t)−d)

di−1,i(t)

(
a2−1
a2 +1

(
x j −x j−1

)
− 2a

a2 +1

(
y j −y j−1

)
)

+
2k(di,i+1(t)−d)

di,i+1(t)

(
a2−1
a2 +1

(
x j −x j+1

)
− 2a

a2 +1

(
y j −y j+1

)
)

=
2k(xi −xi−1)

(
di−1,i −d

)

di−1,i
+

2k
(
xi −x j+1

)(
di,i+1 −d

)

di,i+1
.

46

The costate ˙p2i can be verified in very similar way and we skip the proof here. For the

third costate

ṗ3i =
d(p3 j(τ))

d(τ)

= −r2

4
(p1 j(τ)sinθ j(τ)− p2 j(τ)cosθ j(τ))(p1 j cosθ j(τ)+ p2 j(τ)sinθ j(τ))

=
r2

4
(p1i(t)sinθi(t)− p2i(t)cosθi(t))(p1i(t)cosθi(t)+ p2i(t)sinθi(t)).

�

Remark 3.4.2: Consider a robotic system containingn robots. If we give such initial

and final configurations (position and orientation) for each roboti and there exists a

robot j that the top three conditions of Equation 3.6 are satisfied. Then, if the whole

system rotates by an angleφ = K 2π
n − (π −2α), whereK is an integer and

α = arctan
Yf−Y0
Xf−X0

, then j = mod(n−K +2− i, n). Under such condition, if we want to

know the trajectories of all robots in the system, we should at least know one of roboti

and robotj ’s trajectory.

3.5 Symmetry in Distributed Systems

Our system is described by Equation 3.5. In this section, we are going to check if

our system has symmetry by using the definition given in Chapter 2. The formation of

the team of MICAbot is a ann-sided regular polygon, and the dihedral groupDn is the

symmetry group of such graph. So the graph symmetryσ for our system is contained in

the dihedral groupDn, which meansσ ∈ Dn = {e, r, r2, · · · , rn−1, f , f r, f r2, · · · , f rn−1}.

47

We can partition the vector field in the system given by Equation 3.5 as

f (x) =
n

∑
i=1

fi

where

fi =



































06×1

06×1

...






r2

4 cosθi (p1i cosθi + p2i sinθi)

r2

4 sinθi (p1i cosθi + p2i sinθi)

r2

4b2 p3i

0

0

r2

4 (p1i sinθi − p2i cosθi)(p1i cosθi + p2i sinθi)







...

06×1



































the non-zero 6×1 blocks in the above matrix are in positioni. For simplification, let

hi =







r2

4 cosθi (p1i cosθi + p2i sinθi)

r2

4 sinθi (p1i cosθi + p2i sinθi)

r2

4b2 p3i

0

0

r2

4 (p1i sinθi − p2i cosθi)(p1i cosθi + p2i sinθi)







and xi =







xi

yi

θi

p1i

p2i

p3i







,

48

then the Equation 3.5 can be rewritten as:












x1

x2

...

xn












=












h1

h2

...

hn












= f (x) =
n

∑
i=1

fi(x) fi(x) =









...

hi

...









For each elementσ ∈ Dn, σ can be written asσ = f prq, where p = 0,1 andq =

0,1,· · · ,n−1.

• If p = 0,q = 0, σ = eand it is a trivial permutation.

• If p = 0,q > 0, σ = rq. Thenσ(Vi) = Vi+q.

σ(V1, · · · ,Vi, · · · ,Vn) = (V1+q, · · · ,Vi+q, · · · ,Vn+q),

σ∗(x1, · · · ,xi, · · · ,xn) = (x1+q, · · · ,xi+q, · · · ,xn+q),

49

(σ♯)∗ fi+q(x1, · · · ,xi , · · · ,xn)

= Tσ♯ ◦ fi+q ◦σ−1
♯ (x1, · · · ,xi+q, · · · ,xn)

= Tσ♯ ◦ fi+q(x1−q, · · · ,xi, · · · ,xn−q)

=



















0 · · · 0 11,1+q 0 · · · · · · 0

0 · · · 0 0 12,2+q 0 · · · 0
...

...
...

...
...

...
...

...

0 · · · 0 0 0 1i,i+q · · · 0
...

...
...

...
...

...
...

...

0 · · · 1n,q 0 0 0 · · · 0

































0
...

hi((i +q)th row)

...

0















=















0
...

hi(ith row)

...

0















= fi .

• If p = 1,q > 0, σ = f rq. Thenσ(Vi) = Vn+q+2−i.

σ(V1, · · · ,Vi, · · · ,Vn) = (Vn+q+1, · · · ,Vn+q+2−i, · · · ,Vq+2),

σ∗(x1, · · · ,xi, · · · ,xn) = (xn+q+1, · · · ,xn+q+2−i, · · · ,xq+2),

50

(σ♯)∗ fn+q+2−i(x1, · · · ,xn+q+2−i, · · · ,xn)

= Tσ♯ ◦ fi ◦σ−1
♯ (x1, · · · ,xn+q+2−i, · · · ,xn)

= Tσ♯ ◦ fi(xn+1−q, · · · ,xi , · · · ,xn+2−q)

=



















0 · · · 0 0 11,q+1 · · · · · · 0

0 · · · 0 12,2+q 0 0 · · · 0
...

...
...

...
...

...
...

...

0 · · · 1i−q,i 0 0 0 · · · 0
...

...
...

...
...

...
...

...

0 · · · 0 0 0 1n,q+2· · · 0



















·















0
...

hi((n+q+2− i)th row)

...

0















=















0
...

hi(ith row)

...

0















= fi .

To summarize, our distributed system is symmetric. Note, 1m,n means the element 1 is

in mth row,nth column.

We show how our approach works in simulation using several examples. Suppose

that our systems are in an obstacle free environment. We first consider two examples

which are not reduced to lower dimensional systems. We directly compute the optimal

51

trajectories for all robots in the systems. These results canvalidate our Proposition

3.4.1 and Remark 3.4.2.

Example 3.5.1: We have five robots and they form a five-side regular polygon (see

Figure 3.6). The robots are labeled by a unique integer number. The black point in the

Figure 3.6 is the geometric center of the polygon. When we say the position of a

formation, we mean the position of its center.

�
�
�

�
�
�

4 5

1

2

3

Figure 3.6. Five side regular polygon formation.

We solve the Equations 3.5 by numeric method forn = 5. At t = 0, the formation is at

the point(−1,−2). We chooset f = 1s. The goal position is(1,2). We try to find the

optimal trajectories for all robots while the formation goes from(−1,−2) to (1,2) and

rotates by an angleφ = −(π −2α) about its center and the cost function 3.2 is

52

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
trajectories of five robots

simulation result

analytical compution

slope=a

1

2

5
4

3

center point

Figure 3.7. Trajectories of a team of five robots.

minimized. The trajectories are plotted in Figure 3.7. In Figure 3.7, the solid lines are

the trajectories (costates) numerical solved from Equation 3.5. According the Remark

3.4.2,φ = −(π −2α) = k2π
5 − (π −2α), i.e., k= 0. Then, if we know the trajectories

of the ith or (7− i)th, we can algebraically compute other robots’ trajectories, which

results in much computational savings. In this example, we picki = 1,3,5. Using the

information of these three robots to construct those of the second and fourth robots by

using of Proposition 3.4.1. The dashed lines in the following figures represent these

results.

�

53

Example 3.5.2:In this example, our system contains six robots, which form a 6-side

regular polygon. The solid and dashed lines represent the same things respectively as

those in Figure 3.7. The coordinates of initial center of the formation is(−1,−1) and

the final position of the center is at(1,1). The formation rotates by an angleφ = π
2 .

According the remark 4.1.7,φ = π
2 = k2π

6 − (π − π
2), i.e. k= 3. If we know the

trajectories of roboti or robot(5− i), we can algebraically compute the other robots’

trajectories. Here, we picki = 1,3,5. Since the trajectories and costates of the other

three robots have the reflection relations with the known three robots respectively, we

compute them and they are represented in dashed lines in Figure 3.8 and Figure 3.9.

