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BIOMIMETIC SENSING FOR ROBOTIC MANIPULATION

Abstract

by

Neil B. Petroff

In manipulation tasks, humans have the advantage over machines due to an un-

paralleled ability to process information from various inputs, including touch. A

set of four robot end-effectors was equipped with force sensors to provide haptic

feedback to aid in performing the manipulation tasks of rotating a sphere and a

cube. The motion planning algorithm used to compute the robots’ joint angles is

called steering-using-piecewise-constant-inputs and is applicable to underactuated,

nonlinear, nonholonomic, driftless systems. Nonholonomic constraints arise during

contact, requiring the fingers to only roll relative to the object. However, the al-

gorithm gives rise to new vector fields called Lie brackets that allow the fingers to

be reconfigured without releasing the object, effectively increasing the workspace of

the manipulation system.

Experiments were conducted with fixed-point manipulation to produce a baseline

for comparing reconfigurable manipulation experiments. Both open loop and closed

loop, reconfigurable manipulation experiments were conducted on a spherical object.

For the open loop cases, the entire trajectory was computed offline and executed on

the robots as position commands to each of the joints. For the closed loop cases, the

force sensors provided information to a fuzzy controller which periodically checked
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the grasp’s quality. The force sensors also updated the algorithm with the finger’s

contact locations.

In both forms, the reconfigurable manipulation experiments increased the sys-

tem’s workspace over that for fixed-point manipulation. Furthermore, the closed

loop system proved to be more robust than the open loop system. This was shown

by its improved repeatability and its improved performance when rotating about an

arbitrary axis.

An approach to switching between faces on a nonsmooth polygonal object while

Lie bracketing was verified. To do this requires discernment of the edge, and the

sensors used were found to be adequate for this task. In addition, it was shown that

end-effectors with a compliant surface could be used to grasp the cube on its edges

as an aid in manipulation.

While the experiments were successful, the complexity of performing Lie bracket

motions coupled with the small movements they give rise to was not conducive to

manipulations requiring large object displacements. However, the method would be

applicable for fine-scale, dextrous manipulations.



To my children: That you may continue what we have left right and right what we

have left wrong.
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CHAPTER 1

INTRODUCTION

A human being is an amazing and complicated system. The level of grace and

complexity becomes apparent when one asks a machine to perform a task completed

so simply by a human, such as object manipulation. A list of all the variables and

information for which a robotic manipulation system would have to account would be

quite lengthy. Yet humans are able to manage this load while performing such tasks

nearly flawlessly, despite having to operate in unstructured environments. While it

is unreasonable to believe that robots will reach levels of recognition, proprioception,

and control comparable to that of humans anytime soon, it seems valid to draw upon

a human’s innate abilities for motivation in machine control.

The goal of this work is to combine a rigorously formulated motion planning

technique with fuzzy logic to provide operational flexibility to a set of robot ma-

nipulators via end-effector/object force feedback and closed loop control to effect

object manipulation. For this purpose, manipulation is defined as a preordained

reconfiguration of an object by the manipulators.

Looking to nature for engineering inspiration is certainly not a new idea. It

has been practiced ever since humans began to observe their environment to better

cope with their surroundings, which is to say ever since there have been humans.

One great observer of nature, Leonardo da Vinci, expressed it this way: “a bird is

an instrument working according to the mathematical law, which ... is within the
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capacity of man[sic] to reproduce.” [78]. At each step, this work will attempt to

emulate a biological system, with the key components being haptic feedback and

a fuzzy supervisor. The force sensors provide a rudimentary, haptic interface for

force closure and contact-location feedback. A fuzzy system acts as a supervisor for

the otherwise open loop motion planning algorithm called Steering-Using-Piecewise-

Constant-Inputs (SUPCI) which is applicable to smooth, underactuated, driftless,

nonlinear systems. A nonlinear approach is necessary because driftless, underactu-

ated systems cannot be controlled when linearized.

Humans come equipped with fine visual systems. However, machine vision sys-

tems tend to be expensive in terms of hardware, robustness, and processing power.

Faster computers have reduced the last issue, but cost and robustness are concerns,

especially when viable alternatives exist. Implied in the above paragraph is that, in

close quarters, vision is not a prerequisite for object acquisition and manipulation.

Humans are proficient at identifying and manipulating objects they are unable to

see. In an experiment by Lederman and Klatzky [37] subjects were blindfolded and

asked to identify 100 common objects. The result was near 100% accuracy and

recognition in 2–3 seconds. How do blindfolded humans “recognize” objects? At

the engagement level, proprioception and haptic feedback help to provide humans

with a major advantage over robots for manipulation tasks. Humans use informa-

tion from skin, muscle, tendon, and joint receptors to perceive objects [37]. This

ability allows a human to manipulate an unknown object without needing to view

the object. At the same time, the nerve endings in the fingers send information

about an object’s weight, topology, and geometry to the brain, while the muscle

system adapts locally to disturbances, closing a sophisticated control loop. The

importance of proper finger coordination is evident in the example of screwing in a

light bulb. For this application, opposing fingers are used to provide a substantial
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enough couple moment to rotate the object, while regulating the normal force to

prevent slipping or crushing. In addition, humans are adaptive and can perform

manipulation tasks on a variety of objects and in a variety of work spaces. Modern

robots cannot come close to this kind of dexterity or flexibility.

Industrial robots can perform repetitive, non-manipulative tasks such as stamp-

ing, spot welding, and soldering with great repeatability [7]. While these have proved

useful automation tools, current robots are outdone by their human counterparts

when it comes to the tasks of recognition and manipulation. In addition, robots

often require exact knowledge of their surroundings and of the object to perform

tasks. The distinct advantage robots have, however, is the speed with which they

can perform tasks, the strength required to perform heavy tasks, and the stamina

to perform tasks for long periods of time.

Current limitations on robots no doubt stem from the specific-use mentality of

the application, but, as the limits of automation are pushed, it seems reasonable

to assume robots will be asked to perform fine manipulation of complex objects in

uncharted environments, perhaps in performing search-and-rescue or data collection

in a hazardous environment. In the latter, researchers are likely searching for “inter-

esting” objects to examine, for example, a rock formation on Mars. If “interesting”

is a function of geometry, would sonar work just as well as vision for identification?

If so, the focus shifts to using task-specific sensors where they are most appropriate.

For example, an autonomous vehicle equipped with a robotic arm may use sonar to

identify an object to query, use haptic feedback to manipulate the object, and use

vision to extract interesting topological characteristics of the object.

Increased autonomy will likely also require development of new grippers. Al-

ready, work toward more general end-effectors has been done. Most gripper designs

incorporate from two to five fingers although continuum manipulators, modeled af-
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ter elephant trunks, are very intriguing (see [20]). The most simple — the two-finger

gripper — is the type often used to perform non-manipulative tasks. However, func-

tionality also depends on the number of degrees of freedom (DOFs) of the finger

designs. Increased DOFs allow grippers to generate more grasp types. Of course,

there is a trade-off between the number of DOFs and complexity of the kinematic

analysis and of the physical gripper and the accompanying dynamic control. Most

three-finger grippers exhibit anywhere from three to 12 DOFs [63]. Four-finger grip-

pers effect manipulation by allowing the fourth finger to reposition itself while the

other three fingers provide a stable grasp. While common sense seems to dictate

that more gripping fingers are better, this is not always the case. Yates [83] intro-

duces a three-finger gripper to manipulate a cylindrical object. One finger is allowed

to slide in a curved slot, adding one DOF. This provides manipulation levels similar

to that of four-finger grippers.

Gripper kinematics, however, is only a small piece of the puzzle. The light bulb

task mentioned above, requires a plan for orienting the bulb so it can be installed,

information on the material so it is not squeezed too tightly and crushed, force and

torque feedback in three dimensions so the installer knows if she is squeezing the

bulb hard enough to effect rotation and to know when the task has been completed,

and a type of inverse kinematics to know where to place her fingers. In general,

the amount of information a human receives from her sensors, filters, and processes

is staggering. By comparing this to the task of equipping a robot with appropri-

ate sensors to provide equivalent information, discernment abilities, and processing

power, it becomes clear as to why the manipulation task is so easy for humans and

so difficult for machines.

Obviously, when it comes to interaction between an end-effector and an object,

position control is insufficient since the contact constraint may preclude position
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attainment. Ultimately this could be damaging to actuators since the end-effector

may be constantly trying to push against rigid joints. In this case, many researchers

apply hybrid position/force control which requires information about contact force

(See [8, 49, 74, 82, 86]). Natale and Villani [49] place force/torque sensors at the

wrist to trace an object while maintaining a prescribed force profile. Mohammad et

al. [86] use force feedback from tendons to control a tendon-based manipulator. Yao

and Tomizuka [82] assume contact forces can be measured while Wang et al. [74]

provide a method to calculate force at the end-effector. The latter, however, re-

quires exact knowledge of the robot parameters, joint torques, joint accelerations,

and assumes no external disturbances. In addition, the above referenced body of

work studies dynamical systems. As such, it is not directly applicable to this work

since the approach here is a kinematics analysis. The reason for a kinematics ap-

proach is twofold. First, a kinematics’ viewpoint reduces the size of the space to

consider since accelerations and the forces that cause them are not considered. This

approach is justified by viewing manipulation as a quasi-static task. Second, the

kinematics analysis is more amenable to analytical solutions for complex systems

and for systems with intermittent contact. None of the studies above deal with

manipulation characterized by intermittent contact. In fact, Wang et al. [74] refer

to simple planar engagement of an object as manipulation in direct contrast to the

definition here.

To accomplish intermittent contact, it seems reasonable to place sensors at the

contact interface. Again, the motivation for this is biological. In humans, haptic

information comes from sensors on and under the surface of the skin. This researcher

suspects if the eye were more rugged some modified version of them would exist on

human fingertips too. In addition, less interpretation is necessary to process data
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when it is received at the interface rather than higher up, at the wrist, for example,

as is done with some robots.

While closed loop control via haptic feedback has been mentioned, another po-

tential ally is compliance. Compliance is characterized by the amount of deformation

a body undergoes when a force is applied. Obviously, human finger pads are com-

pliant, and all bodies are compliant to some extent. This may aid in manipulating

objects, especially those with points or edges since, depending on the size of the ob-

ject, the surface of the fingertip deforms around the discontinuity [11, 16, 46]. This

view of compliance differs vastly from the majority of the research which treats com-

pliance as displacement between rigid bodies, which is useful in its own right. For

example, compliant end-effectors can compensate for inaccuracies during position

control, thus allowing insertion tasks to be accomplished [69]. In fact, ATI Indus-

trial Automation [5] makes a robot tool adapter called a compensator remote center

compliance device. Its function is to deform to aid in peg-in-hole type applications

in which the hole is misaligned. In addition, depending on the application, compli-

ance can eliminate the need for sensors or feedback [20] and ensure safety during

robot/human interaction [40].

Research on compliance as understood here has been isolated to kinematics.

Shortly after publishing work on contact evolution equations assuming rigid bodies

in contact [45], Montana [46] extended his work to compliant objects. The main

difference is that compliant surfaces make contact over an area rather than at a

single point. The equations developed are identical to those developed for the rigid-

body case except that the relative velocities between the two objects now include

an additional term to account for velocities due to compliance. However, it seems

unfortunate that Montana also decided to maintain that relative motion along the

surface normal to the two objects must still be constrained to zero when it is appar-
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ent that this constraint no longer holds for compliant surfaces. It is quite possible for

displacement between compliant surfaces to occur along the contact normal without

the surfaces breaking contact. In addition, he notes that these deformed surfaces

give rise to nonorthogonal coordinate maps. His solution is to define additional

coordinate charts which map from the rigid to the deformed surfaces. Perhaps a

better solution would have been to rederive the geometric parameters to reflect

nonorthogonal maps [56].

Montana also performs an experiment in which an array of tactile sensors is

used to measure the contact surface. The sensor array is mounted on a center-of-

compliance device to introduce compliance, but the contacting object is still rigid.

He then calculates the contact center to be the centroid of the normal forces mea-

sured by the array.

Since Montana’s work, there has been relatively little research done in the area

of compliance kinematics, but in [11] Chang and Cutkosky present experimental

results on the reaction of various compliant materials. The experiment consists of

measuring the distance it takes a deformable cylinder to roll around a rigid cylinder

under various contact forces. This distance is then measured against the theoretical

distance based on the geometry of the cylinders under perfect rigidity assumptions.

The results show the rolling distance is not only a function of the contact force

but of the material as well. Rolling distance increases or decreases based on how

the cylinder’s perimeter is affected under loading. Incompressible materials tend to

“bulge” in their unloaded directions, thus increasing the rolling distance whereas

compressible materials tend to compact locally, effectively resulting in a smaller-

radius cylinder, and decreasing the rolling distance. The impact of these results on

compliant manipulation is that geometry information could be adjusted based on
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material properties and the amount of contact prior to calculating joint trajectories

for manipulation.

As an extension of the above, few researchers have attempted to exploit com-

pliance for manipulation tasks. In the precursor for this work, Wei [76] assumes

objects and fingertips are rigid. Natale and Villani [49] model object compliance

by allowing end-effector motion normal to the object during contact. Their finger

model, however, uses frictionless point contact. DeSchutter and Van Brussel [14]

effect compliance by modifying the trajectory of the end-effector based on contact

forces.

Many authors have previously recommended imbuing robots with human abil-

ities (See [26, 29, 37, 41, 42]). Hershkovitz et al. [26] suggest finding objective

functions that relate to human grasp in terms of muscle effort, finger force, and

force distribution. Lederman and Klatzky [37] suggest biological approaches to

sensor-based robotics are complementary to analytical methods. Reconciling such

combinations is a key issue for behavior-based systems. The underlying issue is how

to guarantee performance from systems that are not completely analytical.

Of behavior-based, or artificial intelligent applications, fuzzy logic is a natu-

ral choice for manipulation tasks. It should reduce the amount of calibration re-

quired due to its empiricism. Consequently, the controller will work with similar

but physically different systems, different objects, or different numbers of fingers.

Linearization is impractical since large joint angles must typically be swept out

during grasping and manipulation tasks. Young and Fan [84] suggest fuzzy logic

is an excellent representation for biological systems due to their shared empirical

properties. In addition, evidence suggests that the brain uses a set of quantitative

rules to determine activation levels in muscle synergy [79]. Finally, fuzzy logic fits

well in a supervisory role [53]. This is also reminiscent of the human neuromuscular
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system. Electromyographic (EMG) data has shown that various muscle synergies

can occur for the same task. This suggests a hierarchical control with the synergy

occurring at a high level and the participating muscle activity at a low level [79].

Corroborating research has suggested that the intelligence of the neuromuscular

system is distributed between the nervous system and the muscular system. Before

sending control signals to the limbs, the muscle system locally adapts signals from

the brain to account for changes in load, movement, and environment. This enables

the system to be insensitive to load variation as well as to dynamically compensate

for multi-joint movements [84]. Figure 1.1 depicts this structure.

Brain
Muscle
System Limb

+

−

+

−

desired task

local disturbances

resultant
innervation

Figure 1.1. Biological Control Architecture

While fuzzy logic is model-free, much work has been done in developing analytical

tools for motion planning. The motion planning algorithm used here is attributed to

Lafferriere and Sussmann [34] and Goodwine [19]. The previous presents a method

of motion planning for smooth, underactuated, driftless, nonlinear systems, while

the latter extends the method to discontinuous systems, for example, cases involving

intermittent contact or engagement, later referred to as stratified. One disadvantage

of the motion planning algorithm in [34], resulting in the necessity to incorporate

feedback control in the first place, is that the method is open loop and, therefore,

highly susceptible to modeling errors. The advantage is that analytical systems
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are amenable to analysis such as controllability; this is in direct contrast to fuzzy

systems.

The inability to quantify or to guarantee performance remains a drawback of soft

computing techniques, and may be a key issue in the push for developing hybrid

controls which is characterized here as combining analytical techniques with soft

computing, specifically fuzzy logic. Work in this area is being done using model

reference [30] and proportional-integral-derivative (PID) equivalents [15, 68]. In

fact, basic fuzzy logic structures typically resemble proportional and integral or

derivative forms [80]. Much work in this area assumes a specific structure of the

fuzzy system so analytical analysis can still be performed. In addition, robust control

techniques include uncertainty specifications. So, this may provide some direction

for hybrid development.

1.1 Contributions of this Research

The goal of this work is to effectively combine mathematically rigorous but open

loop motion planning techniques with fuzzy logic to provide operational flexibility

to a set of cooperating robot manipulators acting as fingers to dexterously manip-

ulate smooth and nonsmooth objects. Throughout, enhancements to the open loop

analysis are biologically motivated. This is achieved through three specific goals:

first, by implementing haptic feedback; second, by eliminating the need for multi-

robot calibration; and last, by fusing analytical with non-model based techniques

for nonlinear control. In addition, this work presents a technique for online object

compliance classification, and introduces the compliant finger to the literature on

finger models.

While biological motivations to machine intelligence are appealing, it is necessary

to balance the desire for embedded systems with ease-of-use, processing speed, and
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Figure 1.2. Control Architecture for the Manipulation Task

environmental flexibility. A robot affixed with force sensors on its end-effector is no

more an accurate representation of haptic ability than an artificial neural network is

of human cognition. An attempt to do more may render a system inoperable from

a practical standpoint.

The components used to instantiate the basic premise are pre-existing, but they

will be combined in a way that brings operational flexibility to the robotic manip-

ulation task. In the sequel, the closed loop block diagram for the manipulation

task shown in Figure 1.2 is systematically constructed. Notice the similarity to the

biological control system shown in Figure 1.1 to adhere to a biomimetic approach.

Specifically addressing the low-level control of the robots, the PID controller is

treated as a black box; it is programmed on the motion control boards. Although,

the controller gains are adjustable, it is assumed the PID controller is sufficient to

achieve its objective. Wei [76] has previously confirmed this assumption.

1.2 Organization

The remainder of this dissertation proceeds as follows: Chapter 2 provides infor-

mation on the precepts of planning. Chapter 3 provides background on the theoret-

ical framework of motion planning, stratified systems, robot kinematics, grasping,

and fuzzy logic. Chapter 4 provides examples that bring to light the concepts of
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Chapter 3 to move from “the math” to a practical application of it. The methods

used to carry out the experiments and preliminary results are given in Chapter 5,

including an overview of the testbed, associated hardware and software, and logic

approaches. Finally, Chapter 6 presents experimental results, discusses the efficacy

of the approach, and provides a retrospective of the work.
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CHAPTER 2

PLANNING A PLAN

As the saying goes, “You have to plan your work, and work your plan.” A plan-

ning algorithm would likely heed this advice. Planning covers a variety of topics,

from motion planning, which is used in this dissertation, to investment strategy

planning. In either case, an intelligent agent makes decisions on what the best ac-

tion is to drive a system from some initial state to some goal state. The amount

of freedom the agent has depends on the development of the entire system. If a

person is hungry, the initial and goal states might be how to get from his current

location to some restaurant. For investment planning, the initial state might be a

current net worth of one dollar with a goal of $1 billion. Traditionally, in the case of

robotics, planning contains two parts: motion planning and trajectory planning [36].