�

The numerical results and the analytically computed results are exactly the same in the

above two examples. These validated our Proposition 3.4.1 and Remark 3.4.2. 3.4.

54

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
trajectories of six robots

simulation result

analytical compution

Figure 3.8. Trajectories of a team of six robots.

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

λ
21

simulation result

analytical compution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.2

2.4

2.6

λ
22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

λ
23

Figure 3.9. The optimal costates of the 2nd robot verse time for six robots
system.

56

CHAPTER 4

BIFURCATION RESULTS OF A DISTRIBUTED SYSTEMS MADE OF

UNICYCLES

The second prototypical model we adopt is a simplified version of the kinematic

robotic unicycle. The kinematics of this kind of robot are described by

ẋ = u1 (4.1)

ẏ = u2.

In this chapter, the simplified unicycles we consider are arranged along a straight

line. The optimal motion planning problem is to minimize the cost function 3.2 as

defined in chapter 3, but subject to the constraints 4.1.

Similar procedure to the MICAbot, we obtain the optimal inputs

u1i =
1
2

p1i

u2i =
1
2

p2i,

57

and equations of motion

ẋi =
1
2

p1i (4.2)

ẏi =
1
2

p2i

ṗ1i =
2k(xi −xi−1)

(
di−1,i −d

)

di−1,i
+

2k(xi −xi+1)
(
di,i+1 −d

)

di,i+1

ṗ2i =
2k(yi −yi−1)

(
di−1,i −d

)

di−1,i
+

2k(yi −yi+1)
(
di,i+1 −d

)

di,i+1
,

wherek is a non-negative weighting factor andd is the desired distance between two

adjacent unicycles. Because they correspond to the robots at the end of the formation,

the last two equations in Equation 4.2 only have the second term wheni = 1 and they

only have the first term wheni = n.

The cases considered in this thesis are limited to the following boundary conditions

xi(0) = c+(i−1)d, (4.3)

xi(1) = 0,

yi(0) = 0,

yi(1) = c+(i−1)d,

wherec is a constant. These boundary conditions correspond to an initial formation

with the robots arranged along thex-axis starting with the first robot atx = c with a

distanced between each robot and a final formation with the robots arranged along the

y-axis starting with the first robot aty = c with a distance ofd between each robot. It

is important to note that if the initial and final formations are not parallel, then straight-

line trajectories satisfying the boundary conditions will not, in general, maintain the

desired distance between the robots.

58

For a distributed system containingn robots, when the weighting constantk is given,

an optimal trajectory can be obtained numerically by solving the equations of motion

given by Equation 4.2 using the relaxation shooting method. Since each robot has its

own predefined initial state and final state, the procedure to find the optimal path is to

solve a boundary value problem for a set of second order nonlinear ordinary differential

equations. We show the solutions for three systems with different number of robots.

4.1 Bifurcation Results

Sincek is a parameter in the differential equations, it will clearly affect the solutions.

In fact, ask is varied, the nature and number of solutions changes. Section 4.3 shows

that there is a unique solution whenk is small and in the limit ask approaches infinity,

the number of solutions also approaches infinity. In order to present the relationship

between the number of solutions andk, we construct a bifurcation diagram as follows:

since a straight line connecting end points is the optimal solution whenk = 0, we will

designate that as a nominal trajectory. One measure of the difference between solutions

would be their deviation from the straight line nominal solution at some specified time.

As long as the different solutions are not intersecting at that time, this would provide

a measure of difference between different solutions. In all the bifurcation diagram

illustrated subsequently,t = 0.25 is used. For different formations and different type

of robots, a different value oft may be a better choice; however, for all the systems

studied in this thesis,t = 0.25 appeared to adequately represent the relationship among

the solutions. Also, alternative measures of differences between the solutions may, in

general, be superior, this simple choice appears to suffice for all the cases considered in

this thesis.

59

4.1.1 Solutions for a Five Robot System

Figure 4.1 illustrates three different solutions that satisfy the equations of motion in

Equation 4.2 and boundary conditions in Equation 4.3 fork = 24.5,c= 6 andd = 2 for

a formation of five robots. Since the differences among these trajectories are difficult

to distinguish on such a small graph, Figure 4.2 illustrates them for the third (middle)

robot with the difference magnified by a factor of 10.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

x

y

Figure 4.1. Optimal paths for the five robot system withk = 24.5.

The plots in Figure 4.3 through Figure 4.7 illustrate this measure of the difference

between solutions for each robot in the five robot system ask is varied from 0 to 25.

In these bifurcation diagrams, the first robot is the one with the shortest trajectory, the

fifth robot is the one with the longest trajectory and they are ordered sequentially. The

60

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

Figure 4.2. Difference among the optimal paths for robot three.

bifurcation occurs neark= 16.5. Observe that the bifurcation diagrams for robots 1 and

5 are symmetric to each other aboutd = 0 axis and the bifurcation diagrams for robots

2 and 4 are similarly symmetric (even though each follows a trajectory with a different

length). Finally, the bifurcation diagram for robot 3 is symmetric to itself aboutd = 0

axis.

A close analysis of the actual trajectories that the robots follow illustrated in the

figure on the right in Figure 4.1 reveals that the trajectories themselves arenot sym-

metric (the two trajectories with pronounced curves intersect, but not at a point on the

straight line solution). A measure that is based upon the deviation from the nominal so-

lution appears to be necessary to determine the real symmetric nature of the solutions.

Section 4.4 contains the analysis that these symmetries must, in fact, exist.

61

0 5 10 15 20 25
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
Robot one

k

d

Figure 4.3. Bifurcation diagrams for robot one in a 5-roboticsystem.

0 5 10 15 20 25
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0
Robot two

k

d

Figure 4.4. Bifurcation diagrams for robot two in a 5-roboticsystem.

62

0 5 10 15 20 25
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
Robot three

k

d

Figure 4.5. Bifurcation diagrams for robot three in a 5-robotic system.

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Robot four

k

d

Figure 4.6. Bifurcation diagrams for robot four in a 5-robotic system.

63

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Robot five

k

d

Figure 4.7. Bifurcation diagrams for robot five in a 5-roboticsystem.

4.1.2 Solutions for a Six Robot System

Figures 4.8 through 4.15 illustrate similar results for a six robot system. Figure 4.8

illustrates the trajectories whenk = 24.5,c = 4 andd = 2. Again, because the differ-

ence is hard to distinguish in this figure, Figure 4.9 illustrates the trajectory with the

deviation from the nominal trajectory for the fifth robot magnified by a factor of five.

Figure 4.18 through Figure 4.24 illustrate the bifurcation diagrams for the solutions

versusk constructed in a manner identical to that of the system of five robots. The first

bifurcation we found occurs neark = 12.3, the second occurs neark = 16.1 and the

third occurs neark = 23.2. There might be other bifurcations we have not found due to

the limitation of simulation. Observe that, different than the five robot case, there is no

robot which bifurcation diagram is symmetric to itself aboutd = 0 axis. The bifurca-

tion diagrams for robots 1 and 6 are symmetric to each other aboutd = 0 axis as is the

bifurcation diagrams for robots 2 and 5 and robots 3 and 4.

64

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

x

y

Figure 4.8. Optimal paths for a six robot system withk = 24.5.

0 2 4 6 8 10
0

2

4

6

8

10

12

x

y

Figure 4.9. Difference among the optimal paths for robot three.

65

0 5 10 15 20 25
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
1st robot (n=6)

k

d

Figure 4.10. Bifurcation diagrams for robot one in a 6-robotic system.

0 5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
2nd robot (n=6)

k

d

Figure 4.11. Bifurcation diagrams for robot two in a 6-robotic system.

66

0 5 10 15 20 25
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
3rd robot (n=6)

k

d

Figure 4.12. Bifurcation diagrams for robot three in a 6-robotic system.

0 5 10 15 20 25
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
4th robot (n=6)

k

d

Figure 4.13. Bifurcation diagrams for robot four in a 6-robotic system.

67

0 5 10 15 20 25

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
5th robot (n=6)

k

d

Figure 4.14. Bifurcation diagrams for robot five in a 6-robotic system.