The motion planner converts high-level task specifications into low-level movement

descriptions. Next, the trajectory planner determines how to carry out these move-

ments while accounting for physical constraints of the robot. As shown later, the

planning algorithm used here actually combines the two steps. The high-level task

specification is given in the form of a nominal desired path, and a motion plan is

generated which adheres to the kinematic constraints on the system.

The term motion plan is a misnomer because it is not so much of a motion plan,

which implies specifications beyond a path, as it is a path plan. Then, trajectory

planning implies how to move along the path given the system constraints. The
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resultant of the combination of path planning and trajectory planning is a motion

plan. The issue is perhaps exacerbated in SUPCI since the desired path is referred

to as a nominal trajectory. This is most likely due to the fact that the nominal

trajectory is time-dependent, thus presenting both a desired path and a desired

trajectory to the planner which is referred to here as a motion planner. In the case

of SUPCI, the algorithm determines in what order and for how long to apply system

inputs to achieve the desired motion.

When discussing locomotion or steering a vehicle, the idea of motion planning

seems like a natural concept. However, how does one plan a motion for the task of

manipulating an object? Several factors must be considered. First, the object must

be held tightly enough so it is not dropped. Second, while the object must be held

firmly, it must not be held so firmly that it is broken or crushed. Third, the motion

of the fingers is correlated with the desired motion. For example, to rotate an object,

the fingers must move in a plane perpendicular to the axis of rotation. Fourth, it

must be determined when the joint limits of the manipulator have been reached so

the fingers can be repositioned to continue the task, for example, screwing in a light

bulb. Finally, there must be a way to indicate that the task has been completed.

But these are high-level criteria. Within any one task, achieving other performance

criteria may also be important.

Obviously, the main goal is to drive a system from an initial state to a goal state

with high accuracy. However, several other factors must be considered. These may

include obstacle avoidance, energy consumption, real-time error corrections, or time

required to achieve a goal. Certain methods become intractable if it is necessary to

prepare a contingency for every issue that may arise. However, since humans are

able to cope and even excel in an ever-changing world, an aside on intelligence is in

order.
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How humans go about accomplishing tasks is a complicated study. The breadth

is such that the researchers are social, cognitive, and neural psychologists, linguists,

activity theorists, computer scientists, and engineers. Only a brief review on the

quest for artificial intelligence (AI) is presented in an attempt to relate it back to the

idea of biological motivation for robotic manipulation. When all is said and done,

the bases for an intelligent design, in the absence of an intelligent agent, are sensory

feedback and natural language processing. These provide motivation for the use of

tactile sensors and of fuzzy logic in this work.

2.1 The Search for Artificial Intelligence

The traditional AI view held that an executor was in the world to control it by

carrying out instructions of a plan [1]. However, recognizing that humans operate in

a vast array of infinite possibilities, Suchman [65] suggested situated actions. These

are actions that make sense only when taken in context. Thus, the executor evolved

into an agent. An agent interacts with its environment and its planner to improvise

when necessary.

To separate the two approaches, Agre and Chapman [1] present two views on

planning. The first is plan-as-program where the plan is simply a set of instructions

to be carried out sequentially by an executor. The first autonomous vehicle, Shakey,

worked in this way [7]. It viewed the world as static. Therefore, it was oblivious

to changes in its environment while its path was being planned. The second view

is that of plan-as-communication where the plan is more of a suggestion. It is up

to the agent to modify the plan as necessary to fit current circumstances or to

scrap the current plan and move to a new one. For example, a student has a plan

to walk to school this morning. As a communication, it is a very high-level task

with no constraints except that the only choice of transportation is to walk, and
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that the destination is school. What happens if it is raining? Does the student

modify his plan and bring along an umbrella? Does he scrap the plan and drive to

school instead? Could he have executed these modifications by a plan-as-program

approach? This would require a set of rules along the lines of “if it is raining, then

bring an umbrella.” How many branches of rules would a planning program need

to account for all the uncertainties possibly encountered during the trip?

Advances in imaging technology have led to a new interpretation of cognition [2].

It starts with the structure of the brain. Researchers now see the brain as blocks

of interconnected modules for processing various information [2, 4]. Although it is

an oversimplification, this may not be unlike the traditional control structure rep-

resented in Figure 1.1. In addition, through functional magnetic resonance imaging

(fMRI), researchers are now able to observe the brain in action. Much of the research

goes into seeing what parts of the brain are stimulated during logic games-playing

such as Towers of Hanoi (See, for example, [3, 17, 18, 50]). Huettel et al. [27] have

shown that long and short term memory processing occur in different parts of the

brain, and that this complements the brain’s attempts to reduce uncertainty in

decision making based on experience.

The confluence of advances in imaging and other fields led to the computational

theory of mind [2]. This theory provides a framework for scientific analysis, a way

to cast abstract concepts such as perception, motivation, and emotion in a scientific

light. In doing so, mental states become amenable to scientific inquiry. The theory

posits that the brain is a system of organs to perform computations, and that

performing these computations effects intelligence [44]. All one needs to do then

to create an intelligent system is to build a system that looks, structurally, like the

brain.
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In the absence of an intelligent agent, the focus is switched to two concepts the

referenced researchers agree on as requirements for building intelligent systems. One

is interaction with and perception of the environment. The second is semantics of

action [24]. The first is accomplished through sensory input and processing of that

information. Based on results of new or updated information, it is assumed the agent

will make good decisions because it has a better estimate of the consequences [27].

The latter is accomplished through natural language processing. By understanding

the plan’s intent given the current situation, the agent is empowered to overlook

low-level commands, and to modify actions in an attempt to still achieve the goal.

It is as if the student decided to take the bus to school rather than walk in the rain.

The group of opinions above provides motivation for two approaches followed in

this work, namely fuzzy logic, a method for computing with words, and haptic feed-

back, a method for a robot to interact with its environment. With this motivation

introduced, the attention turns back to steering robotic systems.

2.2 Motion Planning

Motion planning must account for physical constraints of the system. For manip-

ulation tasks, constraints arise from contact between a manipulator and an object.

During contact, this limits certain directions a manipulator can move. In addition,

intermittent contact gives rise to nonsmooth equations of motion. Similarly, objects

with corners or edges give rise to nonsmooth equations of motion.

2.2.1 Holonomic Motion Planning

Early work in motion planning was done with continuous, holonomic systems [22,

45, 70]. However, this represents only a small class of systems with engineering util-

ity. Many interesting systems also include nonholonomic constraints. The task of

parallel parking a conventional road vehicle is one such system. Without accounting
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for drive constraints, a motion planning scheme may generate a path contrary to

the physical ability of the system, for example, requiring a sideways motion of the

vehicle, which constitutes sliding [48]. Sliding constraints are known to be holo-

nomic in nature. Since sliding control introduces dynamical relationships between

objects, it is not considered in this work except to elucidate the interpretation of

contact kinematics developed in Chapter 3. Finally, many practical systems are

discontinuous in nature. One example is a task requiring intermittent contact such

as walking. It is necessary to develop schemes to account for such diversity.

2.2.2 Nonholonomic Motion Planning

The nonholonomic motion planning method from [34] is used in this work. This

section presents an overview of the approach. It is described in mathematical detail

in Chapter 3. The motivating example throughout will be parallel parking a vehicle,

and Chapter 4 presents a complete solution to a parallel parking problem.

Given a control system described by a set of generally nonlinear ordinary dif-

ferential equations, it is possible to generate new, desirable directions along which

the system can move by applying available inputs in a specified manner. The al-

gorithm’s name, SUPCI, derives from the fact that each input, when it is applied,

is held constant for a specific amount of time, turned off, and then another input

is applied. The composition of inputs may yield motion in a previously unrealized

direction. Such systems are called underactuated since direct control inputs are not

available for any direction in which to steer the system. Underactuation arises in the

vehicle problem due to a physical constraint, namely that the wheels are restricted

from sliding perpendicular to their orientation. For the parallel parking problem

shown in Figure 2.1, ordered combinations of forward and reverse along with rotat-

ing the wheel allow the vehicle to be positioned between the other two vehicles. To
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Figure 2.1. Path for Parallel Parking a Vehicle

an outside observer witnessing only the initial and final locations of the vehicle, it

may appear as if the system has an additional, albeit fictitious input, allowing the

vehicle to move sideways. It is interesting to note that humans typically parallel

park without using discrete control inputs. Rather, the accelerator is controlled

simultaneously with the steering wheel.

For intermittent contact, the equations of motion are discontinuous. The method

above is now extended to such systems.

2.2.3 Stratified Motion Planning

Discontinuous systems are generally characterized by the presence of intermittent

physical constraints. However, for many systems, this may be their most salient

feature. For example, to manipulate an object, fingers may have intermittent contact

with the object. Likewise, ambulation is characterized by feet having intermittent

contact with the ground during a gait cycle. Systems with such constraints pose

difficulties from the control-theoretic viewpoint because they have discontinuous

equations of motion for which typical control algorithms are not applicable. While

position control of robot manipulators can be achieved using several techniques,

such as computed torque or linear control laws designed for linear versions of the

system, discontinuous systems have no such controller designs.
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Goodwine [19] defines stratified as a configuration manifold containing subman-

ifolds upon which the system is subject to (additional) constraints. The mathe-

matical concept of a manifold will be presented in Section 3.2. Obviously, systems

characterized by intermittent contact or engagement belong to this class. Stratified

motion planning is fundamentally based upon the nonlinear geometric properties of

such systems and the extension of geometric nonlinear control techniques from [34].

The differential geometric basis for the control theory, however, requires exact

a priori knowledge of the system and knowledge of the environment in which it

operates. For example, if a legged robot walks on a smooth floor, previous work

provides means for determining controllability and for providing motion planning

algorithms [19]. However, if the surface geometry is unknown, or if it contains jagged

terrain, the previous work is inapplicable because the stratified structure cannot be

explicitly determined. In addition, unmodeled dynamics or physical degradation

can affect the accuracy of the model upon which the stratified structure is based,

consequently hindering performance.

2.3 Planning for Nonsmooth Object Manipulation

Work done by Wei [76] has extended [19] to include nonsmooth object manip-

ulation by a set of coordinating robots. First, Wei extends the stratified approach

to nonsmooth systems by identifying multiple, lowest-dimensional submanifolds as-

sociated with a nonsmooth object. Second, Wei constructs an approach for closed

loop experiments using a vision-based concept known as Camera Space Manipulation

(CSM) to provide visual feedback to each of the manipulators on the orientation and

location of both the object and of the end-effectors in a common frame of reference.

CSM requires visual cues to be placed on the manipulator and object. Based on the

visual information received, the method forms a map between the joint configura-
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tion of the robot and the appearance of cues on the end-effector and/or object being

manipulated [12]. Processing requirements to detect the cues, however, must remain

tractable or the method would not be pragmatic in many applications [6]. More-

over, the CSM’s requirements of the surroundings are very structured and would not

currently be portable. In an effort to avoid these limitations, this research assumes

vision is not a necessary attribute for effecting manipulation.

While this chapter provided motivation for some of the devices used in this

work, the discussion was somewhat informal. Chapter 3 presents a more rigorous

explanation of the theoretical framework on which these components are built.
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CHAPTER 3

THEORETICAL BACKGROUND

The first block in Figure 1.2 represents the motion planning algorithm. This

chapter begins with a more formal treatment of SUPCI in addition to concepts

which complete the block diagram. The motion planning algorithm determines

robot joint trajectories based on a desired path. The inverse kinematics solution

of the robot determines what joint angles are necessary to achieve desired robot

configurations which will be necessary in the feedback portion of the loop. Then,

coordinate mapping and contact kinematics provide a way to relate the whole system

to a global frame-of-reference. All of these components are necessary for robotic

motion planning. In addition, a new contact model called the compliant finger

and a method for determining the compliance of an object based on the concept of

shared space are presented.

3.1 Motion Planning Overview

The motion planning algorithm discussed in Section 2.2.2 provides a systematic

method for moving a system from one point to another. In the case of manipulation,

this is manifest in moving a finger from one position to another on an object. Its

name derives from the fact that control inputs u = (u1, u2) are applied one at a
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time for a fixed amount during a fixed time. The base concatenation of motions is

u =







(1, 0), 0 ≤ t < ǫ

(0, 1), ǫ ≤ t < 2ǫ

(−1, 0), 2ǫ ≤ t < 3ǫ

(0, −1), 3ǫ ≤ t ≤ 4ǫ ,

(3.1)

for time t ∈ [0, 4ǫ]. As will be illustrated subsequently, more complicated motions

can always be decomposed to groups of motions represented in Equation 3.1. For

a nonlinear system, this concatenation of inputs may result in a displacement that

cannot be achieved by a linear combination of the two inputs.

In the case of manipulation, nonholonomic constraints preclude a finger from

slipping or twisting on an object, but it can roll on an object. Velocity equations

formed by nonholonomic constraints are not integrable, but the motion planning

algorithm, based on the inclusion of Lie bracket motions defined below, forms a

system that can be solved for the configuration space over time. Before constructing

the algorithm, it is necessary to define some concepts from nonlinear controls, linear

algebra, and differential geometry.

3.2 Mathematical Preliminaries

The definitions below are mainly from [47] and [61] but can be found in various

books on the subjects, for example, [25], [36], and [73].

Definition 3.2.1: (Diffeomorphism)

A diffeomorphism is a bijective mapping with a continuously differentiable inverse.

�

Definition 3.2.2: (Smooth Manifold)

A subset M ⊂ R
k is called a smooth manifold of dimension m if for each x ∈ M
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there is a neighborhood W ∩M
(
W ⊂ R

k
)
, that is diffeomorphic to an open subset

U ⊂ R
m. �

The key idea of a manifold is that it is globally nonlinear but locally looks like

an equivalent-dimensional Euclidean space. This linearity allows motion planning

to be performed locally while traversing the nonlinear surface through connected

neighborhoods of the manifold. The shape of the manifold(s) on which a system

evolves is a function of its number and types of DOFs. For example, a simplified case

of the kinematic car described in Chapter 4 is that of a unicycle. This system has

three DOFs; two position and one orientation variable are required to completely

describe its configuration. The structure of its manifold is that of a thickened

cylinder, S1 ×R
1 ×R

1. While R
1 ×R

1 forms a 2-dimensional Euclidean space, the

configuration is “curved” by the rotational DOF.

Definition 3.2.3: (Vector Field)

A vector field X is a mapping from a manifold M to the tangent space TM of the

manifold. For a point p ∈ M , the mapping selects an element of the tangent space

called a tangent vector Xp ∈ TpM . �

Definition 3.2.4: (Flow)

The flow of a vector field g(x) is a solution to the differential equation given by

ẋ = g(x), (3.2)

and denoted by φgt (xo), referring to the solution of Equation 3.2 from time 0 to time

t starting at xo. �

This flow may also be represented by the formal exponential

etg(x) := φgt (x).

This notation, which can be rigorously justified, can be motivated by the linear case

where x(t) = exp(At) x(0) is the solution to ẋ = Ax.
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Definition 3.2.5: (Lie Bracket)

Given a manifold M , a point p ∈M , and a set of continuously differentiable

(smooth) functions on the manifold, a Lie bracket between two vector fields X and

Y is

[X, Y ]p(h) = XpY (h)− YpX(h),

where h is a smooth function passing through p. The resulting element is also a

vector field. �

The set of smooth functions which pass through p is denoted by C∞p . Vector

fields act on functions by generating new functions Y (h) and X(h) ∈ C∞p . Tangent

vectors act on functions to map C∞p → R. The entire process maps M → R, giving

the value of the directional derivative of the function in a local neighborhood of p.

To show [X, Y ] is a vector field, it is sufficient to show that [X, Y ] is linear and

satisfies the derivation property. To satisfy this property, the new vector field must

act on smooth functions to satisfy the product rule. This is shown in Appendix A.

The process in local coordinates may be easier to understand as it relates to the

more mundane concept of vector analysis. A vector field has a local representation

given by X = X1
∂
∂x1

+ · · · + Xn
∂
∂xn

, where the ∂
∂xi

form a basis for the tangent

space to M at p. Thus, vector fields may also be thought of as right-hand sides

of differential equations. What makes the connection possible is that a smooth

manifold has a local representation in a neighborhood of p. Thus, a Lie bracket can

be formulated in local coordinates. Given two vector fields, g1(x) and g2(x), and

coordinates x = (x1, x2, . . . , xn), the Lie bracket between g1(x) and g2(x) is

g3(x) = [g1, g2] (x) =
∂g2(x)

∂x
g1(x)−

∂g1(x)

∂x
g2(x). (3.3)
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Figure 3.1. Lie Bracket Motion

Equation 3.3 has a local, geometric interpretation. It defines, up to order ǫ2, the

infinitesimal motion generated by the flow about the two vector fields, i. e.,

φ−g2ǫ ◦ φ−g1ǫ ◦ φg2ǫ ◦ φg1ǫ = φ
[g1, g2]

ǫ2
+O

(
ǫ3
)
.

Lie bracket motions may generate new directions, g3 in this case, in which a system

can move. The Lie bracket in Equation 3.3 is an approximation from a Taylor series

for the motion if the system could actually flow along g3 for ǫ2 time. This is depicted

in Figure 3.1. The system flows along g1, g2, -g1, and -g2 for ǫ time, resulting in the

new motion in the direction of g3 which motivates Equation 3.1. Higher order Lie

brackets can be determined as well. For example, g4 may be a vector field generated

by the Lie bracket [g1, g3] = [g1, [g1, g2]]. New vector fields can be generated in

this way ad infinitum although they may not always result in new directions.

Lie brackets exhibit two properties which are useful for forming a basis for a Lie

algebra. They are
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• skew symmetry: [g1, g2] = − [g2, g1]

• Jacobi identity: [f, [g, h]] + [h, [f, g]] + [g, [f, h]] = 0.

A proof of skew symmetry for Lie brackets is also given in Appendix A.

Definition 3.2.6: (Lie Algebra)

A Lie algebra is a set of m vector fields g1, g2, . . . , gm which is closed under the

Lie bracket, denoted by L (g1, g2, . . . , gm). �

Definition 3.2.7: (Phillip Hall Basis)

A Phillip Hall basis is an ordered set of vector fields which forms a basis for a Lie

algebra. It accounts for the properties of skew symmetry and Jacobi identity of Lie

brackets. �

Definition 3.2.8: (Length of a Lie Bracket)

The length of a Lie bracket is defined as

l(gi) = 1 i = 1, . . . , m

l ([A, B]) = l(A) + l(B),

where the gi are vector fields and A and B are either vector fields or Lie-bracket

vector fields. �

The length of a Lie bracket of any order can be found by adding all the length-

one vector fields (gis) that make up the bracket(s). In the examples above, l(g3) = 2

and l(g4) = 3.

The Phillip Hall basis, H = {Bi}, can then be constructed by satisfying the

following conditions:

1. Bi = gi, i = 1, . . . ,m

2. if l(Bi) < l(Bj), then Bi < Bj
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3. [Bi, Bj] ∈ H iff

(a) Bi, Bj ∈ H and Bi < Bj and

(b) either Bj = gk for some k or Bj = [Bl, Br] with Bl, Br ∈ H and Bl ≤ Bi,
i = m+ 1, . . . , s.

When constructing the Phillip Hall basis, it is important to notice that “<”

is used in two ways. In the antecedent of rule 2, it is used in a mathematical

expression; however, in the consequence it is used to imply order. Therefore, in the

basis, all length-one vector fields appear in their natural order, followed by length-

two brackets, then length-three brackets, etc. The distinction is vital to properly

interpreting rule 3.

Definition 3.2.9: (Nilpotent)

A Lie algebra is called nilpotent of order k if all Lie brackets of length greater than

k are zero. �

Definition 3.2.10: (Driftless)

For a nonlinear system of the form

ẋ = f(x) +
∑

i

gi(x)ui,

the system is driftless if f(x) = 0 ∀ x ∈M . �

Definition 3.2.11: (Distribution)

A distribution is the space spanned by a set vector fields, ∆ = {span (g1, . . . , gm)} ,

where the span is taken over the set of smooth, real-valued functions. This set is a

subspace of TM . �

Definition 3.2.12: (Involutive Distribution)

A distribution is involutive if it is closed under the Lie bracket. �
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Definition 3.2.13: (Involutive Closure)

The involutive closure, ∆, is the smallest involutive distribution that contains ∆.

�

Definition 3.2.14: (Regular Distribution)

A distribution is regular if the rank of the distribution is the same for every point

in the configuration space. �

3.3 Nonholonomic Motion Planning

Although other devices for nonholonomic motion planning were mentioned pre-

viously, the focus of this work is SUPCI. For the remainder, references to non-

holonomic motion planning imply this method. It resolves motion planning for a

dimension m, nonlinear, driftless system described by

ẋ = g1(x)u1 + g2(x)u2 + · · ·+ gm(x)um, (3.4)

where the system is nilpotent of order k > m. The gis are control vector fields, the

uis are control inputs, and the system evolves on a smooth manifold x ∈ M . A

general approach to solving the above system is to

1. determine the kinematic equations of motion of the system, i.e., the velocity
constraints;

2. determine the vector fields which annihilate the constraints. This yields di-
rections in which the system is able to move;

3. determine the Philip Hall basis for the system;

4. eliminate any additional, linearly dependent vector fields for a regular distri-
bution. By convention, the ones eliminated will be higher-order brackets. The
practical advantage of this is obvious: less switching of inputs is required to
produce the same net motion along a lower-order bracket;

5. determine the fictitious inputs for the extended system;

6. convert the fictitious inputs to those produced through Lie bracket motions
using existing inputs.
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The distribution from item 4 above leaves ∆. If the dimension of ∆ equals the

dimension of the configuration space, the system is small-time locally controllable.

To reiterate, the formulation of the involutive closure leaves an equivalent, solv-

able system even though the original system contains nonholonomic constraints

which are not integrable. Determining the solution, however, is anything but triv-

ial, and the remainder of this section is devoted to its construction. For a more

thorough treatment, see [19].

The point of the method is to use an expansion of the formal exponential that

approximates the solution to Equation 3.4. The notion of squaring a vector field

is nonsensical because the result is not a vector field. However, to work within the

confines of the formal exponential structure, Lafferriere and Sussmann [34] present

indeterminates as an alternative for combining vector fields. An indeterminate is

an element of an algebraic structure. In this case, the algebraic structure is the Lie

algebra and the indeterminates are vector fields. This approach allows the solution

of Equation 3.4 to be associated with that of a related differential equation involving

the indeterminates. In this vein, associate g1 with b1, g2 with b2, etc., where the bis

are the indeterminates and the gis are the elements of the Phillip Hall basis. The

Lie algebra L(∆) induces a product rule on its elements. If b3 is defined as

b3 = [b1, b2] := b1b2 − b2b1,

higher-order brackets can be generated from this base definition. For example,

b4 = [b1, [b1, b2]]

= b1[b1, b2]− [b1, b2]b1

= b1(b1b2 − b2b1)− (b1b2 − b2b1)b1

= b21b2 − b1b2b1 − b1b2b1 + b2b
2
1

= b21b2 + b2b
2
1 − 2b1b2b1.
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Also, the Phillip Hall basis is

H = {g1, g2, . . . , gs}, s ≥ m.

To go from a point p to a point q, the steps are first to define a nominal trajectory,

γ(t) ∈ C≥1, from p to q for the extended system. Second,

γ̇ = g1v1 + · · ·+ gmvm + gm+1vm+1 + · · ·+ gsvs (3.5)

is solved for the fictitious inputs. The solution of Equation 3.5 is straightforward

since it involves finding the inverse or pseudo-inverse of a nonsingular matrix de-

pending on the size of the extended system relative to the dimensionality of the

original system.

Third, according to the Chen-Fliess series formula, all flows of the system de-

scribed by Equation 3.4 are of the form [66]

S(x) = ehs(t)bsehs−1(t)bs−1 · · · eh1(t)b1(x), (3.6)

where the his are the backward Phillip Hall coordinates and indicate the time re-

quired to flow along each vector field. In addition, S(x) satisfies the extended system

Ṡ(x) = S(x) (g1v1 + · · ·+ gsvs) ; S(0) = 1, (3.7)

where the vis are inputs corresponding to the directions of the Phillip Hall basis ele-

ments. The first m of these inputs correspond to the original system. The remaining

s−m inputs are “fictitious” inputs that correspond to Lie bracket directions. One

can solve for the backward Phillip Hall coordinates by differentiating Equation 3.6

with respect to time and equating coefficients between it and Equation 3.7. This

yields a differential equation of the form

ḣ = Q(h)v, h(0) = 0,
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which specifies the evolution of the backward Phillip Hall coordinates in response to

the fictitious inputs. Finally, the real inputs are applied using the method described

in [34]. The solution is more easily implemented by applying the forward Phillip

Hall coordinates for a system equivalent to the one in Equation 3.6 given by

S(x) = eh1(t)b1eh2(t)b2 · · · ehs(t)bs(x). (3.8)

Solution of the forward Phillip Hall coordinates is done by expanding Equations 3.6

and 3.8 according to the Campbell-Baker-Hausdorff formula [72] for the concate-

nation of flows and equating coefficients of the common basis elements. For the

forward case (Equation 3.8) the expansion with two vector fields up to g5 is

eh̃1b1eh̃2b2eh̃3b3eh̃4b4eh̃5b5 = 1 + h̃1b1 + h̃2b2 + h̃3b3 + h̃4b4 + h̃5b5

+
1

2
h̃1h̃2 [b1, b2] +

1

2
h̃1h̃3 [b1, [b1, b2]] +

1

2
h̃2h̃3 [b2, [b1, b2]]

+
1

12
h̃2

1h̃2 [b1, [b1, b2]]−
1

12
h̃1h̃

2
2 [b2, [b1, b2]]

= 1 + h̃1b1 + h̃2b2 + h̃3b3 + h̃4b4 + h̃5b5 +
1

2
h̃1h̃2b3 +

1

2
h̃1h̃3b4

+
1

2
h̃2h̃3b5 +

1

12
h̃2

1h̃2b4 −
1

12
h̃1h̃

2
2b5

= 1 + h̃1b1 + h̃2b2 +

(

h̃3 +
1

2
h̃1h̃2

)

b3 +

(

h̃4 +
1

2
h̃1h̃3 +

1

12
h̃2

1h̃2

)

b4

+

(

h̃5 +
1

2
h̃2h̃3 −

1

12
h̃1h̃

2
2

)

b5.

For the backward case (Equation 3.6) the expansion with two vector fields up to g5

is

eh5b5eh4b4eh3b3eh2b2eh1b1 = 1 + h5b5 + h4b4 + h3b3 + h2b2 + h1b1

+
1

2
h2h3 [b3, b2] +

1

2
h1h2 [b2, b1] +

1

2
h1h3 [b3, b1]

+
1

12
h2

2h1 [b2, [b2, b1]]−
1

12
h2

1h2 [b1, [b2, b1]]
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= 1 + h5b5 + h4b4 + h3b3 + h2b2 + h1b1 −
1

2
h2h3b5 −

1

2
h1h2b3 −

1

2
h1h3b4

− 1

12
h1h

2
2b5 +

1

12
h2

1h2b4

= 1 + h1b1 + h2b2 +

(

h3 −
1

2
h1h2

)

b3 +

(

h4 −
1

2
h1h3 +

1

12
h2

1h2

)

b4

+

(

h5 −
1

2
h2h3 −

1

12
h1h

2
2

)

b5.

By equating coefficients of the basis elements, the forward Phillip Hall coordinates

are

h̃1 = h1

h̃2 = h2

h̃3 = h3 − h1h2

h̃4 = h4 − h1h3 +
1

2
h2

1h2

h̃5 = h5 − h2h3 +
1

2
h1h

2
2.

Applying the inputs in the forward order accounts for motion induced along higher-

order brackets while flowing along lower-order brackets. The algorithm can compen-

sate for this truncation error by changing the time spent flowing along the higher-

order brackets. It should be noted, however, that this method still makes no com-

pensation for errors induced due to the nilpotency assumption. Finally, it can be

seen that the forward and backward Phillip hall coordinates are equivalent for all

length-one vector fields. These correspond to all non-bracket vector fields of the

system, those associated with actual inputs.

To apply the real inputs, the basic idea in [34] is to decompose a desired motion

into multiple subtrajectories along various vector fields that span the configuration

space. If the system is underactuated, some of these elements will be Lie brackets.

Flows in these directions are approximated by

φ[g1, g2]
ǫ (xo) ≈ φ−g2√

ǫ
◦ φ−g1√

ǫ
◦ φg2√

ǫ
◦ φg1√

ǫ
(xo) (3.9)
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as shown in Figure 3.1. A limitation of Lie bracket motions is that only small am-

plitude motions can effectively be planned [10] and that the control is open loop.

Finally, if the system is not nilpotent, additional errors are introduced by partial

motions along higher-order brackets assumed to be zero in the original formula-

tion. Since these brackets were not originally considered, the error is unaccounted

for by applying the forward Phillip Hall coordinates. Since these brackets can be

calculated, however, it is possible to correct for this error as well.

For the case of performing grasping operations where small motions will occur,

the limitation on Lie bracket motions is an unlikely issue. However, for the moti-

vating example of parallel parking a car, this is an obvious drawback. Additionally,

while the algorithm is analytic, it is somewhat restrictive. When parallel parking a

car, no factors generally preclude the accelerator and the steering wheel from being

operated concurrently. In fact, depending on the system, the analytic approach

may be damaging, as it is with the car since rotating tires while they are not rolling

excessively wears the rubber. Finally, if obstacle avoidance is a requirement, the

algorithm can only be run for small times in an iterative fashion. This ensures the

system remains near the nominal trajectory.

It also is possible to obtain negative Phillip Hall coordinates. For non-bracket

motions, the correction for this is to apply the input(s) for an equivalent positive

amount of time, and make the input -1. Bracketed motions require the order of the

inputs to change since the Lie bracket is skew symmetric.

3.4 Stratified Motion Planning

Stratified motion planning extends [34] to discontinuous systems. For the case

of a two-finger gripper, consider the manifold structure shown in Figure 3.2. The

unconstrained system evolves on a dimension k manifold M = S0. However, when
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Figure 3.2. Configuration Space of a Two-Finger Gripper

a robot contacts an object for the purpose of manipulation, the motion is restricted

to a submanifold of the original configuration space. The original manifold is then

partitioned into submanifolds S1 and S2 relating to one finger in contact and one

finger out of contact with the object. The highest degree of constraint, and hence

the lowest dimension submanifold, occurs when both fingers are in contact with

the object, represented by S12. On each submanifold, the equations of motion

may differ, and discontinuities are introduced by the necessity of switching between

strata. From experience, one knows complex manipulation tasks may be difficult to

accomplish without fingers intermittently contacting and releasing the object. This

is equivalent to cyclically moving on and off the submanifolds of a stratified system.

While on a manifold, the equations are smooth, however, transitions among strata

are not.

Consider the sequence to move the system depicted in Figure 3.2 from xo ∈ S12

to xf ∈ S12

xf = φ
−g2,1

t6
︸ ︷︷ ︸

S12←S2

◦ φg2,2

t5
︸︷︷︸

on S2

◦ φ
g2,1

t4
︸︷︷︸

S2←S12

◦ φ−g1,1

t3
︸ ︷︷ ︸

S12←S1

◦ φg1,2

t2
︸︷︷︸

on S1

◦ φ
g1,1

t1
︸︷︷︸

S1←S12

(xo), (3.10)
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where gs,v represents the vector field v operating on strata s. The notation below

each flow describes the motion related to Figure 3.2. For example, S1 ← S12 refers

to a flow that moves the system from S12 where both fingers are in contact to S1

where finger two has released the object while finger one remains in contact with

the object. Next, the finger performs some motion along the object given by g1,2,

while -g1,1 returns the second finger to the object. This sequence is repeated with

the second finger.

If [g1,1, g1,2] = 0 and [g2,1, g2,2] = 0 then, according to the Campbell-Baker-

Hausdorff formula, the flows can be interchanged [72]

xf = φ
−g2,1

t6
◦ φg2,1

t4
◦ φg2,2

t5
︸ ︷︷ ︸

interchanged

◦φ−g1,1

t3
◦ φg1,1

t1
◦ φg1,2

t2
︸ ︷︷ ︸

interchanged

(xo).

Also, if t1 = t3 and t4 = t6, then

xf = φ
g2,2

t5
◦ φg1,2

t2
︸ ︷︷ ︸

on S12

(xo). (3.11)

Therefore, motion planning can be performed on S12 with vector fields incorporated

from higher strata since the two motions in Equations 3.10 and 3.11 result in the

same net motion.

The implementation of a stratified motion plan is somewhat complicated. In

an attempt to reduce complexity of the overall approach, stratified manipulation

will be replaced with Lie bracketing, given that Lie bracketing can also effect finger

reconfiguration but without disengaging the object. In the presence of contact

information only, this may be a safer approach since, once an object is initially

grasped, it is less likely to be lost if it is not released again.

The motion planning algorithm gives the first element in the block diagram of

Figure 1.2. Next, attention turns to robot kinematics so that, given a configuration

from the motion planning algorithm, it can be properly achieved.
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3.5 Screws, Twists, and Wrenches

It is a fundamental theorem of kinematics that any rigid-body motion can be

attained through rotation about a line and a translation parallel to that line [47].

Since this displacement is reminiscent of the motion of a screw, it is often called

a screw motion and the line is referred to as the screw axis. The screw motion is

characterized by the angular velocity of the body about the screw axis, and the

velocity with which it translates along the screw axis. For a physical screw, the

latter is a function of the screw’s pitch which is the distance between two adjacent

threads. One complete revolution of a screw translates it an amount equal to the

pitch. Of particular interest to robotics are screws that have an infinite pitch and

screws that have zero pitch. The former results in pure translation which can be

used as a model for a prismatic joint while the latter results in pure rotation which

can be used as a model for a revolute joint.

An infinitesimal screw motion is called a twist ξ. For three-dimensional motion,

a twist is parameterized as ξ ∈ R
6 by

ξ =




v

ω



 ,

where v = (vx, vy, vz)
T and ω = (ωx, ωy, ωz)

T represent the translational and

rotational velocities in the x-, y-, and z-directions, respectively. It will be useful

later to describe the matrix version of a twist ξ ∈ R
4×4 as

ξ̂ =




ω̂ v

0 0



 ,

where ω̂ is the skew-symmetric matrix

ω̂ =









0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0









.
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Skew-symmetric matrices have the characteristic, given a skew-symmetric matrix c,

that c = −cT . It will often be useful to form such 3× 3 matrices from vectors given

in R
3.

The above is a general description of a screw. In the next section, unit twists will

be assumed. That is, the magnitude of the twist will be unity where either ‖ω‖ = 1

or ‖v‖ = 1 when ω = 0. Moreover, only zero-pitch twists, in which ‖ω‖ = 1, will be

considered since the robots used for the experiments are comprised of only revolute

joints. The formulation is equivalent for prismatic joints. The assumption of a unit

twist allows motions effected by revolute joints to be expressed explicitly in terms of

the rotation amount rather than the time spent rotating, which naturally appears as

the independent variable in the solution of a time-dependent differential equation.

A system of forces acting on a rigid body can be replaced by the combination of

a force acting along a line and a torque about that line [47]. The forces describing

these two components can be combined into

F =




f

τ



 f, τ ∈ R
3,

where f = (fx, fy, fz)
T and τ = (τx, τy, τz)

T are forces and torques applied in

the x-, y-, and z-directions, respectively. This pair is referred to as a generalized

force or a wrench [47]. These concepts are central to the development of manip-

ulator kinematics and provide an alternative to the standard Denavit-Hartenberg

parameterization (see [13] for a derivation of this method).

3.6 Kinematics of Open-Chain Manipulators

Open-chain manipulators, manipulators containing no parallel branching links or

closed connections, have a straightforward representation of their kinematics. The

two basic questions are: 1) Given a set of joint angles, what is the configuration
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(position and orientation) of a robots end-effector, and 2) Given a configuration,

what joint angles are necessary to achieve it? Forward kinematics answers the first

question, while inverse kinematics answers the second question. The answer to the

second question is more pragmatic, and, as luck would have it, less straightforward.

3.6.1 Forward Kinematics

Closed-form solutions exist for computing the forward kinematics of open-chain

manipulators. However, the complexity of the calculations increases with increasing

complexity of the manipulator. In addition, these solutions do not account for motor

stiction, incorrect length measurements, or sensor noise. Therefore, the analytical

solution is not an exact representation of the physical system.

The forward kinematics determines the end-effector configuration of a manipu-

lator given relative configurations of adjacent robot links. The robots used during

this work each contain six revolute joints. One robot, showing its six rotational

DOFs, is shown in Figure 3.3.