0 5 10 15 20 25
−0.1

0

0.1

0.2

0.3

0.4

6th robot (n=6)

k

d

Figure 4.15. Bifurcation diagrams for robot six in a 6-robotic system.

68

4.1.3 Solutions for a Seven Robot System

Figures 4.16 through 4.24 illustrate similar results for a seven robot system. Fig-

ure 4.16 illustrates the trajectories whenk = 24.5, c = 4 andd = 2. Again, because

the difference is hard to distinguish in this figure, Figure 4.17 illustrates the trajectory

with the deviation from the nominal trajectory for the fifth robot magnified by a factor

of five. Figure 4.18 through Figure 4.24 illustrate the bifurcation diagrams for the solu-

tions versusk constructed in a manner identical to that of the system of five robots. The

first bifurcation occurs neark = 10.8, the second occurs neark = 16.1 and the third oc-

curs neark = 20.6. Observe that, similar to the five robot case, the bifurcation diagrams

for robots 1 and 7 are symmetric to each other aboutd = 0 axis as is the bifurcation

diagrams for robots 2 and 6 and robots 3 and 5, and the bifurcation diagram for robot 4

is symmetric to itself aboutd = 0 axis.

From the examples given above, we can find that when the number of robots in a

distributed system is odd, the number of solutions is odd. A straight line connecting end

points is one of trajectories of the robot located at the center of the system. Any other

remaining trajectories of this robot has a symmetric one to the straight line solution. In

one set of solution, two robots which have the same distance from the center one have

symmetric trajectories about the trajectory of the center robot. When the number of

robots in a distributed system is even, the number of solutions is even. No robot has

straight line solution, but two robots which have the same distance from the center of

the system still have symmetric solutions.

4.2 Optimization Software iSIGHT

In my Curricular Practical Training from October 2008 to April 2009, I utilized

iSIGHT software to solve some optimization problem. It is a Multi-Disciplinary Opti-

69

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

x

y

Figure 4.16. Optimal paths for a seven robot system withk = 23.

0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

x

y

Figure 4.17. Difference among the optimal paths for robot four magnified by
a factor of 5.

70

0 5 10 15 20 25 30
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Robot one

k

d

Figure 4.18. Bifurcation diagrams for robot one in a 7-robotic system.

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Robot two

k

d

Figure 4.19. Bifurcation diagrams for robot two in a 7-robotic system.

71

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Robot three

k

d

Figure 4.20. Bifurcation diagrams for robot three in a 7-robotic system.

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Robot four

k

d

Figure 4.21. Bifurcation diagrams for robot four in a 7-robotic system.

72

0 5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Robot five

k

d

Figure 4.22. Bifurcation diagrams for robot five in a 7-robotic system.

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Robot six

k

d

Figure 4.23. Bifurcation diagrams for robot six in a 7-robotic system.

73

0 5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Robot seven

k

d

Figure 4.24. Bifurcation diagrams for robot seven in a 7-robotic system.

mization software developed by Engineous Software Inc. The key functions of iSIGHT

are Automation, Integration and Optimization. We built the model (see Figure 4.25) by

utilizing iSIGHT integrating MATLAB code to solve our optimization problem.

The Optimization contains design variables, constraints and objectives. Input pa-

rameters in the problem formulation is used as design variables. Lower/upper bounds

specified on output parameters in the Problem Formulation will be used as lower/upper

bounds for constraints. Any parameter that has an objective defined in the Problem

Formulation will automatically be defined as an objective with the objective direction

(minimize/maximize/target) as specified in the Problem Formulation. In our problem,

the pre-defined initial and final positions of the robots, initial guesses of costates are

considered to be design variables. But the positions are fixed, the values of initial

guesses of costates are tunable. No constraint is defined for this problem, and objective

is the distance between the calculated final position and the pre-defined final position.

74

Figure 4.25. iSIGHT model layout.

75

The Loop component is a process component capable of executing subflows based on

conditions. We use ”For” loop to execute subflows while continuously incrementing

the value 0.1 of the parameterk from 0 to 30. MATLAB code is used to solve the

motion equations. When the initial guesses are made for the costates, the boundary

value problem is converted to initial value problem. And it is easy to solve numerically.

MATLAB calculates the value of the objective. Optimization component will tune the

initial guesses of the costates based on the chosen optimization method. It will stop un-

til the optimal objective is found. The ”For” loop will let the optimization component

repeat the process for different value ofk.

We have an example for solving a five robot system. Fork = 24.5,c = 6 andd = 2,

the result is illustrated in Figure 4.26

4.3 Asymptotic Analysis

In the two cases of very smallk and very largek, we may use an asymptotic ex-

pansion to investigate the effect ofk on the number of solutions to the boundary value

problem. As will be shown, this analysis is consistent with the existence of a unique

solution for small values ofk and many solutions for very largek, which is the pat-

tern indicated in the numerical bifurcation results that show an increased number of

bifurcations and an increased number of solutions ask gets large.

76

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Figure 4.26. Optimal trajectories solved by iSIGHT.

77

4.3.1 Smallk

We use a standard perturbation method (see [27]) to solve Equations 4.2 fork≪ 1.

If we let

xi = xi,0 +kxi,1 +k2xi,2 +k3xi,3 + · · ·+k jxi, j + · · · ,

yi = yi,0 +kyi,1 +k2yi,2 +k3yi,3 + · · ·+k jyi, j + · · · ,

p1i = p1i,0 +kp1i,1 +k2p1i,2 +k3p1i,3 + · · ·+k j p1i, j + · · · ,

p2i = p2i,0 +kp2i,1 +k2p2i,2 +k3p2i,3 + · · ·+k j p2i, j + · · · ,

and substitute into the equations of motion (Equation 4.2), a set of linear differential

equations is obtained for each power of the expansion parameterk and we can consider

it term-by-term in powers ofk.

Specifically, ifz represents eitherx or y, then the following table illustrates the re-

sulting recursive structure of the equations. Any entry that is zero corresponds to a

variable that is identically zero. Furthermore, as is the typical case in an asymptotic ex-

pansion, any variable only depends on lower order ones, which in this table correspond

to variables to the left of it. Specifically, we have

78

zi,0 zi,1 zi,2 · · · zi,m−1 zi,m · · ·

z1,0 z1,1 z1,2 · · · z1,m−1 z1,m · · ·

z2,0 0 z2,2 · · · z2,m−1 z2,m · · ·

z3,0 0 0 · · · z3,m−1 z3,m · · ·
...

...
...

. ..
...

... · · ·

zm,0 0 0 · · · 0 zm,m · · ·
...

...
...

. ..
...

... · · ·

zn−2,0 0 0 · · · −z3,m−1 −z3,m · · ·

zn−1,0 0 −z2,2 · · · −z2,m−1 −z2,m · · ·

zn,0 −z1,1 −z1,2 · · · −z1,m−1 −z1,m · · ·

wherem is the smallest integer larger than or equal ton
2. So, ifzi,i is known and sincezi, j

(j > i) depends onzi−1, j−2,zi−1, j−1,zi, j−2,zi, j−1,zi+1, j−2,zi+1, j−1, we can solve them

in the order ofj = i +1,i +2,· · · .

In detail, thej = 0 (k0) terms gives the set of linear equations

ẋi,0 =
1
2

p1i,0,

ẏi,0 =
1
2

p2i,0,

ṗ1i,0 = 0,

ṗ2i,0 = 0,

79

with boundary conditions

xi0(0) = x10(0)+(i−1)d

yi0(0) = 0

xi0(1) = 0

yi0(1) = y10(1)+(i−1)d,

which have solutions

xi,0 = −xi,0(0)t +xi,0(0),

yi,0 = yi,0(1)t,

p1i,0 = −2xi,0(0),

p2i,0 = 2yi,0(1).

Naturally, these are straight lines, which is expected when the only component of the

cost function is the control effort and the 0th order solution does not containk.

In all cases (all powers ofk and all robots), an analysis of the resulting expansion

shows thatxi, j = −xn+1−i, j andyi, j = −yn+1−i, j . Also, for 1≤ j < i ≤ n+1
2 , xi, j = 0

andyi, j = 0 (the higher order terms for the “outer” robots are zero up to a certain order.

Hence we only need to consider the cases where 1≤ i ≤ n
2 and i ≤ j.

80

In the case wherej = i = 1,

ẋ1,1 =
1
2

p11,1

ẏ1,1 =
1
2

p21,1

ṗ11,1 = 2d(t −1)

(

1− 1√
2t2−2t +1

)

ṗ21,1 = −2dt

(

1− 1√
2t2−2t +1

)

.

Since the right hand sides of the last two equations are continuous and bounded func-

tions of t on the intervalI = [0,1], they are integrable and the integrals are differen-

tiable (see [8]), which indicates the integrals are continuous. Hencex1,1, y1,1 exist and

are unique since the right hand side of thep equations may be directly integrated twice

to obtain thex andy solutions. Since we integrate twice, there are two undetermined

constants, which can be determined by the two zero boundary conditions.

Wheni = j and j > 1,

ẋi, j =
1
2

p1i, j

ẏi, j =
1
2

p2i, j

ṗ1i, j = −2xi−1, j−1 +
2t
(
−yi−1, j−1 + t(xi−1, j−1 +yi−1, j−1)

)

(2t2−2t +1)
3/2

ṗ2i, j = 2yi−1, j−1 +
2(t −1)

(
−yi−1, j−1 + t(xi−1, j−1 +yi−1, j−1)

)

(2t2−2t +1)
3/2

.

The right hand sides of the last two equations are the sum of integrable functions or

product of them, so they are differentiable (see [8]). Similar to the argument forx1,1

andy1,1, xi,i andyi,i therefore exist and unique.

81

The off-diagonal terms have the same essential structure that the right hand side

of the co-state equations is a linear combination of the lower order solutions in the

expansion. Since all the lower order solutions are continuous and bounded functions of

t, they may be directly integrated to compute the actual solution.

Since all the terms in the expansion may be solved by direction integration of func-

tions that are continuous and bounded, a solution for each term exists. Hence, for

k ≪ 1, this asymptotic analysis give a computable construction for the solutions, and

also indicates that the solution is unique. In other words, for smallk, only one solution

exists.

4.3.2 Largek

For largek (1
k ≪ 1), a similar asymptotic expansion is used to solve Equations 4.1

but instead ofk, ε = 1
k is used as the expansion parameter. Let

xi = xi,0 + εxi,1 + ε2xi,2 + ε3xi,3 + · · ·+ ε jxi, j + · · · ,

yi = yi,0 + εyi,1 + ε2yi,2 + ε3yi,3 + · · ·+ ε jyi, j + · · · ,

p1i = p1i,0 + ε p1i,1 + ε2p1i,2 + ε3p1i,3 + · · ·+ ε j p1i, j + · · · ,

p2i = p2i,0 + ε p2i,1 + ε2p2i,2 + ε3p2i,3 + · · ·+ ε j p2i, j + · · · .

We obtain the following equation for leading order ofε,

ẋi,0 =
1
2

p1i,0

ẏi,0 =
1
2

p2i,0

0 =
2k(xi,0 −xi−1,0)

(
di−1,0−d

)

di−1,0
+

2k(xi,0 −xi+1,0)
(
di,0 −d

)

di,0

0 =
2k(yi,0 −yi−1,0)

(
di−1,0−d

)

di−1,0
+

2k(yi,0 −yi+1,0)
(
di,0 −d

)

di0
.

82

The last two equations may be simplified to

(xi,0 −xi−1,0)
2 +(yi,0 −yi−1,0)

2 = d
2
, (4.4)

which transparently shows that the limit for largek simply requires that the distance

constraint be exactly maintained.

Since the third and fourth equations are algebraic (as is Equation 4.4), then the

costates,p are unconstrained and henceany path that maintains the desired distance

between the robots and satisfies the boundary conditions is a solution. This makes

intuitive sense: in the limit ask → ∞, the control effort becomes negligible relative

to the distance constraint. Hence, in the limit of very largek, the asymptotic analysis

indicates that there is an infinite number of solutions. As long as the separation distance

is maintained and the boundary conditions are satisfied, any path is optimal.

4.4 Symmetries in the Bifurcation Diagrams

This section proves that the symmetries found in the numerically-constructed bi-

furcation diagrams must be present. This is of practical value because it reduces the

computation time necessary in a search over multiple solutions since a second solution

can always be found from any solution that is obtained (unless the solution is symmetric

with itself).

Suppose(x1,x2, · · · ,xn,y1,y2, · · · ,yn) is a solution of Equation 4.1 with the bound-

ary conditions in Equation 4.3, and let

xi = xsi +xdi ,

yi = ysi +ydi ,

83

where

xsi = (c+(i−1)d)(1− t),

ysi = (c+(i−1)d)t.

The subscriptss indicate a “straight-line” solution and the subscriptsd indicate the

component of the solution that is a “deviation” from the straight line. Ifv(t) =

(xd1,yd1, · · · ,xdn,ydn), thenxdi ,ydi , i = 1,2,· · · ,n, satisfy the following equations with

homogeneous boundary conditions:

−ẍdi(t) = fi(v(t)), (4.5)

−ÿdi(t) = gi(v(t)),

where f1 = h1, g1 = l1, fn = −hn−1, gn = −ln−1, and fori = (2,3,· · · ,n−1)

fi = hi −hi−1,

gi = l i − l i−1

where, for alli = (1,2,· · · ,n)

hi =

(
d
di
−1

)
(
−d+dt+xdi −xdi+1

)
,

l i =

(
d
di
−1

)
(
−dt+ydi −ydi+1

)
,

di =
((

−d+dt+xdi −xdi+1

)2
+
(
−dt+ydi −ydi+1

)2
) 1

2

84

The system (4.5), is equivalent to the system of integral equations

xdi =
∫ 1

0
G(t,s)fi(v(s))ds, (4.6)

ydi =
∫ 1

0
G(t,s)gi(v(s))ds,

whereG(t,s) is the Green’s function of the differential operator−ü = 0 with homoge-

neous boundary conditions, whereu = xdi or u = ydi , and

G(t,s) =







t(1−s), t ≤ s

s(1− t), t > s

.

If Ai, Bi andF are maps such that

Aiv(t) = k
∫ 1

0
G(t,s)fi(v(s))ds,

Biv(t) = k
∫ 1

0
G(t,s)gi(v(s))ds,

Fv(t) = (A1(v)(t),B1(v)(t), · · · ,An(v)(t),Bn(v)(t),

then determining a solution to Equation (4.6) is equivalent to finding a fixed point to

equation

Fv(t) = v(t). (4.7)

The following proposition proves that if a solution is known, then the “opposite”

deviation from the straight-line solution is also a solution for the robot on the other side

of the formation.

85

Proposition 4.4.1: Supposev(t) is a fixed point of Equation 4.7. Let

x̂dn+1−i = −xdi (4.8)

ŷdn+1−i = −ydi

andv̂(t) = (x̂d1, ŷd1, · · · , x̂dn, ŷdn), thenv̂(t) is also a fixed point of Equation 4.7

Proof: The proof is by direct substitution. Substituting for the definition of the hat

terms for each gives:

di =

√
(
−d+dt+xdi −xdi+1

)2
+
(
−dt+ydi −ydi+1

)2

=

√
(
−d+dt− x̂dn+1−i + x̂dn−i

)2
+
(
−dt− ŷdn+1−i + ŷdn−i

)2

=

√
(
−d+dt+ x̂dn−i − x̂dn−i+1

)2
+
(
−dt+ ŷdn−i − ŷdn−i+1

)2

= d̂n−i

hi =

(
d
di
−1

)
(
−d+dt+xdi −xdi+1

)

=

(
d

d̂n−i
−1

)
(
−d+dt− x̂dn+1−i + x̂dn−i

)

=

(
d

d̂n−i
−1

)
(
−d+dt+ x̂dn−i − x̂dn−i+1

)

= ĥn−i

l i =

(
d
di
−1

)
(
−dt+(yd)i − (yd)i+1

)