θ3

θ4

θ5

θ6

θ1

θ2

Figure 3.3. DOFs on Unimate, PUMA 560 Robot [71]
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If a frame B is attached to a joint, at point b ∈ R
3, and this joint is free to

rotate relative to a fixed frame A, attached at point a ∈ R
3, the rigid-body motion

is denoted by

gab(θ) = eξ̂θgab(0),

where θ is the total rotation about the revolute joint, gab(0) is the configuration of

B relative to A prior to the joint being rotated, and exp(ξ̂θ) is the usual matrix

exponential defined as

eξ̂θ = I + ξ̂θ +
(ξ̂θ)2

2!
+

(ξ̂θ)3

3!
+ · · ·

and is discussed subsequently. Thus, the above equation represents the configuration

of frame B relative to fixed frame A after some rigid-body motion has been induced

via exp(ξ̂θ). The forward kinematics for a robot with n links can be calculated

by composing the motions as described above. Thus, the forward kinematics using

the product-of-exponentials (POE) formula for the configuration of a tool frame T

relative to a base frame S is

gst(θ) = eξ̂1θ1eξ̂2θ2 · · · eξ̂nθngst(0), (3.12)

where exp(ξ̂iθi) represents the rigid-body motion induced on frame i and gst(0) is

the initial configuration of the tool frame with respect to the base frame, as shown

in Figure 3.4.

The base frame is chosen to be a stationary point on the robot; the location of the

tool frame is arbitrary. In fact, it can be placed at a point not on the manipulator. In

this case, it is assumed a rigid link connects the point in space to the manipulator,

and this is accounted for through gst(0). In practice, however, the tool frame is

placed at the end-effector connection or on the end-effector itself. This flexibility

allows for a systematic approach to determining a manipulator’s Jacobian, which

will be presented in Section 5.6.
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Figure 3.4. Zero Configuration of PUMA 560 Showing
Frame Orientations and Twists

For a revolute joint, the twist for joint i is

ξi =




−ωi × qi

ωi



 , (3.13)

where ω ∈ R
3 is a unit vector in the direction of the twist and q is a position vector

in R
3 from the base frame to a point on the axis of rotation.

The matrix exponential is then the solution to the linear, time-invariant differ-

ential equation for the velocity of a point attached to the rotating body rotated

about the axis ω by the angle θ

eξ̂θ =




R(θ) p(θ)

0 1



 . (3.14)

Here the rotation amount θ has replaced time in the matrix exponential since, under

the unit twist assumption, they are equivalent. This configuration is unique, and it

has the form of a 4 × 4 matrix consisting of a rotation matrix R ∈ SO(3), that is

R ∈ R
3×3, RRT = I, and |R| = 1, and a position vector p ∈ R

3 from the base frame
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to the frame of interest. The set of all such matrices is referred to as the special

Euclidean group SE(3).

The selection of the zero configuration is arbitrary, and the zero configuration can

typically be determined by inspection. For the configuration shown in Figure 3.4,

the base and tool frames have the same orientation. To move from the base frame

to the tool frame requires displacements in the x-, y-, and z-directions of l2, l3 − l1,

and lo − l4, respectively. Therefore, gst(0) is

gst(0) =










1 0 0 l2

0 1 0 l3 − l1
0 0 1 lo − l4
0 0 0 1










.

The forward kinematics answers the question of what the tool frame configura-

tion is given a set of manipulator joint angles. However, the more practical question

is what the joint angles of a manipulator need to be to achieve a specific tool-frame

configuration. The response to this query is the bane of inverse kinematics, a more

difficult task with multiple answers.

3.6.2 Inverse Kinematics

The inverse kinematics problem states that given the configuration of the tool

frame, determine the joint angles necessary to achieve that configuration. In other

words, given gst(θ) solve Equation 3.12 for θ1, θ2, . . . , θn. Unlike the forward

kinematics problem, this solution is not, in general, unique. For a simple example,

consider the two-link, planar mechanism shown in Figure 3.5. Two sets of joint

angles, namely {(90o, 0) , (0, 90o)}, achieve the same position of the end. There-

fore, the inverse kinematics problem is often solved numerically. It requires some

knowledge of the joint angles to form an initial guess. This information is readily

available, and, in the case of manipulation, joint angles change minimally from one
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Figure 3.5. Multiple Sets of Joint Angles Give the Same
Location of the End Point in a Two-Link, Planar Mecha-
nism

move to the next. So, the previous joint angles can be used as an initial guess

for the subsequent move. However, the method still involves a search and will not

converge if the configuration cannot be achieved. Neither of these is the case for an

analytical approach. The analytical method used here is referred to as Paden-Kahan

subproblems [47].

The analytical solution of the inverse kinematics is based on reduction of the

manipulator geometry to three basic problems: 1) rotation about a single axis, 2)

rotation about two subsequent axes, and 3) rotation to a known position. The

general solutions for these cases were first published by Paden [52]. One advantage

of this approach is in the application to reconfigurable robots [81].

In Chapter 5 solutions specifically for a PUMA 560 will be developed. The basic

approach is to separate the solution into two parts: the first satisfies the position

requirements giving values for θ1, θ2, and θ3, and the second satisfies the orientation

requirements, giving values for θ4, θ5, and θ6, of the desired configuration. Solution of

the inverse kinematics completes another element in the block diagram of Figure 1.2.

In application, joint angles are converted to encoder counts that are achieved by the

local PID controllers.
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3.6.3 Manipulator Jacobian

An object of obvious utility would be that which maps joint velocities to end-

effector velocities. In accordance with the usual use of the term, this is called

the Jacobian. However, if the forward kinematics maps a set of joint angles to a

configuration, then ∂g/∂θi is not a natural entity since g is a matrix-valued function.

If the manipulator has n links, then the Jacobian is a 6 × n matrix. An ith

column of the Jacobian represents the resultant infinitesimal motion of the end-

effector if the ith joint goes through an infinitesimal motion with unit joint velocity

when all the other joints of the manipulator are locked. This is equivalent to treating

the whole manipulator as one rigid body, fixing its axis of rotation/translation to

that of the ith joint axis, and then determining how much velocity the end-effector

has as the joint rotates/translates with unit velocity. In other words, this is the

spatial velocity of the end-effector when the origin of the spatial frame is fixed at

the end-effector. In this case, spatial refers to the velocity as measured relative to

a fixed (spatial) coordinate system. The spatial velocities are expressed as twists,

and hence the ith column of the manipulator Jacobian can also be given as a twist.

The axes for twists may change as the robot configuration changes, and hence the

manipulator Jacobian is configuration dependent.

3.7 Robot Calibration

Calibrating a robot involves making corrections to increase the accuracy of the

kinematics mappings. In an early subject paper, Roth, et al. [60] describe three vary-

ing degree-levels of the calibration process. Using their nomenclature, the levels are

I) joint level, II) robot kinematic model, and III) nonkinematics. At the joint level,

the calibration ensures robot’s transducer readings correspond to the actual joint an-

gle. A level I calibration uses a measurement device such as a theodolite to measure
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the joint angle which is compared to a known joint angle from some fixture device.

Over the years, the theodolite has been mechanized to achieve autonomy while more

modern devices include laser interferometers [33]. A level II calibration checks the

geometry of the robot to improve the kinematic model. For example, incorrect link

lengths and joint misalignment propagate in both the Devanit-Hartenberg and POE

formulations. Finally, a level III calibration accounts for dynamic affects such as

friction and loading.

The calibration process starts with a nominal model of the robot. Next, data

is collected to test the model. This is often referred to as the measurement and

validation step. Third is parameter identification. Finally, the new model is applied

in software to provide the corrections.

The process for multi-robot calibrations involves relating the transformations

of each robot with respect to another as well as the joints of an individual robot.

Typically, closed chains are used since the transformation around a closed chain is

unity. Then, a minimization process is used to determine the model parameters [76].

In Wei’s case [76], the task of affixing two PUMA 560s and manually forming various

poses was a time-consuming and arduous task. To preclude this, it is possible for

a neural network to compensate for both kinematic errors and unaccounted for

dynamics [55]. In contrast with the above, the approach taken in this work is

quite minimalistic under the justification that closed loop feedback will alleviate

calibration errors.

Based on the classifications made by Roth, et al. [60] the routine used for the

robots is a level I calibration. Only the calibration of individual robots is considered

in the case of accurately representing the zero configuration. This assumes the

forward kinematics solution is fixed, and the joint angles are manually moved to what

is considered to be the zero configuration. Depending on the joint’s orientation, this
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is accomplished through physical marks made by the manufacturer on the robot, a

bubble level, or a plumb line. Then, the encoder software is modified accordingly.

3.8 Robot Spaces

The geometry of a robot characterizes the locations it is able to reach. Research

in design to optimize workspaces is an area of much activity, (see, for example,

[58] and [77]). In addition, its geometry characterizes the robot’s configuration

space. Differentiation between the two spaces is subtle and can be confusing as the

configurations an end-effector can achieve, which are elements of the workspace W ,

are a portion of the configuration space C.

To completely describe the configuration of any system, it requires identification

of an appropriate number of generalized coordinates for the system. This descrip-

tion will be used for the car steering example in Chapter 4. Based on this more

general meaning of a configuration, the sets of joint angles necessary to define a

manipulator pose are sometimes referred to as the configuration space. To avoid

confusion, this set will be referred to as the joint space J [62] here, reserving the

term configuration space to refer to the set of all 4×4 matrices in SE(3). As a result,

much of what Goodwine [19] calls a configuration space will be equivalently called a

joint space here. The reader should remain aware that joint space and configuration

space can be used interchangeably in proper context, and that the joint space, the

configurations they give rise to, and the workspace are inextricably linked.

3.8.1 Configuration and Work Spaces

To completely describe the configuration of the robots used in this work requires

knowledge of the six revolute joint angles J = S
1 × S

1 × · · · × S
1. Mathematically,
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the workspace for such a robot is defined as

W = { gst(θ) : θ ∈ J } ⊂ SE(3), (3.15)

where gst(θ) is the forward kinematics mapping of Equation 3.12. The configuration

space is the Cartesian product of position vectors and rotation matrices relating the

tool and base frames (see Figure 3.4)

C = { (p, R) : p ∈ R
3, R ∈ SO(3) } = R

3 x SO(3) = SE(3). (3.16)

The mappings J 7→ SE(3) and SE(3) 7→ J are represented pictorially in Figure 3.6.

R
6

J W
SE(3)

Figure 3.6. Mappings between the Joint Space and Config-
uration Space for a Manipulator

An alternate view of the above is that an element of W gives a representation

of the tool frame in the base frame’s coordinates. If one imagines the two frames

starting coincident, then (p, R) shows how to properly position and orient the tool

frame. This is precisely the information given by the POE formula. The inverse g−1
st

that solves the inverse kinematics problem is an element of J . However, it can also

be thought of as an element of SE(3), where the inverse is the usual inverse for a

square matrix, and gives gts, the configuration of the base frame with respect to the

tool frame.

Through two simple examples, joint space limits of a robot will be shown. It

should be recalled that a connection exists between the joint space and the configu-
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Figure 3.7. A Two-Link Robot

ration space, but the joint space is more easily represented graphically. Then, how

constraints affect the joint space will be investigated. As the constraints change,

the dimension of the manifold in which the system is able to operate changes, giving

rise to stratified joint spaces.

3.8.2 Workspace Examples

For the two-link, planar robot shown in Figure 3.7, the joint space is

J = { (θ1, θ2) ∈ (S1, S1) : 0 ≤ θ1, θ2 < 360o}.

The workspace can be determined using Equation 3.12 with n = 2; however, a

graphical solution can be more easily realized by fixing the first joint and allowing

the second joint to complete one revolution, then incrementing the first joint and

rotating the second joint again. Proceeding in this fashion for enough incremental

values of the first joint shows the workspace contains all the points on the closed
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Figure 3.8. Workspace for a Two-Link, Coplanar Robot
with Revolute Joints

disk given by x2 + y2 = (2l)2. The conceivable positions with l = 1 are shown in

Figure 3.8.

The workspace becomes more interesting for two, orthogonal revolute joints. In

this case, the workspace is a torus. This can be imagined by rotating a point on

a rigid body about the axis of rotation of one of the joints, producing a circular

trajectory in a plane perpendicular to the direction of rotation. Next, this entire

circle is rotated about the axis of rotation of the second joint. Each point on the

first circle follows its own circular trajectory about the second axis, resulting in the

torus shape. Indeed, a torus can be thought of as a “circle of circles” [75]. If the

axis of rotation of the second joint passes through the circle, the solid generated

is a sphere, otherwise, it is a torus. The latter case is shown in Figure 3.9. The

torus generated in the example is rather fat, resembling more of a sphere with its

core removed than what a torus typically connotes. The size of the hole is twice the

distance from the center of rotation to the circle.
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Figure 3.9. Workspace for a Two-Link Robot with Orthog-
onal Revolute Joints

3.8.3 Stratified Joint Spaces

As stated previously, systems characterized by intermittent contact or engage-

ment are referred to as stratified. More formally, a configuration is stratified if

it contains submanifolds in which the system is subjected to varying numbers of

constraints. In the case of the car, the number of constraints is fixed. For the ma-

nipulation task, however, the number of constraints increases or decreases as fingers

come in and out of contact with an object in combination with a set of motion

constraints. For example, some constraints are forced based on the type of motion

assumed, nonholonomic in this case.

Returning to the first example of the previous section, if the end-effector is addi-

tionally constrained to be in contact with a point on x = 1 as shown in Figure 3.7,
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Figure 3.10. Joint Space for the Two-Link Robot Con-
strained on x = 1

the joint space is limited by the holonomic constraint equation

cos θ1 + cos θ2 − 1 = 0. (3.17)

The reduced (constrained) configuration space is a submanifold of the original

configuration space. Submanifolds are referred to as strata in the language of strat-

ified systems. In this case, the stratum is a codimension one submanifold since

there are two coordinates and one constraint equation, i.e., it is a curve through the

two-dimensional plane shown (as a joint space) in Figure 3.10. The new workspace

is

Wc = { gst(θ) : cos θ1 + cos θ2 − 1 = 0 }.

If an additional degree of freedom is added, θ3, shown by the addition of the

single-link robot in Figure 3.11, the unconstrained joint space is now J = S1×S1×

S1. Reapplying the constraint given in Equation 3.17, the constrained surface is a

51



θ1

θ2

θ3

y

x

1

1

Figure 3.11. Two Unconstrained Robots

codimension two submanifold of R
3 (3 DOFs - 1 constraint equation) with

Wc = { gst(θ) : cos θ1 + cos θ2 − 1 = 0, 0 ≤ θ3 < 360o }.

Next, by requiring the end-effector of the third robot to be in contact with a point

on the line x = 1, the constrained surface reduces to a codimension one submanifold

in S1 x S1 x S1 (3 DOFs - 2 constraint equations). Both of these are shown in

Figure 3.12. Finally, either system can be constrained to a point. In this case, the

constrained joint space reduces to a codimension three submanifold, i.e., a point in

either R
2 or in R

3.

Having set the framework for stratified systems, the focus now turns toward

manipulation which, given its nature of intermittent contact, results in stratified

systems. The first issue to resolve is that of grasping an object followed by a method

to characterize the contact between an end-effector and a grasped object. Finally, it

is necessary to equate end-effector/object configurations with joint velocities based

on contact locations for use with the motion planning algorithm.

3.9 Grasping

A sufficient grasp involves two fundamental properties which drive formulation

and analysis. First, the grasp must be able to resist arbitrary external wrenches.
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Figure 3.12. Unconstrained and Constrained Joint Spaces
for the Two-Robot System of Figure 3.11. The dimen-
sion of the constrained configuration space depends on the
number of constraint equations.

Second, the grasp must allow for dexterous manipulation [47]. The combination of

these two attributes is generally referred to as force closure. However, achieving

one does not necessarily guarantee the other. In current literature, force closure is

divided into two categories, passive and active force closure [23]. Murray et al. [47]

term the later as a manipulable grasp. The former guarantees a manipulation system

can reject external disturbances, while the latter guarantees a manipulation system

can arbitrarily reconfigure an object. Constructing such grasps is dependent on the

type of end-effector used. Given the difficulties of constructing force closure grasps

for three-dimensional, curved surfaces, a brief discussion on force closure grasps is

deferred to Section 5.3 where the main point is its assumption in the application.
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3.9.1 Contact Models

Several models have been developed to describe wrenches a finger can apply

to an object. Some of the most common models and their associated wrenches as

described in [47] are introduced below. Generally, a wrench has the form

Fc = Bcfc,

where Bc is the wrench basis indicating directions in which wrenches can be applied

based on the finger model and fc is the magnitude of the applied force.

Frictionless Point Contact (FPC)

The simplest contact model is frictionless point contact. For this case, contact

between the finger and object is modeled as a single point and the finger can only

apply a normal force against the object; any other direction would cause the finger

to slide on the object. The wrench for this case is

Fc =














fx

fy

fz

τx

τy

τz














=














0

0

1

0

0

0














fc, fc ≥ 0,

where fc is the magnitude of the force applied by the finger. It must be positive,

indicating that the finger can only push, and not pull, on the object. Such a model

is unrealistic but is useful when friction information is unknown.
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Point Contact with Friction (PCwF)

The point-contact-with-friction model assumes known friction between the ob-

ject and finger. In this case, the finger can apply forces in all directions satisfying

Fc =














1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0














fc fc ∈ FCc,

where FCc is the friction cone which limits the amount of force that can be ap-

plied tangentially to the contact point due to friction. The maximum contact angle

describes how far off the contact surface normal the force can be directed before

slipping occurs. It is given by

α = tan−1 µ,

where µ is the coefficient of static friction between the two contacting objects.

Obviously, friction is a necessary component when trying to hold an object with

a horizontal force against gravity. Consider the two planar grasping tasks shown in

Figure 3.13. In the first case, under the frictionless point contact model, there is

no vertical upward force created to prevent the object from falling. In the second

case, under point contact with friction, friction between the fingers and the object

generates a balancing force to hold the object. For an object of the same weight,

the lower the coefficient of friction, the greater the applied force must be to hold

the object. However, if the object were able to be supported from underneath, the

restoring force is constant and is simply the weight of the object.
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µFµF
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(a) (b)

Figure 3.13. Friction Allows an Object to be Supported
Against Gravity by Applying a Horizontal Grasp. (a) For
a frictionless, point contact model the object always falls.
(b) With friction a balancing force is generated that is pro-
portional to the applied force and the coefficient of friction
between the object and the finger.

Soft Finger (SF)

Of the three models considered, the soft finger model is most realistic. Along

with normal and tangential forces, this model allows for torques to be applied by

the finger. The associated wrench is

Fc =














1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1














fc fc ∈ FCc,

where the friction cone now specifies limits for both the applied force and the applied

torque. The additional degree-of-freedom from this model can allow the rectangle

of Figure 3.13 to be rotated out of the page by twisting the fingers. Under a point

contact model, this would not be possible. Instead, the fingers would simply twist

about the contact normal, affecting no rotation of the object.
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Compliant Finger (CF)

In this work, a model for a compliant finger is introduced. The proposed

associated wrench is

Fc =














1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1














fc fc ∈ FCc,

where the friction cone again specifies limits for both the applied force and the

applied torque. Like the soft finger model, torques can be applied about the contact

normal. In addition, torque can be applied about the other component directions.