=

(
d

d̂n−i
−1

)
(
−dt− ŷdn+1−i + ŷdn−i

)

=

(
d

d̂n−i
−1

)
(
−dt+ ŷdn−i − ŷdn−i+1

)

= l̂n−i

86

and

f1 = h1 = ĥn−1 = − f̂n

g1 = l1 = l̂n−1 = −ĝn

fi = hi −hi−1 = ĥn−i − ĥn+1−i = − f̂n+1−i

gi = l i − l i−1 = l̂n−i − ĥn+1−i = −ĝn+1−i

fn = −hn−1 = −ĥ1 = − f̂1

gn = −ln−1 = −l̂1 = −ĝ1

which give us

fi = − f̂n+1−i,

gi = −ĝn+1−i.

for all i from 0 ton. Then

x̂di = −xdn+1−i = −
∫ 1

0
G(t,s)fn+1−ids=

∫ 1

0
G(t,s)f̂ids

ŷdi = −ydn+1−i = −
∫ 1

0
G(t,s)gn+1−ids=

∫ 1

0
G(t,s)ĝids.

Hence ˆv(t) = (x̂d1, ŷd1, · · · , x̂dn, ŷdn) is a solution of Equation 4.7.

Equation 4.8 gives an algebraic expression for the symmetric solutions, which is

useful because the theorem proves they satisfy the boundary value problems and hence

reduces the computational burden of determining additional solutions. Note that the

87

relationship is not simply the opposite deviation from the straight line solution, but is

the opposite deviation from the straight line for a different robot.

88

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This research considers the optimal control problem for a group of autonomous mo-

bile robots operating in a 2-dimensional obstacle-free environment. The trajectory of

each robot is optimized with respect to a combination of the control effort and the devi-

ation from a desired formation, which in this thesis is simply a formation that maintains

a specified distance between adjacent robots.

The first part of the results is for a system consisting of multiple MICAbots which

are forming a regular polygon. We first present the symmetric properties of the cost

function related to this problem, and then prove the symmetry in the optimal trajecto-

ries of the robots. The second part is for a group of unicycle-like autonomous mobiles

in a straight line formation. We present numerical results illustrating the structure of

bifurcations and multiple solutions of the second order nonlinear boundary value prob-

lem associated with the optimal control problem. Then we show that an asymptotic

analysis indicates that there is a unique solution whenk is small and in the limit ask

approaches infinity, the number of solutions also approaches infinity. Then, it presents

a theoretical result relating to the existence of symmetric solutions. It guarantees that

for any solution, a corresponding symmetric solution exists. The practical benefit is

that if a solution found numerically, the symmetric solution can be computed from that

algebraically. Also, if a gradient-based search method is used, understanding of the

structure of the relationship among multiple solutions is necessary to find the desired

89

result. Finding multiple solutions may be desirable if the cost function does not include

all the optimization criteria; for example, if obstacles are present but not accounted for

in the cost function.

Since common numerical solution techniques such as the shooting method are local

in nature and hence are difficult to use to find multiple solutions, an alternative formu-

lation of the problem will be used in the future that can be solved through homotopy

methods for polynomial systems. The key point of this method is to rewrite the dif-

ferential equations of motion into finite difference formulation, and finally convert the

differential equations to polynomials. A solver, Bertini [5], could be used to solve those

polynomials. Bertini uses homotopy continuation methods to find the roots of polyno-

mial system and also is capable of preprocessing the systems to reduce the possible

number of solutions based on system symmetries. This approach might find branches

that were were perhaps simply not found in our search using the shooting method or

solutions that are not numerically stable using the shooting method.

From our bifurcation diagrams, we found that the bifurcation happened early when

the number of robots in a system increased and we plotted the value of weighting pa-

rameterk at the first bifurcation point versus the number of robots in a system (see

Figure 5.1). It is difficult to construct bifurcation diagram for high dimensional system,

and I did not find any bifurcation point for a system containing less than five robots

for a limited range ofk (≤ 25). It will be a interested topic to investigate the relation-

ship between the value ofk at the first bifurcation point with the number of robots in a

system.

An additional focus of future efforts is to generalize the results. The results pre-

sented in thesis thesis that are specific to the system studied are likely to be much more

general than the particular case presented in the thesis. Determining the most general

90

3 4 5 6 7 8 9 10
8

10

12

14

16

18

20

Number of robots in a system

T
he

 v
al

ue
 o

f k
 a

t t
he

 fi
rs

t b
ifu

rc
at

io
n

po
in

t
Numerical difficulty

Numerical
difficulty

Figure 5.1. First bifurcation point versus the number of robots in a system.

classes of robots and formations that maintain the symmetry properties of the results

and similar bifurcation structure is of interest. Also, the asymptotic analysis is only

of any use for the limiting values fork. Determining conditions for the existence of a

bifurcation for any value ofk, similar to that for initial value problems, would be useful.

91

APPENDIX A

RELAXATION SHOOTING METHOD PROGRAM

This appendix provides the program used to solve the highly nonlinear equations of

motion of the system.

#include "robot.h"

int main()

{double maxvalue(double array[], int);

FILE *fid, *fid1;

char filename[400];

int i,j,ip,im,J,n,k,row,column,ii;

double r=RADIUS, b=WIDTH, T_0=0.0, T_f=TFINAL, h, d_bar;

double K1=1,K2,Psi;

double t[Nstep+1];

double **A, **Phi,**phi, **inv_phi,**product_ptr, **d_x_f;

double d_p_0[3*N];

/* initial conditions --- starting point */

double x_0[N], y_0[N], theta_0[N];

/* initial guesses of Lagrange multipliers */

double p1_0[N]={1,0.5,1},p2_0[N]={1,0.5,1},p3_0[N]={0.5,0.5,0.5};

92

/* end point */

double x_f[N],y_f[N],theta_f[N];

double X[N],Y[N],Theta[N],P1[N],P2[N],P3[N],D[N];

double X_inspace[N][M+1],Y_inspace[N][M+1],Theta_inspace[N][M+1];

double X_f[N][M+1],Y_f[N][M+1],Theta_f[N][M+1];

double x[N][Nstep+1],y[N][Nstep+1],theta[N][Nstep+1];

double p1[N][Nstep+1],p2[N][Nstep+1],p3[N][Nstep+1],d[N][Nstep+1];

double aa[N], ac[N], cc[N];

double err=1E-9,max;

double x6[6][Nstep+1],y6[6][Nstep+1],theta6[6][Nstep+1];

double p61[6][Nstep+1],p62[6][Nstep+1],p63[6][Nstep+1];

double d6[6][Nstep+1];

double intx,inty,intxy,inttheta;

A=(double **)malloc((unsigned)(6*N)*sizeof(double));

Phi=(double **)malloc((unsigned)(6*N)*sizeof(double));

phi=(double **)malloc((unsigned)(3*N)*sizeof(double));

inv_phi=(double **)malloc((unsigned)(3*N)*sizeof(double));

d_x_f=(double **)malloc((unsigned)(3*N)*sizeof(double));

product_ptr=(double **)malloc((unsigned)6*N*sizeof(double));

for(i=0;i<6*N;i++)

product_ptr[i]=(double *)malloc((unsigned)

93

6*N*sizeof(double));

for(i=0;i< (6*N);i++) {

A[i]=double *)malloc((unsigned)(6*N)*sizeof(double));

Phi[i]=(double *)malloc((unsigned)(6*N)*sizeof(double));

}

for(i=0;i<(3*N);i++) {

phi[i]=(double *)malloc((unsigned)(3*N)*sizeof(double));

inv_phi[i]=(double *)malloc((unsigned)(3*N)*sizeof(double));

d_x_f[i]=(double *)malloc((unsigned) 1*sizeof(double));

}

h=(T_f-T_0)/Nstep;

for(i=0;i<=Nstep;i++)

t[i]=T_0+h*i;

d_bar=sqrt(pow(2*R*sin(PI/N),2));