It is possible to perform two types of manipulation depending on the grasp con-

straints available. Everything is in place to develop an analytical approach to fixed

contact-location manipulation. The latter, moving contact-location manipulation,

requires information not only about constrained velocities but controlled velocities

as well, and, hence, an understanding of rolling contact kinematics.

3.9.2 Grasp Constraints

Grasp constraints arise from forces a finger is able to apply to a contacted object.

Namely, motion is constrained in certain directions, depending on the finger model

chosen. In general, this is given by

BT
ci
V b
fici

= 0, (3.18)

where V b
fici

is the body velocity of a frame Fi attached to fingertip i at the contact

point between the finger and the object relative to a contact frame Ci at the same

point but attached to the object, and Bci is the wrench basis for the model of finger
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Figure 3.14. Frames for Fixed Contact Manipulation

i. The body velocity is the velocity of the body coordinate frame relative to the

inertial frame but as viewed from the body frame.

For multiple fingers, the frames are referenced back to a common, stationary

“palm” frame P . In addition, a station frame S is placed at the base of each finger,

and an object frame O is attached to the object at its geometric center. These

frames are shown in Figure 3.14.

Transforming Body Velocities

Given three frames, A, B, and C, the configuration of frame C relative to frame

A is

gac = gab gbc.

By definition, the body velocity of frame C with respect to frame A is [47]

V b
ac = g−1

ac ġac,

58



where ġac = ġab gbc + gab ġbc by the chain rule, and g−1
ac = g−1

bc g−1
ab . Substituting in

to the velocity equation gives

V b
ac = Ad−1

gbc
V b
ab + V b

bc

in twist coordinates, where Ad ∈ R
6 × R

6 is the adjoint matrix which transforms

coordinates between frames. It is generally given by

Adg =




R p̂R

0 0



 ,

where p̂ is a skew-symmetric matrix formed from the elements of the position vector.

Grasp Constraint Equation

It is useful to write Equation 3.18 in terms of known quantities. These include the

station and palm frames which are fixed, the finger frame which can be determined

from the forward kinematics, and the contact frame which can be determined based

on the Gauss frame for the object, which will be further described subsequently.

Since the formulation and wrench basis is the same for each finger, the i subscript

has been dropped.

Following the path of frames shown in Figure 3.14 from the finger frame back to

the station frame, to the palm frame, to the object frame, and finally to the contact

frame, the configuration of the contact frame relative to the finger frame for a single

finger can be written as

gfc = gfs gsp gpo goc.

The body velocity of the relative frames is then

V̂ b
fc = g−1

fc ġfc,

where

g−1
fc = g−1

oc g−1
po g

−1
sp g−1

fs
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and

ġfc = gfs gsp (gpo ġoc + ġpo goc) + (gfs ġsp + ġfs gsp) gpo goc.

Noting that ġsp = 0 since the station and palm frames are fixed, and substituting

into the velocity equation gives

V b
fc = V b

oc + Ad−1
goc

V b
po + Ad−1

goc
Ad−1

gpo
Ad−1

gsp
V b
fs.

Under the assumption that the contact point is fixed, V b
oc = 0. Also noting that

V b
fs = −V s

sf and

Ad−1
goc

Ad−1
gpo

Ad−1
gsp

= Ad−1
gsc

the constraint equation reduces to

V b
fc = Ad−1

goc
V b
po − Ad−1

gsc
V s
sf .

The velocity between the station frame and finger frame is related by the Jacobian

V s
sf = Jssf θ̇f .

Substituting gives

V b
fc = Ad−1

goc
V b
po − Ad−1

gsc
Jssf θ̇f .

Applying the wrench basis requires BT
c V

b
fc = 0. So, the constraint equation is

BT
c Ad−1

gsc
Jssf θ̇f = BT

c Ad−1
goc
V b
po. (3.19)

In this form, Equation 3.19 states an equality between the velocity of the fingertip

in contact with the object and the object itself. This is a more natural and useful

representation over the equality stated in Equation 3.18. It is important to note,

however, that Equation 3.19 is valid only for directions in which finger forces can

be applied. In other directions, the object is free to twist or slide relative to the
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fingertip, and the equality is invalid. This is a function of the finger model chosen

and propagates through the equation via the finger wrench basis Bc. The impact of

this will be seen in Chapter 6. Assuming sufficient finger complexity for a desired

object reconfiguration, Equation 3.19 can be solved for the required joint angles

necessary to achieve an open loop motion plan given the initial and desired object

configurations parameterized by time.

To compact Equation 3.19, the contact map G := BT
c Ad−1goc is defined as a

mapping from the finger forces to the object wrench. Since this mapping and the

application of wrenches is linear, the total wrench on an object is simply the sum

of the contact maps for each of the n fingers in contact with the object [47]. The

6×mn matrix is called the grasp map G. In addition, the finger Jacobian is defined

as Jf (θ, gpo) := BT
c Ad−1gscJ

s
sf . It is a mapping from the finger joint velocities to

object velocities. Stacking the individual Jf ’s along the diagonal results in the hand

Jacobian, Jh (θ, gpo). Using these two maps, the constraint equation can be written

in matrix form

Jh (θ, gpo) θ̇ = GTV b
po, (3.20)

where θ is the vector of finger joint angles for the entire hand.

The obvious drawback to this approach is that reorientation of the finger is not

possible. Therefore, the reconfigurability of an object is limited to some portion of

the workspace for the set of manipulators. In addition, due to constraints of the

grasped system, some robot DOFs might be lost. In these cases, reorienting the

fingers can be achieved by rolling the finger in unconstrained directions. Rolling

motion requires a study of the contact behavior between objects.
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3.9.3 Contact Kinematics

Contact kinematics describes the evolution of the point of contact between two

surfaces as they move relative to one another. Using a differential geometry ap-

proach, Montana [45] and Cai and Roth [9] independently derived these equations.

Their findings are summarized here with the contact equations. An example will be

shown in Chapter 4.

Coordinate Charts

Coordinate charts can be used to locally parameterize higher-dimensional sur-

faces. Generally, more than one chart is required to cover an entire surface. For

example, spherical coordinates can be used to parameterize a sphere in R
3, but a

single chart cannot uniquely represent both poles of a sphere. Typically, the charts

are orthogonal. This convention is maintained here. A comment on the potential

usefulness of nonorthogonal charts will be made later.

The surface of a three-dimensional object can be described locally by a coordinate

chart, c : U ⊂ R
2 → R

3 as shown in Figure 3.15. Thus, a point on the surface can

be described locally by specifying (u, v).

c

u

v
∂c
∂u

Figure 3.15. Surface Chart for a Three-Dimensional object
in Two Dimensions
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Surface Geometry

The metric tensor, Mp, curvature tensor, Kp, and torsion, Tp, define the geo-

metric parameters of a surface. The metric tensor describes how to relate distances

between points on a surface. The curvature defines the radius of curvature at a

point on the surface, and the torsion defines the rate of change of the curvature

at the same point. Together, they describe the local geometry of the surface and

help define the contact kinematics. For an orthogonal parameterization, the metric

tensor is given by

M =




‖cu‖ 0

0 ‖cv‖



 , (3.21)

where cu and cv represent the partial derivatives of the parameterization with respect

to u and v, respectively. This tensor is related to the first fundamental form which

describes the relationship between the inner product of two tangent vectors and the

natural inner product on R
3. The second fundamental form describes the curvature

of the surface. Scaling the second fundamental form yields the curvature tensor

K =






cTunu

‖cu‖2
cTunv

‖cu‖ ‖cv‖
cTunu

‖cu‖cv
cTv nv

‖cv‖2




 , (3.22)

where nu and nv represent the partial derivatives of the unit normal with respect to

u and v, respectively. The unit normal is given by

n =
cu × cv
‖cu × cv‖

. (3.23)

Finally, torsion is a measure of the rate of change of curvature along the curve. It

is given by

T =

[

cTv cuu

‖cu‖2‖cv‖
cTv cuv

‖cu‖ ‖cv‖2

]

, (3.24)

where the double subscripts represent second partial derivatives.
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These three geometric parameters can then be used to define the contact evolu-

tion equations [45]

α̇f = M−1
f

(

Kf + K̃o

)−1








−ωy
ωx



− K̃o




vx

vy









α̇o = M−1
o Rψ

(

Kf + K̃o

)−1








−ωy
ωx



+Kf




vx

vy







 (3.25)

ψ̇ = ωz + TfMf α̇f + ToMoα̇o

vz = 0,

where α represents the local point (u, v) and the subscripts f and o are for the finger

and object, respectively. The geometric parameters, M , K, and T , are as defined

previously; ωx and ωy are rolling velocities at the point of contact in the relative

x- and y-directions, respectively; and ωz is a rotational velocity about the contact

normal. Similarly, vx, vy, and vz are translational velocities in these directions. The

modified curvature tensor, K̃o, is given by K̃o = RψKoRψ with

Rψ =




cosψ − sinψ

− sinψ − cosψ



 ,

where Rψ is the orientation of the x- and y-axes of the finger coordinate frame with

respect to the object frame and ψ is the contact angle between the object and finger.

The normal velocity, vz, is zero under the assumption that the finger and object are

rigid bodies and always remain in contact.

Object Frames

Four sets of frames on contacting objects necessary for tracking the evolution

of the point of contact c(t) are defined. First, each object is fixed with a reference

frame O that moves with the object. Typically, this frame is placed at the centroid

of the object.
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Second, an orthogonal coordinate system allows a normalized Gauss frame Gn
i

to be affixed at each point on the surface of an object, where i = 1, 2 represents

the number of objects in contact and n = 1, 2, . . . , ∞ represents the number of

definable Gauss frames. In Euclidean three-space, the x- and y-frames point in the

direction of cu and cv, respectively. The z-direction is determined by maintaining a

right-handed coordinate system.

Third, two contact frames Cci , one on each object, are defined at the point of

contact at any instant in time tc + to, where to is the time when the two objects

first came into contact. Without loss of generality, it can be assumed to = 0. Since

one is free to fit the surfaces with an infinite number of Gauss frames, the contact

frames coincide with some existing Gauss frame.

Finally, two additional local frames are defined on each object li for all time the

two objects are in contact. These are fixed with respect to Oi. These frames coincide

with the Gauss and contact frames at the point of contact. The locations of these

frames on two arbitrary objects along some contact path are shown in Figure 3.16.

3.9.4 Modified Constraint Equation

Until now, convention has been to identify frames with a capital letter but to use

a lower-case letter in equations when referring to a frame. This convection is altered

here regarding the finger frame since an additional finger frame will be added later

that is located at the fingertip and labeled f . The finger frame F is located at the

center of the finger and remains identified as F in the following derivation.

Paralleling the approach given in Section 3.9.2 for the fixed contact-location

constraints, the constraints for the moving contact-location grasp can be written by

following the path of frames from the local frame on the object lo, to the object

frame O, to the palm frame P , to the station frame S, to the finger frame F , and
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Figure 3.16. Various Object Frames and Their Locations
Along Some Contact Path

finally to the local frame on the finger lf . The configuration of the local finger frame

relative to the local object frame for a single finger can be written as

glolf = gloo gop gps gsF gFlf .

The body velocity of the relative frames is then

V̂ b
lolf

= g−1
lolf

ġlolf ,

where

g−1
lolf

= g−1
Flf

g−1
sF g−1

ps g
−1
op g−1

loo

and

ġlolf = gloo gop gps gsF ġFlf + gloo gop gps ġsF gFlf

+ gloo gop ġps gsF gFlf + gloo ġop gps gsF gFlf + ġloo gop gps gsF gFlf .
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Substituting into the velocity equation gives

V b
lolf

= V b
F lf

+ Ad−1
gFlf

(
V b
sf + Ad−1

gsF
V b
ps

)
+ Ad−1

gFlf
Ad−1

gsF
Ad−1

gps

(
V b
op + Ad−1

gop
V b
loo

)
.

(3.26)

However, V b
F lf

= V b
ps = V b

loo
= 0. So, Equation 3.26 reduces to

V b
lolf

= Ad−1
gFlf

(
V b
sF + Ad−1

gsF
Ad−1

gps
V b
op

)
.

Noting that V b
sF = Ad−1

gsF
JssF θ̇f , Ad−1

gFlf
Ad−1

gsF
Ad−1

gps
= Ad−1

gplf
, Ad−1

gFlf
Ad−1

gsF
=

Ad−1
gslf

, and V b
op = −V s

po, the velocity can be written as

V b
lolf

= Ad−1
gslf

JssF θ̇f − Ad−1
gplf

V s
po. (3.27)

The spatial velocity of the object was chosen to eliminate the dependence on the

configuration of the object with respect to the palm since this cannot be directly

measured nor calculated unlike the other parameters.

To preclude twisting about the contact normal, the soft finger model is used. Its

wrench basis is given by

Bc =














1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1














.

It is necessary to control the rolling velocities to reconfigure the finger while

adhering to the nonholonomic constraints. Therefore, the wrench basis is appended
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with two additional columns representing the controlled relative rolling velocities

B̃c =














1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0














.

This is equivalent, through elementary column operations, to the 6 × 6 identity

matrix. Applying the modified wrench basis to Equation 3.27 requires B̃c

T
Vlolf = ξ

where ξ is a combination of constrained/controlled relative velocities. It is given by

ξ =














vx

vy

vz

ωx

ωy

ωz














=














0

0

0

ωx

ωy

0














,

where vx, vy, and ωz are the constrained velocities due to the original finger model,

and ωx, and ωy are the controlled velocities. Noting that B̃c = B̃c

T
the joint

velocities can be written as

θ̇f = (JssF )−1
[

Ad−1
gps
V s
po + Adgslf

ξ
]

. (3.28)

Equation 3.28 is the modified constraint equation. It describes manipulator joint

trajectories necessary to achieve some time-dependent, rigid-body configuration un-

der rolling contact. The constraint on vz is not a result of any finger model rather

an assumption of rigid-body contact. Rather than integrating a modified constraint

into the underlying development, vz will be treated as a stand-alone correction in

which the amount of contact is controlled using the contact force sensors. Under

the assumption of compliance, the effect of this constraint must be investigated as

well as the effects of compliance on the accuracy of rigid-body grasping formulations

since real bodies deform under loads.
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3.9.5 Compliance

Compliance of an object is characterized by the amount of deformation it un-

dergoes per a given amount of force. More compliant objects “give” more when

pushed, so the resultant force needed to cause the same amount of deformation is

smaller. However, more compliant objects would seem to be more manipulable since

the deformation creates a greater contact surface area.

Compliance is defined here as c = ∆ deformation/∆ force. Therefore, a rigid

body has c = 0 while a completely compliant body has c = ∞. In the case of

a spherical finger contacting another object, deformation is characterized by the

amount of “same space” the two objects occupy. That is, if the finger is allowed to

pass through the object rather than to deform it or to be deformed itself, same space

is the volume of the finger contained within the undeformed object, as represented

in Figure 3.17. This view assumes the finger is rigid, or at least more rigid than

the object, but this is not an issue. Deformation of the finger leads to the same

conclusion, and since the finger’s material and, therefore, its compliance is fixed,

this approach gives a relative measure of an object’s compliance. For flat objects,

the enclosed portion is the volume of the spherical cap created when the finger passes

partially through the object, represented by the shaded volume in Figure 3.17. Same

space is determined by

ss =
h2 (3 rf − h)

4 r3
f

, (3.29)

where h is the height of the spherical cap, and rf is the radius of the finger. If the

two objects are not in contact, shared space = 0. If the finger is completely enclosed

in the object, shared space = 1. For a spherical object, the cut off portion of the

finger is a sphere with radius h.
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Figure 3.17. Compliance of a Manipulable Object, Repre-
sented here by a Cube, is a Function of the Space it Shares
with a Finger

3.10 Fuzzy Logic

The motion planning algorithm is open loop. Therefore, a feedback component is

necessary to eliminate errors associated with the method. Fuzzy logic was chosen to

provide planning for force closure and to determine when to rerun the motion plan-

ning algorithm. Also, as mentioned in Section 2.1, fuzzy logic provides a framework

for natural language processing.

3.10.1 Historical Background

Despite the ubiquitousness of binary systems, the concept of a multivalued logic

system has existed since the early 1920s when Bertrand Russell identified vagueness

in symbolic logic. The idea of multivalence has also been in existence since the 1920s.

It began as three-valued logic, having the values of true, false, and indeterminate, to

deal with the Heisenberg uncertainty principle. As a next step, Polish logician Jan
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Lukasiewicz divided the indeterminate portion into multiple pieces. In the 1930s,

Bertrand Russell coined the term vagueness to describe multivalence [31].

Russell’s work was further advanced in the 1950s when various researchers for-

mulated minimum and maximum operations. The term fuzzy, however, was not

introduced into the technical literature until Zadeh’s paper [85]. The benefit of such

a logic system was shown in 1974 when Ebrahim Mamdani effected fuzzy control of

a steam engine [32]. Since then, fuzzy logic has been used to control cement kilns,

automobile braking systems, and washing machines [59].

3.10.2 Theoretical Background

The power of fuzzy logic is its tolerance for ambiguity. This is accomplished

by describing sets with linguistic rather than quantitative variables. An element

in the set is said to have membership in the set. The value of this membership is

normalized such that

µx(A) ∈ [0, 1],

where µx(A) is the membership of some element x in a set A. The complement

of A, representing the set of elements not in A is denoted by Ac. An element

with µx(A) = 1 is typically called a prototype. For example, an object with a

circumference-to-diameter ratio = π would have a membership value of one in the

set of circles. As the ratio deviates from π, it may still be reasonable to consider

the object to be a circle, only to a lesser extent, yielding a membership value less

than one. Now, consider two objects and their membership in the set of circles.

Traditionally, there can be four possible outcomes since the rules of crisp sets or

binary logic require the object to be declared either a circle or not a circle. These

possibilities are represented by the edges of the square shown in Figure 3.18. At

the bottom left is the empty set, the case where neither object is a circle. At the
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Figure 3.18. Fuzzy Sets. Adapted from [31], p. 129.

bottom right, the first object is a circle but the second object is not a circle, while

at the top left the representations reverse. Finally, the top right represents the case

where both objects are circles; X represents the universe of discourse. However,

if the objects were allowed to have partial membership in the set, points on the

interior of the square would be filled.

The vertices of the rectangle represent binary logic where the law of noncontra-

diction

A ∩ Ac = ∅

and the law of excluded middles

A ∪ Ac = X

are true. As the information becomes more fuzzy, however, the points move toward

the center of the square and these laws are no longer valid. This is a unique char-

acteristic of fuzzy sets. The center of the rectangle is the fuzziest because A = Ac.