Psi=PI/2.0;

for(i=0;i<N;i++){

x_0[i]=XX0+R*cos(2*PI*i/N);

y_0[i]=YY0+R*sin(2*PI*i/N);

theta_0[i]=atan2(Psi*(x_0[i]-XX0)+(YYf-YY0),

-Psi*(y_0[i]-YY0)+(XXf-XX0));

theta_0[i]=fmod(theta_0[i],2*PI);

94

x_f[i]=XXf+R*cos(2*PI*i/N+Psi);

y_f[i]=YYf+R*sin(2*PI*i/N+Psi);

theta_f[i]=atan2(Psi*(x_0[i]-XX0)*cos(Psi)

-Psi*(y_0[i]-YY0)*sin(Psi)+(YYf-YY0),

-Psi*(x_0[i]-XX0)*sin(Psi)

-Psi*(y_0[i]-YY0)*cos(Psi)+(XXf-XX0));

theta_f[i]=fmod(theta_f[i],2*PI);

}

/*Search the 1st point I shoot:*/

for(i=0;i<N;i++){

X[i]=x_0[i];

Y[i]=y_0[i];

Theta[i]=theta_0[i];

Lambda1[i]=lambda1_0[i];

Lambda2[i]=lambda2_0[i];

Lambda3[i]=lambda3_0[i];}

for(i=0;i<N;i++)

D[i]=sqrt(pow(2*R*sin(PI/N),2));

for(n=0;n<Nstep;n++) {

for(i=0;i<N;i++){

X[i]+=h*(r*r/4/K1*(Lambda1[i]*cos(Theta[i])

+Lambda2[i]*sin(Theta[i]))*cos(Theta[i]));

Y[i]+=h*(r*r/4/K1*(Lambda1[i]*cos(Theta[i])

95

+Lambda2[i]*sin(Theta[i]))*sin(Theta[i]));

Theta[i]+=h*(r*r/(4*b*b*K1))*Lambda3[i];

Theta[i]=fmod(Theta[i],2*PI);

if(i==0)

im=N-1;

else

im=i-1;

if(i==N-1)

ip=0;

else

ip=i+1;

Lambda1[i]+=h*2*K2*((X[i]-X[im])*(D[im]-d_bar)/D[im]

+(X[i]-X[ip])*(D[i]-d_bar)/D[i]);

Lambda2[i]+=h*2*K2*((Y[i]-Y[im])*(D[im]-d_bar)/D[im]

+(Y[i]-Y[ip])*(D[i]-d_bar)/D[i]);

Lambda3[i]+=h*(r*r/4/K1*(Lambda1[i]*cos(Theta[i])

+Lambda2[i]*sin(Theta[i]))

*(Lambda1[i]*sin(Theta[i])

-Lambda2[i]*cos(Theta[i])));

}

for(i=0;i<N;i++) {

if (i==N-1) ip=0;

else ip=i+1;

D[i]=sqrt(pow(X[i]-X[ip],2)+pow(Y[i]-Y[ip],2));

96

}

}

for(i=0;i<N;i++){

for(j=0;j<=M;j++){

X_inspace[i][j]=X[i]+(x_f[i]-X[i])*j/M;

Y_inspace[i][j]=Y[i]+(y_f[i]-Y[i])*j/M;

Theta[i]=fmod(Theta[i],2*PI);

if (sqrt(pow(Theta[i]-theta_f[i],2))<=PI)

Theta_inspace[i][j]=Theta[i]

+(theta_f[i]-Theta[i])*j/M;

else if (Theta[i]>theta_f[i])

Theta_inspace[i][j]=Theta[i]

+(theta_f[i]+2*PI-Theta[i])*j/M;

else

Theta_inspace[i][j]=Theta[i]

+(theta_f[i]-2*PI-Theta[i])*j/M;

}

}

for(j=0;j<=M;j++){

for(i=0;i<N;i++){

X_f[i][j]=X_inspace[i][j];

Y_f[i][j]=Y_inspace[i][j];

Theta_f[i][j]=Theta_inspace[i][j];

97

}

}

for(k=0;k<=M;k++){

sprintf(filename, "file%d.dat",k);

fid=fopen(filename,"w");

for(i=0;i<N;i++){

x_f[i]=X_f[i][k];

y_f[i]=Y_f[i][k];

theta_f[i]=Theta_f[i][k];

}

/* create these variables in advance in case of

*/breaking down in condition judging

d_lambda_0[0]=1;

max=0.1;

J=0;

while(max>err){

system("date");

for(i=0;i< (6*N);i++) {

for(j=0;j< (6*N);j++){

A[i][j]=0.0;

98

if(i==j)

Phi[i][j]=1.0;

else

Phi[i][j]=0.0;}

}

for(i=0;i<N;i++){

x[i][0]=x_0[i];

y[i][0]=y_0[i];

theta[i][0]=theta_0[i];

lambda1[i][0]=lambda1_0[i];

lambda2[i][0]=lambda2_0[i];

lambda3[i][0]=lambda3_0[i];

}

for(i=0;i<N;i++){

if (i==N-1)

ip=0;

else

ip=i+1;

d[i][0]=R;

}

/* Integration process */

for(n=1;n<=Nstep;n++) {

99

for(j=0;j<N;j++){

if (j==N-1)

ip=0;

else

ip=j+1;

aa[j]=2*K2*(d[j][n-1]-d_bar)/d[j][n-1]

+2*K2*pow(x[j][n-1]-x[ip][n-1],2)

*d_bar/pow(d[j][n-1],3);

ac[j]=2*K2*(x[j][n-1]-x[ip][n-1])

*(y[j][n-1]-y[ip][n-1])

*d_bar/pow(d[j][n-1],3);

cc[j]=2*K2*(d[j][n-1]-d_bar)/d[j][n-1]

+2*K2*pow(y[j][n-1]-y[ip][n-1],2)

*d_bar/pow(d[j][n-1],3);

}

for(i=0;i<N;i++){

A[i][2*N+i]=r*r/4/K1*(-lambda1[i][n-1]

*sin(2*theta[i][n-1])

+lambda2[i][n-1]*cos(2*theta[i][n-1]));

A[i][3*N+i]=r*r/4/K1*pow(cos(theta[i][n-1]),2);

A[i][4*N+i]=r*r/4/K1*sin(theta[i][n-1])

*cos(theta[i][n-1]);

A[N+i][2*N+i]=r*r/4/K1*(lambda1[i][n-1]

*cos(2*theta[i][n-1])

100

+lambda2[i][n-1]*sin(2*theta[i][n-1]));

A[N+i][3*N+i]=r*r/4/K1*sin(theta[i][n-1])

*cos(theta[i][n-1]);

A[N+i][4*N+i]=r*r/4/K1*pow(sin(theta[i][n-1]),2);

A[2*N+i][5*N+i]=r*r/(4*b*b*K1);

if(i==0)

im=N-1;

else

im=i-1;

if(i==N-1)

ip=0;

else

ip=i+1;

A[3*N+i][im]=-aa[im];

A[3*N+i][i]=aa[im]+aa[i];

A[3*N+i][ip]=-aa[i];

A[3*N+i][N+im]=-ac[im];

A[3*N+i][N+i]=ac[im]+ac[i];

A[3*N+i][N+ip]=-ac[i];

A[4*N+i][im]=-ac[im];

A[4*N+i][i]=ac[im]+ac[i];

A[4*N+i][ip]=-ac[i];

A[4*N+i][N+im]=-cc[im];

101

A[4*N+i][N+i]=cc[im]+cc[i];

A[4*N+i][N+ip]=-cc[i];

A[5*N+i][2*N+i]=r*r/4/K1*(pow(lambda1[i][n-1]

*cos(theta[i][n-1])+lambda2[i][n-1]

*sin(theta[i][n-1]),2)-pow(lambda1[i][n-1]

*sin(theta[i][n-1])-lambda2[i][n-1]

*cos(theta[i][n-1]),2));

A[5*N+i][3*N+i]=r*r/4/K1*(lambda1[i][n-1]

*sin(2*theta[i][n-1])

-lambda2[i][n-1]*cos(2*theta[i][n-1]));

A[5*N+i][4*N+i]=-r*r/4/K1*(lambda1[i][n-1]

*cos(2*theta[i][n-1])

+lambda2[i][n-1]*sin(2*theta[i][n-1]));

}

for(i=0;i<N;i++){

x[i][n]=x[i][n-1]+h*(r*r/4/K1*(lambda1[i][n-1]

*cos(theta[i][n-1])+lambda2[i][n-1]

*sin(theta[i][n-1]))*cos(theta[i][n-1]));

y[i][n]=y[i][n-1]+h*(r*r/4/K1*(lambda1[i][n-1]

*cos(theta[i][n-1])+lambda2[i][n-1]

*sin(theta[i][n-1]))*sin(theta[i][n-1]));

theta[i][n]=theta[i][n-1]+h*(r*r/(4*b*b*K1))

*lambda3[i][n-1];

theta[i][n]=fmod(theta[i][n],2*PI);

102

if(i==0)

im=N-1;

else

im=i-1;

if(i==N-1)

ip=0;

else

ip=i+1;

lambda1[i][n]=lambda1[i][n-1]+h*2*K2*((x[i][n-1]

-x[im][n-1])*(d[im][n-1]-d_bar)/d[im][n-1]

+(x[i][n-1]-x[ip][n-1])

*(d[i][n-1]-d_bar)/d[i][n-1]);

lambda2[i][n]=lambda2[i][n-1]+h*2*K2*((y[i][n-1]

-y[im][n-1])*(d[im][n-1]-d_bar)/d[im][n-1]

+(y[i][n-1]-y[ip][n-1])

*(d[i][n-1]-d_bar)/d[i][n-1]);

lambda3[i][n]=lambda3[i][n-1]+h*(r*r/4/K1

*(lambda1[i][n-1]*cos(theta[i][n-1])

+lambda2[i][n-1]*sin(theta[i][n-1]))

*(lambda1[i][n-1]*sin(theta[i][n-1])

-lambda2[i][n-1]*cos(theta[i][n-1])));

}

for(i=0;i<N;i++) {

103

if (i==N-1)

ip=0;

else

ip=i+1;

d[i][n]=sqrt(pow(x[i][n-1]-x[ip][n-1],2)

+pow(y[i][n-1]-y[ip][n-1],2));

}

product_ptr=matrixmultiply(A,6*N,6*N,Phi,6*N,

6*N,product_ptr);

for(row=0;row<6*N;row++){

for(column=0;column<6*N;column++){

Phi[row][column]+=h*product_ptr[row][column];

}

}

} // n loop

for(row=0;row<3*N;row++){

for(column=0;column<3*N;column++){

phi[row][column]=Phi[row][column+3*N];

}

}

for(i=0;i<N;i++){

104

d_x_f[i][0]=x_f[i]-x[i][Nstep];

d_x_f[N+i][0]=y_f[i]-y[i][Nstep];

d_x_f[2*N+i][0]=theta_f[i]-theta[i][Nstep];

}

matrixinverse(phi,inv_phi,3*N);

product_ptr=matrixmultiply(inv_phi,3*N,3*N,d_x_f,3*N,

1,product_ptr);

for(row=0;row<3*N;row++)

d_lambda_0[row]=product_ptr[row][0];

for(i=0;i<N;i++){

lambda1_0[i]+=d_lambda_0[i];

lambda2_0[i]+=d_lambda_0[i+N];

lambda3_0[i]+=d_lambda_0[i+2*N];

}

J+=1;

max=0.0;

for(i=0;i<N;i++){

max+=sqrt(pow(x[i][Nstep]-X_f[i][k],2)

+pow(y[i][Nstep]-Y_f[i][k],2)

+pow(theta[i][Nstep]-Theta_f[i][k],2));

}

105

} // while

for(i=0;i<=Nstep;i++){

fprintf(fid,"%13.9f ",t[i]);

for(j=0;j<N;j++) {

fprintf(fid,"%18.13f %18.13f %18.13f %18.13f %18.13f

%18.13f %18.13f",x[j][i],y[j][i],theta[j][i],

lambda1[j][i],lambda2[j][i],lambda3[j][i],d[j][i]);}

fprintf(fid,"\n");

}

fclose(fid);

} // k loop

return(0);

}

double maxvalue(double array[],int n) { int j;

double max;

max=0;

for(j=0;j<n;j++)

if(sqrt(pow(array[j],2))>max) max=sqrt(pow(array[j],2));

return(max);

}

106

/* This file is "matrixinverse.c".

*

* This program computes the inverse of a matrix using Gauss-Jordan

* elimination. Row shifting is only utilized if a diagonal element

* of the original matrix to be inverted has a magnitude less than

* DIAGONAL_EPS, which is set in "inversekinematics.h".

*

* The inverse matrix is stored in y[][], and a pointer to y is

* returned.

*

* Copyright (C) 2003 Bill Goodwine.

*

*/

#include "robot.h"

double **matrixinverse(double **a, double **y, int n) {

double temp,coef;

double max;

int max_row;

int i,j,k;

/* Initialize y[][] to be the identity element. */

for(i=0;i<n;i++) {

for(j=0;j<n;j++) {

107

if(i==j)

y[i][j] = 1;

else

y[i][j] = 0;

}

}

/* Gauss-Jordan elimination with selective initial pivoting */

/* Check the magnitude of the diagonal elements, and if one

* is less that DIAGONAL_EPS, the search for an element lower

*/ in the same column with a larger magnitude.

for(i=0;i<n;i++) {

if(fabs(a[i][i]) < DIAGONAL_EPS) {

max = a[i][i];

max_row = i;

for(j=i;j<n;j++) {

if(fabs(a[j][i]) > max) {

max = fabs(a[j][i]);

max_row = j;

}

}

if(max < DIAGONAL_EPS) {

108

printf("Ill-conditioned matrix encountered. Exiting...\n");

exit(1);

}

/* This loop switches rows if needed. */

for(k=0;k<n;k++) {

temp = a[max_row][k];

a[max_row][k] = a[i][k];

a[i][k] = temp;

temp = y[max_row][k];

y[max_row][k] = y[i][k];

y[i][k] = temp;

}

}

}

/* This is the forward reduction. */

for(i=0;i<n;i++) {

coef = a[i][i];

for(j=n-1;j>=0;j--) {

y[i][j] /= coef;

a[i][j] /= coef;

}

109

for(k=i+1;k<n;k++) {

coef = a[k][i]/a[i][i];

for(j=n-1;j>=0;j--) {

y[k][j] -= coef*y[i][j];

a[k][j] -= coef*a[i][j];

}

}

}

/* This is the back substitution. */

for(i=n-1;i>=0;i--) {

for(k=i-1;k>=0;k--) {

coef = a[k][i]/a[i][i];

for(j=0;j<n;j++) {

y[k][j] -= coef*y[i][j];

a[k][j] -= coef*a[i][j];

}

}

}

// printf("%f\n",y);

return y;

110

}

#include "robot.h"

double **matrixmultiply(double** left, int row_left, int

column_left,

double** right, int row_right, int column_right,

double** product_ptr) {

int i,j,k;

if (column_left != row_right) {

printf("\n The matrices cannot be multiplied! Exiting...\n");

exit(1);

}

for(i=0;i<row_left;i++)

for(j=0;j<column_right;j++)

for(k=0,product_ptr[i][j]=0.0;k<column_left;k++)

product_ptr[i][j] += left[i][k]*right[k][j];

return product_ptr;

}

The following C-code is named ”robot.h” which defines the constants and declares

functions used by the main code.

111

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#define RADIUS 3.0

#define WIDTH 1.0

#define GAIN 0.01

#define TFINAL 1

#define N 3

#define M 10

#define Nstep 5000

#define PI 4*atan(1.0)

#define R 1.

#define XX0 -2.

#define YY0 0. //Initial coordinate of the center

#define XXf 0.

#define YYf 2. //Final coordinate of the center

#define MAX_ITERATIONS 1000

#define EPS 0.0000000001

#define PERTURBATION 0.001

#define DIAGONAL_EPS 0.0001

112

double** matrixinverse(double **J, double **Jinv, int n); double**

matrixmultiply(double** left,int row_left,int column_left,

double** right,int row_right,int column_right,

double** product_ptr);

113

BIBLIOGRAPHY

1. L. Aguilar, R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Ten au-

tonomous mobile robots (and even more) in a route network like environment. In

In Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 260–267, 1995.