This point is equidistant from each of the vertices, making it impossible to round
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off to a binary value. For three objects, the representation is a cube. Beyond three

sets, the representation is a hypercube. This is difficult to represent graphically, but

the meaning is the same [32]. From a systems standpoint, the sets represent inputs

and outputs being described by sets of linguistic variables.

The practical implementation of fuzzy logic involves fuzzification of crisp inputs

through linguistic membership functions. The rule base is evaluated in parallel to

determine each rule’s effect on the system. The rule outputs are aggregated to create

a fuzzy output set. Finally, a defuzzification process generates a crisp output. The

entire process is further described below.

A generic set of membership functions for an input variable is shown in Fig-

ure 3.19. The input variable is described by three linguistic variables which are

“pos”, “neg”, and “zero”. The membership functions for “neg” and “pos” are

trapezoidal in shape; the membership function for “zero” is triangular. Membership

functions can take on various shapes but are usually of simple geometry to minimize

computer coding. A given input value can belong to one or to several membership

functions, and the degree to which it belongs to each membership function is given

by a value between zero and one.

Next, if-then rules are evaluated in parallel for the fuzzified inputs. The rules

describe the behavior of the system. Each rule evaluation forms a fuzzy output

set. The individual output sets are aggregated to form a final fuzzy output set.

This set is defuzzified through one of several methods, the most common being the

center-of-area or gravity (COG) [32]. This defuzzification method is given by

COG =

∑j=m
j=1 wjaj(x)Vjcj
∑j=m

j=1 wjaj(x)cj
, (3.30)

where m is the number of rules, wj is the weight given to rule j, aj is the membership

value of the variable in the fuzzy set for rule j, Vj is the volume of the output fuzzy

set for rule j, and cj is the centroid of that volume. Often, all the rules are weighted
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Figure 3.19. Membership Functions to Fuzzify Input by
Linguistic Variables neg, zero, and pos

equally, allowing wj to be removed from Equation 3.30. For a control system,

this discrete value is the control effort and, therefore, represents some input to an

actuator. A Mamdani [21] inference system is used in this work. Figure 3.20 depicts

the overall process just described for such in inference system.

The variables of a fuzzy inference system are often described by isosceles tri-

angular, interior membership functions, and by trapezoidal, exterior membership

functions. However, since the range of the fuzzy variables is finite, the exterior

membership functions can be treated as right triangles where the left (right) leg of

the trapezoid reaches its maximum height at the maximum (minimum) of the input

range. An example of this is shown in Figure 3.19. In this case the computations of

the inference process are reduced. The membership functions are defined by their

peak p and span s, where p is the abscissa value where the ordinate of the trian-

gle is one. The span is the difference in the abscissas where the ordinates of the

triangle are zero for an interior membership function or the difference between the
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Figure 3.20. Mamdani Fuzzy Inference System

abscissas where the ordinates are one and zero for an exterior membership function.

For example, the membership functions shown in Figure 3.19 have peaks at -1, 0,

and 1 for neg, zero, and pos, respectively while their spans are 1, 2, and 1. This

symmetry is a classic characteristic of fuzzy systems and leads to their modularity.

The fuzzified variables take on one of three membership values

µ =







0, xin < p− s/2

0, xin > p+ s/2

a
s
(xin − p) + 1, p− s

2
< xin ≤ p

a
s
(p− xin) + 1, p < xin ≤ p+ 2

s
,

(3.31)

where xin is the crisp input value and a = 2 if the membership function is interior

and a = 1 if the membership function is exterior. Exterior membership functions

of this type represent actuator saturation on the output side since the defuzzified

output is bounded.

After the implication process, the remaining portions of the input membership

functions that survived the rule parsing are generally trapezoids. Since the height
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and base of the trapezoids are known, all that is required to calculate the area of the

trapezoid is the length of its top. This value is s(1− h) where h is the height of the

trapezoid and is the value of the implication. For an interior membership function,

the centroid of the trapezoid is simply the peak of the original membership function.

For a left-handed, exterior membership function, the centroid is located at abscissa

p + s/3 and at p − s/3 for a right-handed, exterior membership function. This

provides all the necessary information to complete the defuzzification process.

3.11 A Comment on the POE vs. the Denavit-Hartenberg Parameterizations

Murray et. al [47] espouse the elegance of the POE formula over the Denavit-

Hartenberg parameterization for robot kinematics. It is this author’s opinion that

the power of the POE formulation lies in its geometric foundation. As such, it allows

more freedom in reduction of the complexity of the transformation matrices. The

POE construction is straightforward since the user does not have to remember a set

of rules relating consecutive joint parameters. The direction of the axes rotations or

displacements are simply taken in accordance with the spatial, station frame. Also,

the user works with physical link lengths rather than distances between coordinate

axes. The biggest practical advantage is that the POE formulation uses only two

frames to describe the forward kinematics as opposed to n frames for the Denavit-

Hartenberg parameterization. As was shown in Section 3.9.3 the contact coordinate

approach creates enough additional frames to track without introducing superfluous

frames. Finally, the POE approach likely provides a better platform for determining

an analytical solution for the inverse kinematics.

Beyond that, many similarities exist between the two approaches. In each case,

the user must work with a set of 4 × 4 matrices. From a calibration standpoint,

characteristics that affect the accuracy of the Denavit-Hartenberg parameterization
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enter into the POE formulation in similar ways. Ultimately, both methods pro-

vide the same information with similar amounts of computational complexity. The

Denavit-Hartenberg parameterization has been the standard in robotics for many

years, and it appears the switch to the POE formulization is slow in coming.

Chapter 4 takes the two main topics presented somewhat abstractly here, non-

holonomic motion planning and contact kinematics, and applies them to specific

examples. First, SUPCI is used to parallel park a car. Second, the contact evolu-

tion equations are used to track the path of a sphere moving on a plane.
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CHAPTER 4

EXAMPLES

This chapter presents two separate examples to instantiate the theories from

Chapter 3. First, SUPCI is used to motion plan for parallel parking a vehicle.

Second, the contact evolution coordinates are applied to the example of a sphere

moving on a plane. A complete, analytical solution to the inverse kinematics of a

PUMA 560 manipulator is reserved for Chapter 5.

4.1 Vehicle Motion Planning

The ubiquitous example of nonholonomic motion planning is that of parallel

parking a car. From the application, it is clear the constraints are nonholonomic

and the new directions created through Lie-bracketing are evident. A drawback of

the example is that it is not nilpotent; the impact of this will be discussed after

presenting a complete derivation of the problem and simulation results. Nonholo-

nomic motion planning has been applied to more complex versions of the car. In

one, motion is planned through an obstacle course for a vehicle that can only move

forward and turn left [35]. In a real-world application, motion planning was used

to plan routes for a 20-steering-axle truck design to transport Airbus A380 sections

across France [36].
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Figure 4.1. Kinematic Car Model

4.1.1 Car Model

The car is modeled as shown in Figure 4.1. The configuration of the car with

wheelbase l is given by C = (x, y, θ, φ), where (x, y) is the location of the car

measured from the center of the back wheel, θ is the orientation of the car, and φ

is the steering angle.

4.1.2 Kinematic Car Constraints

Constraints arise from the assumption that the tires cannot slide perpendicular

to their orientation. This gives the following velocity constraint equations

sin (θ + φ) ẋ− cos (θ + φ) ẏ − l cosφ θ̇ = 0,

sin θ ẋ− cos θ ẏ = 0.

For a differential equation with n variables, X1dx1 + X2dx2 + · · · + Xndxn, it is a

necessary and sufficient condition for integrability that the following 1
2
(n−1)(n−2)
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independent equations be satisfied [28]

Xν

(
∂Xµ

∂xλ
− ∂Xλ

∂xµ

)

+Xµ

(
∂Xλ

∂xν
− ∂Xν

∂xλ

)

+Xλ

(
∂Xν

∂xµ
− ∂Xµ

∂xν

)

= 0, (4.1)

λ, µ, ν = 1, 2, . . . , n.

In the case of the kinematic car, four states result in three such equations. However,

only the first needs to be checked to show both constraint equations are noninte-

grable, i.e., nonholonomic. By applying Equation 4.1 to the constraint equations,

it can be seen that

sin(θ + φ) (sin(θ + φ)− 0)− cos(θ + φ) (0− cos(θ + φ))− l cosφ(0− 0)

= sin2(θ + φ) + cos2(θ + φ)

= 1 and

sin2θ − cos θ (0− cos θ)

= sin2 θ + cos2 θ

= 1.

The modeling process starts with a real system from which one attempts to find

mathematical equations that accurately describe the system’s behavior rather than

the converse. The benefit of this is that insight exists into the types of constraints

present. The mathematical condition described above provides a check for such

insight.

An advantage of nonholonomic systems lies in accessibility; constraints do not

necessarily reduce the dimension of the workspace. This is because the integral

curves associated with them are open as opposed to their closed, holonomic coun-

terparts. Thus, if one is willing to “wait” long enough, it is possible to drive the

system to a new curve, a precluded action when moving on closed sets. Movement
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(a) (b)

Figure 4.2. Integral Curves for a System Containing
(a) Holonomic Constraints and (b) Nonholonomic Con-
straints. In (a) the point is constrained to move along a
closed curve dependent on the initial condition. In (b)
however, the integral curves are open, allowing the state
to “jump” to another portion.

to this new location is precisely the new direction described by the Lie bracket as

shown in Figure 4.2.

4.1.3 Canonical Control System

Given the nonholonomic constraint equations, it is now possible to apply the

method of SUPCI. To begin, the control inputs are chosen to be u1, the for-

ward/backward velocity of the drive wheel and u2, the steering velocity. Next,

vector fields which annihilate the constraints and satisfy the choice of the control

inputs are selected. Two possible choices are

g1 =

[

cos θ, sin θ,
tanφ

l
, 0

]T

and g2 = [0, 0, 0, 1]T .
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In all four cases, ωi · v = 0, i = 1, 2, where ωi is the ith constraint equation, and

v = g1, g2. Therefore, the control system can be written as










ẋ

ẏ

θ̇

φ̇










=










cos θ

sin θ

tanφ/l

0










u1 +










0

0

0

1










u2. (4.2)

As a check, when θ = φ = 0, the system reduces to ẋ = u1 and φ̇ = u2 which agrees

with the choices for the control inputs.

4.1.4 Phillip Hall Basis

With four generalized coordinates, two additional independent vector fields are

needed to span the configuration space. Following the construction of the Phillip

Hall basis given in Section 3.2, the following vector fields are available:

g3 = [g1, g2] =

[

0, 0, − 1

l cos2 φ
, 0

]T

,

g4 = [g1, g3] =

[− sin θ

l cos2 φ
,

cos θ

l cos2 φ
, 0, 0

]T

, and

g5 = [g2, g3] =

[

0, 0,
−2 tanφ

cos2 φ
, 0

]T

,

leaving an additional vector field. Investigating the rank of this distribution shows

a dependency between g3 and g5. By convention, preference is given to lower order

brackets. The reason for this is obvious — lower order brackets equate to less

switching of the control inputs to produce the same net motion. Taking the two

original vector fields and the first two vector fields from Lie bracketing, the involutive

closure is ∆ = [g1, g2, g3, g4].

Before leaving this, a quick review of L(∆) shows the directions generated by

the Lie brackets are intuitively obvious. They are motions one would expect to need

when parallel parking a car. First, g3 affects only θ̇ which causes a 0-radius turn of
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the vehicle. Second, when the vehicle orientation, θ, is zero, motion along g4 causes

a sideways movement, the precise motion which was precluded by the constraint

equations. Finally, motion along g5 causes the vehicle to rotate, a motion already

achieved by g3.

4.1.5 The Extended System

The extended system is

ẋ = B1u1 +B2u2 +B3v1 +B4v2, (4.3)

where B1 = g1, B2 = g2, B3 = g3, and B4 = g4 are the Phillip Hall basis vectors

and v1 and v2 are fictitious inputs. They are termed fictitious because these inputs

do not actually exist for the system. Rather, it is necessary to emulate these inputs

from the existing inputs via Lie brackets. As an aside, however, imagine how easy

it would be to parallel park if another “actuator” existed to spin the tires, allowing

one to “pull” into the spot. In fact, this would eliminate the need for v2.

4.1.6 Fictitious Inputs

To determine the fictitious inputs, a trajectory, γ ∈ C≥ 1, is selected between the

starting and endpoints, xo and xf , respectively for the vehicle such that at time 0,

γ = xo and at time tf , γ = xf . For this example, it is assumed xo = (0, 0, 0, 0)

and xf = (1, 1, 0, 0). Choosing a straight line for the trajectory gives

γ(t) = xo + t(xf − xo), t ∈ [0, 1].

Differentiating with respect to time gives

γ̇ = xf − xo = [1, 1, 0, 0]T ,
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and solving for the fictitious inputs gives

V = B−1
| xo
γ̇ =








1

0

0

l







,

where B = [B1, B2, B3, B4, ]. Next, ḣ = Q(h)v, h(0) = 0 is sequentially solved

for the backward Phillip Hall coordinates. This gives

h =








1

0

0

l







.

It should be noted that to move between the two configurations it was not necessary

to apply the second input or the first fictitious input. By observing Figure 4.3, it

can be seen that one way to achieve the end configuration is to move forward to (1,

0, 0, 0) by applying u1 and then to move sideways to (1, 1, 0, 0) by applying v2.

u1

v
2apply

apply

γ

x   = (1, 1, 0, 0)f

ox   = (0, 0, 0, 0)

Figure 4.3. Path Selected by Motion Planning Algorithm
to Park Car
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Figure 4.4. Path Followed to Move from (0, 0, 0, 0) to (1, 1,
0, 0). The desired final position is indicated by the dashed
outline.

4.1.7 Simulation Results

The full simulation is shown in Figure 4.4. The dashed outline of the car repre-

sents its desired configuration, and only the steering wheel is shown for clarity. At

the end of the simulation, xf = (1.85, 0.84, 0, 0).

The error in the final configuration is due to the system not being nilpotent.

Building additional higher-order brackets would show that they are not identically

zero over the entire configuration space. For example, g5 has already been shown

to be not equal to zero. To work around this, the system can be made nilpotent

via a transformation of the control inputs, or the algorithm can be run iteratively.

The iterative approach includes error tolerances in deviation from the desired final

configuration and also a critical distance that can be traversed through any one pass

of the algorithm. For steering a car around an empty lot, the critical distance is not

an issue as long as it is greater than the distance between the starting and desired

endpoints. Finally, this method could be used for stationary obstacle avoidance

since the nominal trajectory can be selected to steer the system around an object.
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The disadvantage in this approach is that the inputs must be applied over short

intervals to remain close to the selected trajectory. As seen in the simulation for the

car, longer intervals lead to deviations from the nominal trajectory. In the case of

avoiding parked cars, this can certainly lead to collisions, and provides motivation

for feedback. Information about the clearance between the moving vehicle and

parked cars can be used to limit the largest displacement from some starting point

the algorithm will compute. In addition, the iterative method can be used to keep

a finger from, for example, rolling off the edge of a cube during manipulation or

rolling outside the area covered by its sensors.

Figures 4.5 and 4.6 show simulation results for two versions of the iterative

method. For clarity only the car’s path is shown; the steering and car angles have

been omitted. For the results shown in Figure 4.5, the critical distance is greater

than the nominal trajectory, but an error tolerance has been set. Therefore, the

path proceeds as in Figure 4.4. At the end of the first run, the final configuration

has not been reached within the error tolerance so the motion planning algorithm

is repeated with the current configuration as the new initial configuration. The

result is a reduced copy of the first path. The algorithm performed three iterations

resulting in a configuration error of 2.0× 10−4. For the results shown in Figure 4.6,

the critical distance is half the distance between the beginning and endpoints. The

algorithm performed three iterations resulting in a configuration error of 8.2×10−4.

For both cases, the configuration error ceiling was 0.01.
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Figure 4.5. Path Followed to Move from (0, 0, 0, 0) to (1,
1, 0, 0) Using the Iterative Method with no Restriction on
the Critical Distance
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Figure 4.6. Path Followed to Move from (0, 0, 0, 0) to (1, 1,
0, 0) Using the Iterative Method with a Restrictive Critical
Distance
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4.2 Contact Kinematics: A Sphere Moving on a Plane

One coordinate chart for the unit sphere representing a finger shown in Figure 4.7

is

cf (u, v) =







cosu cos v

cosu sin v

sinu






,

with

U = {(u, v) : −π/2 < u < π/2, −π ≤ v < π}.

This chart does not include either of the poles. Therefore, depending on the start-

ing position on the sphere and the contact angle, it is possible for mathematical

singularities to occur. This is purely a manifestation of the coordinate chart chosen

since there is no physical reason the sphere cannot move over one of its poles. This

can be corrected by using a second map which covers the remainder of the sphere.

Then, switching between maps would have to be done based on the current contact

location. Typically, however, the assumption is made that movement occurs where

only one chart is required. Given the nature of the end-effector, and the number of

force sensors used for this work, it remains a valid assumption here.

For a flat plane, the chart is simply

co(u, v) =







u

v

0






.

The object and finger maps are orthogonal since the dot product, cu · cv, in each

case is zero. The Gauss frames are determined by taking the partial derivatives of

the maps with respect to u and v. At each point on the map, the x-axis points in

the direction of cu, the y-axis points in the direction of cv, and the z-axis points in
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Figure 4.7. Local Parameterization of a Sphere

the direction of cu × cv. For the sphere,

cfu
=







− sin u cos v

− sin u sin v

cosu







and cfv
=







− cos u sin v

cosu cos v

0






,

and for the plane,

cou
=







1

0

0







and cov
=







0

1

0






.

Hence, the Gauss frame points in the same direction at every point on the plane.

The geometric parameters for the sphere are

M =




1 0

0 cosuf



 , K =




−1 0

0 −1



 , and T = [0 − tanuf ] .

The geometric parameters for the plane are

M =




1 0

0 1



 , K =




0 0

0 0



 , and T = [0 0] .
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Recalling Equation 3.25, the contact equations are












u̇f

v̇f

u̇o

v̇o

ψ̇












=












0

0

cosψ

− sinψ

0












vx+












0

0

− sinψ

− cosψ

0












vy+












0

−sec uf

sinψ

cosψ

tanuf












ωx+












1

0

cosψ

− sinψ

0












ωy+












0

0

0

0

1












ωz. (4.4)

The initial condition used in the simulations is (uf , vf , uo, vo, ψ) = (0, 0, 0, 0, 0).