2. T. Balch and R. Arkin. IEEE Transactions on Robotics and Automation, 14(6):

926–934, 1998.

3. T. Balch and M. Hybinette. Behavior-based coordination of large-scale robot for-

mations. InFourth International Conference on MultiAgent Systems, 2000.

4. T. D. Barfoot and C. M. Clark.Robotics and Autonomous Systems, 46(2), 2004.

5. D. Bates, J. Hauenstein, A. Sommese, and C. Wampler.http: // www. nd. edu/

~ sommese/ bertini/ .

6. C. Belta and V. Kumar.Geometric Methods for Multi-Robot optimal Motion Plan-

ning, Handbook of Computational Geometry for Pattern Recognition, Computer

Vision, Neurocomputing and Robotics. Springer–Verlag, Berlin, 2005.

7. F. Bullo and A. D. Lewis.Geometric Control of Mechanical Systems. Springer,

2005.

8. R. Carlson.A Concrete Introduction to Real Analysis. CRC, Boca Raton, 2006.

114

9. J. P. Desai.Journal of Robotic Systems, 19(11):511–525, 2002.

10. J. P. Desai. Modeling multiple teams of mobile robots: a graph theoretic ap-

proach. InProceedings of the 2001 IEEE/RSJ International Conference on In-

telligent Robots ans Systems, pages 381–386, 2001.

11. J. P. Desai and V. Kumar.Journal of Robotic Systems, 10:557–579, 1999.

12. J. P. Desai, J. Ostrowski, and V. Kumar. Controlling formation of multiple mobile

robots. InIEEE International Conference on Robotics and Automation, pages 16–

21, 1998.

13. J. P. Desai, J. P. Ostrowski, and V. Kumar.IEEE Transzctons on Robotics and

Automation, 17(6), 2001.

14. L. E. Dubins.American Journal of Mathematics, 79:497–516, 1957.

15. M. Egerstedt and X. Hu.IEEE Transactions on Robotics and Automation, 17(6):

947–951, 2001.

16. L. Erbe and H. Wang. On the existence of positive solutions of ordinary differential

equations. Inpreceedings of the American Mathematical Society, pages 743–748,

1994.

17. L. Erbe, S. Hu, and H. Wang.Mathematical Analysis and Applications, 184:640–

648, 1994.

18. M. Erdmann and I. Lozano-Perez. On multiple moving objects. InProceedings

of IEEE International Conference on Robotics and Automation, pages 1419–1424,

1986.

115

19. L. Fang and P. J. Antsaklis. Information consensus of asynchronous discrete-time

multi-agent systems. InProceedings of ACC, pages 1883–1888, 2005.

20. L. Fang, P. J. Antsaklis, and A. Tzimas. Asynchronous consensus protocols: pre-

liminary results, simulations and open questions. InProceedings of 44th IEEE

Conference on Decision and Control, pages 2194–2199, 2005.

21. A. Frommer and D. B. Szyld.Journel of Computational and Applied Math, 123:

201–206, 2000.

22. T. Gross, Jonathan L. and T. W.Topological Graph Theory. Wiley Interscience

series in Discrete Mathematics and Optimization, 1987.

23. D. Guo and V. Lakshmikantham.Nonlinear Problems in Abstract Cones. Aca-

demic Press, Orlando, FL, 1998.

24. Y. Guo and L. E. Parker. A distributed and optimal motion planning approach for

multiple mobile robots. InProceedings of the 2002 IEEE Internatioanl Conference

on Robotics and Automation, pages 2612–2619, 2002.

25. J. Jennings, G. Whelan, and W. Evans. Cooperative search and rescue with a team

of mobile robots. InIEEE International Conference on Advanced Robotics, pages

193–200, 1997.

26. K. Kant and S. Zucker.International Journal of Robotics Research, 5(3):72–89,

1986.

27. J. Kevorkian. Perturbation Methods in Applied Mathematics. Springer–Verlag,

New York, 1981.

116

28. N. E. Leonard and E. Fiorelli.In 40th IEEE Conference on Decision and Control,

pages 2968–2973, 2001.

29. M. A. Lewis and K. H. Tan.Autonomous Robots, 4:387–403, 1997.

30. R. Ma and B. Thompson.Applied Mathematics Letters, 18(5):587–595, 2005.

31. R. Ma and B. Thompson.Nonlinear Analysis: Theory, Methods and Applications,

303(2):726–735, 2005.

32. M. J. Mataric.IEEE Intelligent Systems, pages 6–8, 1998.

33. M. J. Mataric.Cognitive Systems Research, 2(1):81–93, 2001.

34. M. J. Mataric.Autonomous Robots, 4:73–83, 1997.

35. M. J. Mataric, M. Nilsson, and K. T. Simsarin. Cooperative multi-robot box-

pushing. InInternational Conference on Intelligent Robots and Systems, pages

556–561, 1997.

36. C. R. McInnes.AIAA Journal of Guidance Control and Dynamics, 18(5):1215–

1217, 1995.

37. M. McMickell. Reduction and control of nonlinear symmetric distributed robotic

systems. PhD thesis, University of Notre Dame, 2003.

38. M. McMickell and B. Goodwine.IEEE International Conference on Robotics and

Automation, pages 4228–4233, 2003.

39. M. McMickell, B. Goodwine, and L. Montestruque.IEEE International Confer-

ence on Robotics and Automation, 2:1600–1605, 2003.

40. Y. Naito and S. Tanaka.Nonlinear Analysis, 56(4):919–935, 2004.

117

41. P. J. Olver.Applications of Lie Groups to Differential Equations. Springer-Verlag,

second edition, 1993.

42. G. Pereira, A. Das, V. Kumar, and M. Campos. Formation control with configura-

tion space constraints. InProceedings of the IEEE/RJS International Conference

on Intelligent Robots and Systems, pages 2755–2760, 2003.

43. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.Numerical

Recipes in C : The Art of Scientific Computing, chapter 17. Cambridge University,

1992.

44. H. Puttgen, P. MacGrego, and F. Lambert.IEEE Power and Energy Magazine, 1:

22–29, 2003.

45. J. A. Reeds and R. A. Shepp.Pacific Journal of Mathematics, 1990.

46. S. Sastry.Nonlinear Systems: Analysis, Stability, and Control. Springer, 1999.

47. R. W. Sharpe.Differential Geometry. Springer, 1997.

48. T. R. Smith, H. Hanssmann, and N. E. Leonard.In 40th IEEE Conference on

Decision and Control, pages 4598–4603, 2001.

49. Z. Su and J. Lu.Jounal of Beijing Institute of Technology, 13(2):190–193, 2004.

50. H. J. Sussmann and W. Tang. Shortest paths for the reeds-shepp car: a worked out

example of the use of geometric techniques in nonlinear optimal control. Technical

Report SYCON-91-10, Rutgers, 1991.

51. K.-H. Tan and M. A. Lewis.International Conference on Intelligent Robots and

Systems, pages 132–139, 1996.

118

52. W. Tutte.Graph Theory. Cambridge University Press, 2001.

53. N. Utamaphethai and S. Ghosh.IEEE Transactions on Intelligent Transportation

Systems, 31(3), 1998.

54. J.-D. B. X-N. Bui, P. Sou´eres and J.-P. Laumon. The shortest paths synthesis

for nonholonomic robots moving forwards. InIEEE International Conference on

Robotics and Automation, 1993.

55. H. Yamaguchi, T. Arai, and G. Beni.Robotics and Autonomous Systems, 36:125–

147, 2001.

56. A. Yamashita, T. Arai, J. Ota, and H. Asama.IEEE Transactions on Robotics and

Automation, 19(2):223–237, 2003.

This document was prepared & typeset withLATEX 2ε , and formatted with
nddiss2ε classfile (v3.0[2005/07/27]) provided by Sameer Vijay.

119