For U = (0, 0), this corresponds to a point on the surface of the sphere, along the

equator at (1, 0, 0) (recalling Figure 4.7). Evaluating the Gauss frame for the

sphere at this point, and stacking the directional vectors next to each other gives

Gf (0, 0) =







0 0 −1

0 1 0

1 0 0






.

The first simulation involves sliding the sphere along the plane. In this case, the

contact point on the sphere is fixed while it evolves on a straight line on the plane.

Since the contact point on the sphere is fixed, the contact angle is also constant.

Simulation results with vx = 1 /sec are shown in Figure 4.8. The second simulation

is a rotation of the sphere about its z-axis. The point of contact is fixed on both the

finger and the plane. However, the contact angle changes since the contact frame on

the sphere rotates with the sphere. Simulation results with ωz = 1 /sec are shown

in Figure 4.9.

The two simulations shown both represent motions that are precluded by the

assumption of nonholonomic constraints, namely sliding and twisting. As a final

example, the twisting of the sphere about its z-axis, which changes the contact

angle, can be achieved through a Lie bracket motion. For this system, the Lie
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Figure 4.8. A Sphere Sliding along a Plane: (a) Con-
tact evolution on the plane, (b) Contact evolution on the
sphere, and (c) Contact angle

bracket motion which effects a twist about the z-axis is

g3 = [g1, g2] =












0

secuf tanuf

− sinψ tanuf

− cosψ tanuf

−sec2uf












,

where g1 and g2 represent the vector fields associated with ωx and ωy in Equation 4.4,

respectively. Following the development described in Section 3.3, results for a desired

final configuration of (0, 0, 0, 0, 5◦) are shown in Figure 4.10. The result was a

3% error in the final angle, and position errors of 0.013 and 0.03 for the sphere and

plane, respectively.

Despite the ubiquitous use of orthogonal coordinate maps, it is important to

note that many interesting surfaces have nonorthogonal coordinate maps but can

still be parameterized in the usual way. These surfaces are often used in solid

modeling [56]. However, objects with other irregularities, namely those with edges

or corners, remain intractable. Such objects have no definable derivatives at these

locations so it is impossible to parameterize them as done above. One method
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Figure 4.9. A Sphere Twisting on a Plane: (a) Contact evo-
lution on the plane, (b) Contact evolution on the sphere,
and (c) Contact angle

−1

−0.5

0

0.5

1
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

y

 

z

x

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

Time (sec)

C
on

ta
ct

 A
ng

le
 (

de
gr

ee
s)

(a) (b) (c)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−0.1

0
0.1

 

x
y

Figure 4.10. Lie Bracket Motion of a Sphere Rolling on a
Plane to Effect a z-axis Twist: (a) Contact evolution on
the plane, (b) Contact evolution on the sphere, and (c)
Contact angle
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to address this limitation was presented by Wei [76] through an extension of the

stratified configuration spaces theory.

The above examples help to build on the knowledge necessary to complete the

task of robotic manipulation. The next chapter presents preliminary results and

some logic approaches to this end.
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CHAPTER 5

METHODS AND PRELIMINARY RESULTS

This chapter outlines the methods used to execute manipulation of a sphere and

cube including the impact of the robot and finger designs, required information based

on the approach, and manipulation logic. In addition, nonsmooth object manipu-

lation is discussed, the shared space concept of object compliance is experimentally

verified, a complete, analytical solution to the inverse kinematics for a PUMA 560

manipulator is presented, and the Lie bracket motions are experimentally verified.

5.1 Test Bed

The Mechanical Engineering Controls Laboratory at the University of Notre

Dame houses four, six-DOF Unimate, PUMA 560 robots. These are the same robots

used for experiments conducted by Wei [76]. Therefore, much of the hardware and

software infrastructure was already in place.

The robots are fixed on a 94” by 94” raised platform equidistant from the plat-

form’s center. For various manipulation tasks three types of balls serve as fingertips:

racquet balls filled with expanding foam to form a relatively rigid fingertip, and two

types of pliable balls to function as compliant fingertips, one approximately 2.2” in

diameter and the other approximately 2.75” in diameter. For the last of these, six

force sensors are mounted on each with double-sided tape for closed loop manipula-

tion tasks. Each robot has the following nominal parameters: lo = 26.45”, l1 = 9.2”,
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robot 4

Figure 5.1. Robotic Manipulation Test Bed

l2 = 17.0”, l3 = 3.7”, and l4 = 17.05”, where the lengths are as shown in Figure 3.4.

In addition, the finger has length l5 = 6.0”. A picture of the test bed is shown in

Figure 5.1.

Locally, each robot has the same coordinate frame. Their configurations with

respect to a global palm frame are

gPS1
=










0 −1 0 47

1 0 0 14

0 0 1 0

0 0 0 1










gPS2
=










0 1 0 47

−1 0 0 80

0 0 1 0

0 0 0 1










,

gPS3
=










−1 0 0 80

0 −1 0 47

0 0 1 0

0 0 0 1










gPS4
=










1 0 0 14

0 1 0 47

0 0 1 0

0 0 0 1










,

95



S1

S4

S2

S3

x1

y1

y4

x4

x2

y2

x3

y3

P

XZ
Y

Figure 5.2. Schematic of Robotic Manipulation Test Bed
with Reference Frames

where gPSi
, i = 1, 2, 3, 4 represents the transformation from the palm to the station

frame of robot i. The object’s frame initially has the same orientation as the palm’s

frame and is located at the center of the platform. Its height is dependent on the

object. The entire layout is depicted in Figure 5.2.

The robots are controlled via a Pentium III, 500 MHz computer running Linux

Redhat release 7.2 containing three Galil 1880 motion control boards with 100-pin

cable connectors. Each board can control up to 8 axes. Board #1 controls joints

1 and 4 on each robot, Board #2 controls joints 2 and 5, and Board #3 controls

joints 3 and 6, where the joint numbers are as labeled in Figure 3.3. Additionally,

each board has 8 analog input channels which influenced the selection of the number

of force sensors on each robot. The sensor readings are converted to a computer
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signal via a 16-bit analog-to-digital converter with a range of ±10 V. This range is

standard for the Galil boards; however, the higher resolution converter will partially

make up for the fact that the force values should never be negative as an 8-bit

converter is standard. Physically, the robots and sensors are connected to the boards

through Galil ICM-1900 interconnect modules. These modules separate the I/O

connections from the motion control boards’ main cables into individual screw-type

terminals. Finally, communication is provided through in-house device drivers. The

drivers make possible the reading of robot joint information by the computer and

the sending of commands to the robot. Code for the device drivers is given in [76].

All code to run the robots is written in the C programming language and is included

in Appendix C.

5.1.1 Wrist Assembly

Due to the design of the wrist, it is necessary to make a distinction between wrist

motor angles, given by encoder counts, and wrist joint angles given by the actual

rotation of a joint. The wrist design is shown in Figure 5.3.

Due to the linkage assembly, a rotation of motor four causes both joints five and

six to rotate. Likewise, a rotation of motor five causes joint six to rotate. Assuming

motor four has been driven, the encoder readings on motors five and six remain

the same while the direction of each joint changes. Therefore, it is necessary to

make corrections to joints five and six when transforming from encoder counts to

joint angles, and from joint angles to encoder counts. The correction factors used

were c45 = −0.014, c46 = −0.013, and c56 = −0.181, where the subscripts indicate

the association between the two coupled joints. For example, if joint four is held

constant, and joint five is rotated 100◦, then joint six rotates -18.1◦ while the counts

on the encoder attached to motor six do not change. An example of this passive
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Figure 5.3. PUMA 560 Wrist Assembly [71]

rotation of joint six is shown in Figure 5.4. The view in Figure 5.4 is looking down

along the outer link, as labeled in Figure 5.3, to the wrist. The left-hand photograph

is of the robot in its zero configuration, and the right-hand photograph is of the robot

after joint five has been rotated.

5.1.2 Fingertip Design

The rubber balls serving as the fingertips for closed loop manipulation have a

hollow core. The finger itself has a threaded screw, and, originally, the balls were

placed over this screw and secured on the flange. With this setup, however, when the

finger is in contact with an object and joint six rotates, it is possible for the fingertip

to slip on the finger. This loses information regarding the finger configuration. To

prevent this, a threaded wooden dowel was placed on the screw, glue applied to the
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Figure 5.4. Mechanical Coupling of the Wrist Joints. When
joint five is commanded to rotate, joint six passively ro-
tates.

outside of the dowel, and the fingertip slid over the dowel. The finger with and

without the dowel are shown in Figure 5.5.

5.2 Haptic Sensors

The force sensors were purchased from Tekscan, and sell under the product

name of FlexiForcer. The sensors are inexpensive and useful for this application

for several reasons. First, because the sensors can be flexed, they provide a method

for measuring forces applied to curved, compliant surfaces. Second, the sensor drift

is minimal in the time frames used. This characteristic will prove useful since force

information is required after the fingers have been in contact with an object for an

extended time, during fixed-point manipulation for example. Finally, the sensors

are very thin so they can be affixed to the surface of the fingers with little impact

on surface properties or geometry. One drawback is that the sensors are meant to

measure normal forces but shear forces can damage them. Shearing can certainly

occur during the manipulation process if the direction of joint six changes while

the finger is not rolling. In addition, the wrist joint corrections can cause a shear
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Figure 5.5. Finger without and with Threaded Dowel

as well. For these reasons, it was decided to keep the orientation of joint six fixed

during object acquisition and while checking the slip condition, but to allow it to

change during manipulation.

The sensor’s output is converted to a voltage and collected through the analog

input channels available on the motion control boards. A picture of a sensor suite

on a finger is shown in Figure 5.6.

Figure 5.6. Robotic Fingertip Sensors
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The sensors provide information on the contact location on the finger and an

input to check the slip condition. It is assumed contact occurs at a point and that

this point is located at the geometric center of a sensor. In reality, several sensors

will be in contact with the object so the contact coordinates are then taken as the

centroid of the point forces. Approximating the sensor surface as a plane, Figure 5.7

shows the locations of the sensors on a finger. The contact coordinates u and v are

confined within the rectangle connecting the centers of the six sensors.

3 4 5
2 6

u

v1

Figure 5.7. Finger Contact Coordinates According to Sen-
sor Locations

The centroid method would be advantageous if one sensor is saturating quickly.

In this case, the error in the contact coordinate would be skewed less to the bad

sensor with the centroid approach. If signal noise is present, it is expected to be

worse with the robots in motion. However, the sensors will be read once the robots

have completed a motion. This should be the optimal time to obtain the sensor

information since motor power will be minimal.

Once the contact coordinates on the finger are measured, the contact coordinates

on the object can be calculated based on the fingertip’s current location, recalling
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that this is determined from the forward kinematics mapping where the joint angles

are read from the robot’s motor encoders. It remains to transform this position

to the object’s frame. This formulation is delayed until Section 5.4 so that the

second use of the force sensors can be presented next. This also preserves a more

natural order since the robots must successfully hold an object prior to concerns

regarding necessary inputs to the motion planning algorithm. The second use for

force feedback is accessing the “slip” condition. This ensures the object is not

dropped during manipulation.

5.3 Slip Condition

The term slip condition is used to indicate whether the fingers have a firm enough

grasp of the object to keep from dropping it. Despite the name, no knowledge of

object or object/end-effector dynamics is inferred. Monitoring of the slip condition

could allow for trajectory modification at any point during manipulation. The

manipulation process here is to acquire the object, rotate the object, reconfigure

the fingers, and check the slip condition. These steps are repeated if the desired

amount of rotation has not been met. Force sensor information is used in the

first and last steps as partial inputs to a fuzzy controller. The controller outputs

adjustments to the fingers’ positions.

The fuzzy controller contains two inputs, the current maximum contact force

and the current x-position of the fingertip, and one output, the change in the de-

sired position of the fingertip. The membership functions for the input and output

variables associated with manipulating the ball are shown in Figure 5.8. For the

cube, the range on both input membership functions was changed to [0, 5] and

[29, 31] for the force and x-position, respectively.
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Figure 5.8. Membership Functions for Fuzzy Controller to
Check Slip Condition of Ball

A system with 2 inputs and 5 membership functions for each input uses a maxi-

mum of 25 rules. These rules are represented by the rule table shown in Figure 5.9.

The symmetry of the rule table should be noted. In addition, the rule set is modular;

it was originally developed for an inverted pendulum controller. The controller was

simple to reconfigure as only the values of the membership functions were changed.

This modularity is a desirable feature of fuzzy systems, and can be used to accom-

modate various-sized objects.

It is assumed that a finger displacement along the contact normal is sufficient

to stabilize the grasp. To reduce the number of computations, the contact normal

was estimated to be the x-axis of each finger. In addition, rather then designing

a multi-output controller, the output is transformed along the components of the

finger’s x-axis. This is given by the first column of the fingertip’s configuration with
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Figure 5.9. Rule Table for Fuzzy System

respect to the station frame gsf . Therefore, the new desired position vector is

p = ∆ [R11 R12 R13]
T ,

where ∆ is the controller’s output, and R is the rotation matrix associated with

the configuration gsf . The inverse kinematics is used to calculate the joint angles

required to reposition the finger while maintaining a fixed orientation. This process

is continued until |∆| < 0.05”. Checking the slip condition provides a rudimentary

form of force closure.

A grasp is force closure if it can resist an arbitrary wrench [47]. In the case

of manipulation, the most prevalent external force is usually the body’s weight.

Verification of a force-closure grasp is difficult to show except for cases involving

simple finger models and simple surfaces. Therefore, the majority of work done on

determining force closure for grasping has been done for planar, polygonal shapes.

This is due to the fact that constructive approaches are readily attainable for two-

dimensional (2D) cases [38]. For a treatment of the issues raised regarding 3D

104



grasping, the interested reader is referred to [62]. It has been shown, however, that

between seven and twelve frictionless, point-contact fingers are required to grasp

many 3D objects [47].

The basic results from 3D force closure research posit that a force closure grasp

is more likely under the conditions of high friction, and, for nonsmooth objects, high

compliance, and contact of a vertex. The assertion here is that the manipulation

system exhibits these characteristics. A soft finger can replace three frictionless,

point contact fingers [51]. Since the manipulation system has four compliant fingers,

this is equivalent to greater than the 12 frictionless, point-contact fingers needed to

grasp many 3D objects.

The main task from a force closure standpoint in this work is to balance gravity

during object acquisition and the subsequent manipulation process. Despite this, no

explicit force closure calculations are performed in real-time to provide additional

feedback to the slip controller. Instead, haptic feedback will play a dual roll in

balancing a basic level of force closure with minimizing errors introduced due to

compliance.

5.4 Contact Coordinate on an Object

Once the robots have grasped and lifted the ball, the configuration between each

robot’s station frame and the object is known since the fingertip and object share

a common contact point. The subscript of the local frame has been dropped in

the following since, ultimately, only the location of the frame’s origin and not its

orientation is required. It should be recalled, as described in Section 3.9.3, that,

while lf and lo share a common origin, they, generally, have different orientations.

According to the frames shown in Figure 5.10, the configuration of the contact frame
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with respect to the object’s frame for robot i is

gol = g−1
sio
gsif g

−1
Ff gFl, (5.1)

where gsio is the configuration of the object with respect to robot i’s station frame

and gsif is the configuration of the fingertip with respect to robot i’s station frame.

The latter is determined from the forward kinematics using the robot’s current joint

angles. The configuration of the fingertip’s frame with respect to the finger frame

gFf is a fixed transformation given by









1 0 0 rf

0 1 0 0

0 0 1 0

0 0 0 1









,

where rf is the finger’s radius. The fingertip was chosen since it directly gives the

desired location for grasping and manipulating an object. The contact coordinate,

however, is measured with respect to the finger’s center F . Therefore, the fingertip

is used at the cost of an additional calculation. The location of the contact frame

with respect to the finger’s frame gFl is measured by the force sensors, and this

frame’s orientation is determined by the Gauss frame at the contact point. In this

case, the location and orientation give gFlf , the configuration of the contact frame

on the finger with respect to the finger. As mentioned previously, this is of no

consequence since the two contact frames lf and lo share a common origin.

Once the contact location is determined from Equation 5.1, it must be rotated

back by an amount equal to the current total rotation of the object to determine

the correct contact coordinates since gsio is fixed in Equation 5.1. The amount of

rotation is based on the desired value of the fixed-point rotation and that the ball’s

configuration does not change during finger Lie bracketing. Theoretically, after each

rotation the contact coordinates remain unchanged because the object rotates as well
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Figure 5.10. Manipulator and Object Frames to Determine
Object’s Contact Coordinates

and the contact coordinates are determined relative to the object’s frame. Since the

finger has changed position relative to its station frame, however, the contact point

must be calculated as if the ball remained fixed and the fingers repositioned. Then

the point of contact must be rotated back so that the proper contact location is

pol = RT
ω (θ) p̃ol, where RT

ω (θ) is the rotation matrix about the general twist axis

ω by an amount θ equal to the current total rotation of the object and p̃ol is the

location of the contact point on the object as determined from Equation 5.1. An

alternative approach would be to rotate the object’s frame so that gsio is no longer

constant, prior to applying Equation 5.1.

The object’s contact coordinates are then given by

u = asin(zo/ro) and v = atan2(yo, xo),

where xo, yo, and zo are the x-, y-, and z-components of pol, respectively. Finally,

the contact angle is
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ψ = atan2 (−Gx
o ·Gy

F , G
x
o ·Gx

F ) ,

where Gx
o and Gx

F are the x-axes of the Gauss frames on the object and finger at

the point of contact, respectively, and Gy
F is the y-axis of the Gauss frame on the

finger.

5.5 Lie Bracket Decomposition

Any Lie bracket can be written as a composition of flows along two existing vector

fields. By necessity, as the order increases, the number of compositions increases.

Due to the skew symmetric property of Lie brackets, however, some reductions

occur. The reductions appear in two forms: 1) Flow along the same vector field and

in the same direction occurs for back-to-back compositions. This is equivalent to

flowing along the vector field for twice the time, eliminating one flow, and 2) Flow

along the same vector field and in the opposite direction occurs for back-to-back

compositions. In this case, the flows commute, eliminating both. For example, the

second order brackets g4 = [g1, g3] and g5 = [g2, g3] used for the manipulation task

can be executed as

φg4
t3

= φ−g3t ◦ φ−g1t ◦ φg3t ◦ φg1t

= φ−g1√
t
◦ φ−g2√

t
◦ φg1√

t
◦ φg2√

t
◦ φ−g1t ◦ φ−g2√

t
◦ φ−g1√

t
◦ φg2√

t
◦ φg1√

t
◦ φg1t

= φ−g1√
t
◦ φ−g2√

t
◦ φg1√

t
◦ φg2√

t
◦ φ−g1t ◦ φ−g2√

t
◦ φ−g1√

t
◦ φg2√

t
◦ φg1√

t+t
,

φ−g4
t3

= φ−g1t ◦ φ−g3t ◦ φg1t ◦ φg3t

= φ−g1t ◦ φ−g1√
t
◦ φ−g2√

t
◦ φg1√

t
◦ φg2√

t
◦ φg1t ◦ φ−g2√t ◦ φ

−g1√
t
◦ φg2√

t
◦ φg1√

t

= φ−g1
t+
√
t
◦ φ−g2√

t
◦ φg1√

t
◦ φg2√

t
◦ φg1t ◦ φ−g2√t ◦ φ

−g1√
t
◦ φg2√

t
◦ φg1√

t
,
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φg5
t3

= φ−g3t ◦ φ−g2t ◦ φg3t ◦ φg2t

= φ−g1√
t
◦ φ−g2√

t
◦ φg1√

t
◦ φg2√

t
◦ φ−g2t ◦ φ−g2√

t
◦ φ−g1√

t
◦ φg2√

t
◦ φg1√

t
◦ φg2t

= φ−g1√
t
◦ φ−g2√

t
◦ φg1√

t
◦ φ−g2t ◦ φ−g1√

t
◦ φg2√

t
◦ φg1√

t
◦ φg2t ,

and

φ−g5
t3

= φ−g2t ◦ φ−g3t ◦ φg2t ◦ φg3t

= φ−g2t ◦ φ−g1√
t
◦ φ−g2√

t
◦ φg1√

t
◦ φg2√

t
◦ φg2t ◦ φ−g2√t ◦ φ

−g1√
t
◦ φg2√

t
◦ φg1√

t

= φ−g2t ◦ φ−g1√
t
◦ φ−g2√

t
◦ φg1√

t
◦ φg2t ◦ φ−g1√t ◦ φ

g2√
t
◦ φg1√

t
,

where the composition of flows occurs from right to left. If one is willing to keep

track of the forward and backward flows within a bracket motion, it is possible to

decompose the motions even further.

5.6 Manipulator Jacobian

Murray et al. [47] describe a Mathematicar package for performing screw calcu-

lations, including calculating the Jacobian. In addition, recalling the discussion of

Section 3.6.1, another formulation of the Jacobian is presented here. The Jacobian

essentially shows twists associated with a specific joint in a general configuration

as opposed to the zero configuration described previously. Basically, the columns

of the Jacobian map movements of individual joints to tool frame velocities. For

all joints prior to the tool frame, the remainder of the manipulator is treated as a

single, rigid body attached to the joint of interest. Similarly, joint movements of

preceding joints can be mapped to velocities of a frame on the joint directly follow-

ing the moving joint. For this reason, the first column of a manipulator’s Jacobian

is always simply the twist of the first joint. The velocity of a frame on joint two
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is only affected by joint one and so on. For example, when joint one is rotated,

the axis of joint two now points in a new direction. This can be determined from

ω̃2 = ω̂1ω2. Similarly, the new location q̃2 of q2 can be determined. After traversing

all the joints in this fashion, the effect of joint movements on the manipulators tool

frame has been determined. Once ω̃2, . . . , ω̃6 and q̃2, . . . , q̃6 are determined, the new

twists, which are the columns of the Jacobian, can be computed as usual.

For the PUMA 560 manipulators used in this work, the first four columns of the

spatial Jacobian are shown in Figure 5.11, and column five is shown in Figure 5.12

as returned by the Mathematicar package mentioned above. Column six is not

shown due to its shear size; however, the increasing complexity of the Jacobian as

more and more joints are traversed is obvious.

5.7 Kinematic Simulation

A graphical simulation of the manipulation system has been effected in Matlabr.

It is a kinematic simulation, simply showing the changing position of each robot. Its

main use is to test open loop trajectories to ensure robots do not collide in real-time.

The simulation was used to create a “time-lapsed” version of the robots acquiring

an object shown in Figure 5.13, although the object was only shown for reference,

and not animated.

5.8 Extended Systems

The contact kinematics for a sphere moving on a plane was given in section 4.2.

This represents the local contact coordinates for an end-effector to roll or slide on

the face of a cube. Here, the new vector fields, composed of Lie brackets, which

replace the sliding velocities vx, vy, and ωz under rolling constraints are presented
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Figure 5.11. First Four Columns of the Spatial Manipulator
Jacobian for the PUMA 560
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Figure 5.12. Column Five of the Spatial Manipulator Ja-
cobian for the PUMA 560
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Figure 5.13. Simulation for Acquiring an Object

as well as the vector fields for a sphere rolling on a sphere for manipulation of the

rubber ball.

For the case of a ball rolling on a plane, the extended system is












u̇f

v̇f

u̇o

v̇o

ψ̇












=












0

−sec uf

rf sinψ

rf cosψ

tanuf












ωx +












1

0

rf cosψ

−rf sinψ

0












ωy +












0

sec uf tanuf

−rf sinψ tanuf

−rf cosψ tanuf

−sec2uf












v1

+












0

0

rf cosψ

−rf sinψ

0












v2 +












0

sec uf (sec2uf + tan2 uf )

−2rf sec2uf sinψ

−2rf cosψsec2uf

−2sec2uf tanuf












v3. (5.2)

113



For the case of a sphere rolling on a sphere, the extended system is
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5.9 Nonsmooth Object Manipulation

It will be shown in Chapter 6 that compliant fingers can be used to grasp nons-

mooth objects on their edges, a tenuous task using rigid fingers. This represents the

entire motivation for using compliance in the sense intimated throughout this work.

Manipulating nonsmooth objects presents a challenge from a mathematical stand-

point because the surfaces that represent a cube, for example, cannot be smoothly

connected. The end of Chapter 6 will be spent investigating two avenues around
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this. In the first case, the cube will be grasped on its edges. Then, it will be assumed

that the edge is a part of the face onto which the finger would roll during Lie brack-

eting. In the second case, the cube will be grasped on its faces. Mathematically,

the motion planning algorithm will assume the cube has been unfolded into a flat

surface as shown in Figure 5.14. This approach allows the fingers to, theoretically,

roll across the edges as if the surface remains in its same orientation. Since this is

not true practically, however, the edge must be detected. Once detected, the contact

normal must be rotated ±90◦ to move the finger onto the new face while the finger

reconfiguration continues while also accounting for the changes in the directions of

the rolling velocities.

4
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42
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5

6

6 5 2

1

3

Figure 5.14. An Unfolded Cube is Treated as a Flat Mani-
fold for Motion Planning

The above discussion completes all the information necessary to determine robot

joint angles for manipulation. Using the approach to manipulation described here,

it is possible to use the modified constraint equation given in Equation 3.28 for

both fixed-point contact and finger reconfiguration. In the first instance no rolling

is assumed so ξ = 0. In the latter no object motion is assumed so V s
po = 0. It is only

necessary to recall that when performing rotation, joint angles for all the fingers

are solved simultaneously instead of individually when reconfiguring the fingers.
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Therefore, during rotation the hand Jacobian and hand grasp map described in

Equation 3.20 must be used.

Prior to discussing manipulation logic, experimental results verifying object com-

pliance, the inverse kinematics solution, and the Lie bracket motions generated are

presented. The next chapter presents experimental results associated with the crux

of this research, object manipulation.

5.10 Compliance Verification

To test the presentation of shared-space for object compliance of Section 3.9.5,

three objects of varying compliance were tested. The first was an under-inflated

soccer ball; the second, a rubber “playground ball” inflated to 22 psi; the third, a

solid cube made of balsa wood. Intuitively, it is known that the soccer ball is the

most compliant, followed by the rubber ball, and then the cube. To test this, each

object was acquired and the sensor values and joint encoder counts were recorded.

Ideally, the compliance determined based on each finger should be equivalent. How-

ever, this is not the case, and a “compliance index” based on an average for the

fingers was computed for each object.

5.10.1 Determining the Height of the Spherical Cap

To determine the height of the spherical cap for the test bed shown in Figure 5.1,

it is necessary to write the object in the palm’s frame as

gPO =










1 0 0 47

0 1 0 47

0 0 1 pz

0 0 0 1










,

where pz depends on the particular object. The height is

h = ro + rf − pof , (5.4)
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Spherical Cap for Compliance Calculation

where ro is the distance from the object’s origin to its face for a flat object or the

object’s radius for a sphere, rf is the finger’s radius, and pof is the distance between

the object and finger as shown in Figure 5.15 where

pof =
√

(pxo − pxf )2 + (pyo − pyf )2 + (pzo − pzf )2.

The object and finger are not touching if pof > ro + rf . This implies h < 0. Since

the height of the spherical cap must be positive, it is concluded that

0 ≤ h < 2rf .

The volume of the spherical cap is [64]

Vc =
π

3
h2 (3r − h) . (5.5)

Comparing this with the total volume of the finger gives a measurement of the

shared-space between the object and finger. If the finger is completely enveloped

by the object, then the amount of shared space is equal to the volume of the finger.
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This can be seen by substituting for h in Equation 5.5. Then

Vc =
π

3
(2rf )

2 (3rf − 2rf )

=
4

3
πr3

f .

For a spherical object the height (radius) is twice that of the height of a spherical

cap. The space a spherical object cuts out of a spherical finger while passing through

it consists of an additional cap whose height is also h. The difference between the

two volumes an object removes from a spherical fingertip while sharing space with

it is like slicing open a cantaloupe with a knife for a flat object surface versus

removing a scoop from the cantaloupe with a melon baller for a spherical object.

From Equation 5.4, a spherical object completely envelops the finger when ro = pof .

5.10.2 Results

For the three objects, the compliance index values shown in Table 5.1 were

determined. This is consistent with preconceived ideas regarding the compliance of

each object. Testing the cube presented a challenge because it is free to slide if one

finger contacts the object prior to its opposing finger. This is generally the case,

and, therefore, information about po is lost. The two values listed in Table 5.1 for

the cube represent two trials. First, the cube was held fixed during the acquisition

procedure. Second, the cube was allowed to slide. Even though the values differ,

they still represent the most rigid object relative to the other two. Finally, as a test

for repeatability, five trials were run for each object. The compliance indices for

each trial are shown in Figure 5.16. In no case did compliance indices overlap.

5.11 Inverse Kinematics of a PUMA 560 Manipulator

The geometry of a PUMA 560 manipulator makes the subproblem approach

described in Section 3.6.2 tractable. First, given the desired configuration, gst(θ) =
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gd, the POE is modified by post-multiplying by g−1
st (0)

eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4eξ̂5θ5eξ̂6θ6 = gdg
−1
st (0) := g1. (5.6)

Before proceeding, the following two lemmas are introduced [81]:

Lemma 5.11.1 Position Preservation.
Given a zero-pitch twist ξ and a point on the twist p, the position of the point

will not change during rotation, i.e., eξ̂θp = p. �

Lemma 5.11.2 Distance Preservation. Let q be a point on a zero-pitch twist axis,
ξ. Choose p to be a point on a rigid body associated with ξ. After rotation about ξ
by an angle θ, the distance between p and q is preserved, i.e., ||eξ̂θp− q|| = ||p− q||.
�

Next, the forward kinematics is applied to a point Pw on the robot’s wrist, at the

intersection of joints 4, 5, and 6. Motion of this point is invariant under a transforma-

tion of the wrist according to Lemma 5.11.1. Mathematically, eξ̂4θ4eξ̂5θ5eξ̂6θ6Pw = Pw.
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Table 5.1

COMPLIANCE INDICES FOR THREE OBJECTS

Object Compliance Index

Soccer ball 0.16
Rubber ball 0.08

Cube 0.05, 0.03

Equation 5.6 becomes

eξ̂1θ1eξ̂2θ2eξ̂3θ3Pw = g1Pw. (5.7)

A point Pb at the intersection of the first two axes is subtracted from both sides of

Equation 5.7

eξ̂1θ1eξ̂2θ2eξ̂3θ3Pw − Pb = g1Pw − Pb. (5.8)

Similarly, eξ̂1θ1eξ̂2θ2Pb = Pb. So, Equation 5.8 can be written as

eξ̂1θ1eξ̂2θ2
(

eξ̂3θ3Pw − Pb
)

= g1Pw − Pb. (5.9)

It can be seen from Figure 5.17 that, of the remaining unknowns in Equation 5.9,

only θ3 affects the distance between Pw and Pb. After applying a rigid-body motion

to the robot, the points represented by the left-hand-side and right-hand-side of

Equation 5.9 must remain the same distance apart. The left-hand-side of Equa-

tion 5.9 represents the distance between Pw and Pb after rotating about ξ3 by an

angle θ3. Taking the magnitude of both sides of Equation 5.9 and solving for θ3

gives

sin θ3 =
d2
x + d2

y + d2
z − l21 − l22 + 2l1l3 − l23 − l24 − 2dzlo + l2o

2l2l4
, (5.10)
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Figure 5.17. The Distance Pw −Pb is Fixed under a Rigid-
Body Transformation not Involving Joint 3

where dx, dy, and dz are the desired coordinates of the wrist in the x-, y-, and

z-directions, respectively, and lo, l1, l2, l3, and l4 are as shown in Figure 3.4.

Once θ3 is found, Equation 5.7 can be written as

eξ̂1θ1eξ̂2θ2P2 = g1Pw, (5.11)

where P2 = eξ̂3θ3Pw. This problem consists of a rotation of θ2 about ξ2, taking point

P2 to P
′

2 as shown in Figure 5.18. Next, P
′

2 is followed on a rotation of θ1 about ξ1

to q = g1Pw. As many as two solutions exist for θ2 shown by the intersection of the

two circles at P
′

2 and P
′

2′
in Figure 5.18.
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Figure 5.18. Rigid-Body Rotation about Two Intersecting
Axes

If q1 is an arbitrary point on ξ1 then

eξ̂1θ1eξ̂2θ2P2 − q1 = q − q1

eξ̂1θ1eξ̂2θ2P2 − eξ̂1θ1q1 = q − q1

eξ̂1θ1
(

eξ̂2θ2P2 − q1
)

= q − q1
∥
∥
∥eξ̂1θ1

(

eξ̂2θ2P2 − q1
)∥
∥
∥ = ‖q − q1‖

‖eξ̂2θ2P2 − q1‖ = ‖q − q1‖ := δ.

P2 is rotated about ξ2 until it is a distance δ from q1. As shown in Figure 5.19 u

and v are defined as u = P2 − q2 and v = q1 − q2. Substituting for P2 and q1

‖eξ̂2θ2 (u+ q2)− v − q2‖ = ‖eξ̂2θ2u+ eξ̂2θ2q2 − v − q2‖

= ‖eξ̂2θ2u+ q2 − v − q2‖

= ‖eξ̂2θ2u− v‖ = δ.
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Figure 5.19. (a) Geometric Descriptions for Solving for θ2,
and (b) Their Orthographic Projections

This setup is projected onto a plane perpendicular to the direction of the twist

axis. These are also shown in Figure 5.19. The direction of ξ2 is ω2 = (0, −1, 0)T .

Therefore, the orthographic plane is the x− z plane. If ω2 ∈ R
3 is a unit vector in

the direction of ξ2 then

u⊥ = u− ω2ω
T
2 u,

v⊥ = v − ω2ω
T
2 v, and

δ2
⊥ = δ2 −

∥
∥
∥ωT2

(

P
′

2 − q1
)∥
∥
∥

2

.

Under the distance preservation lemma, ‖u⊥‖ = ‖v⊥‖, and θ can be solved for

knowing

u⊥ × v⊥ = ‖u⊥‖‖v⊥‖ sin θ ω2,

and

u⊥ · v⊥ = ‖u⊥‖‖v⊥‖ cos θ ω2.

Then

θ = atan2

(

ωT2 (u⊥ x v⊥)
︸ ︷︷ ︸

∼sin θ

, u⊥ · v⊥
︸ ︷︷ ︸

∼cos θ

)

,
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where atan2 is the quadrant-specific arc tangent. Also,

δ2
⊥ = ‖u⊥‖2 + ‖v⊥‖2 − 2 ‖u⊥‖ ‖v⊥‖ cosφ.

Finally, solving for the joint angle gives

θ2 = θ − cos−1

(

‖u⊥‖2 + ‖v⊥‖2 − δ2
⊥

2 ‖u⊥‖ ‖v⊥‖

)

. (5.12)

With θ2 known, θ1 can be solved for since

eξ̂1θ1
(

eξ̂2θ2eξ̂3θ3Pw

)

= g1Pw.

This is the first subproblem — rotation about a single axis. Based on the nomen-

clature in Figure 5.20

u = eξ̂2θ2eξ̂3θ3Pw − q1

and

v = eξ̂1θ1eξ̂2θ2eξ̂3θ3Pw − q1

= eξ̂1θ1eξ̂2θ2eξ̂3θ3Pw − eξ̂1θ1q1

= eξ̂1θ1
(

eξ̂2θ2eξ̂3θ3Pw − q1
)

.

Substituting u into the last equality gives

v = eξ̂1θ1u.

Since u and v are vectors eξ̂θu = eω̂θu. By convention, the last element of a vector

is 0, and, thus, makes no contribution to the following formulation.

Next, u and v are projected onto a plane perpendicular to ξ1. Similarly to the

solution for θ2,

u⊥ = u− ω1ω
T
1 u,

v⊥ = v − ω1ω
T
1 v,

u⊥ × v⊥ = ‖u⊥‖‖v⊥‖ sin θ1 ω1, and

u⊥ · v⊥ = ‖u⊥‖‖v⊥‖ cos θ1 ω1.
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Figure 5.20. Subproblem 1: Rotation about a single axis

Solving for θ1 gives

θ1 = atan2
(
ωT1 (u⊥ × v⊥) , u⊥ · v⊥

)
. (5.13)

To this point solutions for θ1, θ2, and θ3 have been found. These give the

necessary joint angles to achieve the desired position of the tool frame. It remains

to determine θ4, θ5, and θ6 necessary to orient the frame. Since the tool frame is

placed at the wrist, where θ4, θ5, and θ6 intersect, it is possible to rotate the tool

frame to the proper orientation without changing its position, thereby leaving θ1, θ2,

and θ3 unaffected. Therefore, finding θ4, θ5, and θ6 gives the desired configuration,

and completes the solution.

Separating the remaining unknowns in the forward kinematics equation gives

eξ̂4θ4eξ̂5θ5eξ̂6θ6 = e−ξ̂3θ3e−ξ̂2θ2e−ξ̂1θ1g1 := g2. (5.14)
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Figure 5.21. Subproblem 2: Rotation about Two Subse-
quent Axes

To begin, Equation 5.14 is applied to a point q6 on ξ6 to eliminate θ6

eξ̂4θ4eξ̂5θ5q6 = g2q6.

This is in the form of subproblem 2 — rotation about two subsequent axes. A

point at the intersection of twist axes four and five is the same Pw as above, but it

should be noted that this point is different from q6. A point c can be defined that

is equidistant from exp(ξ̂5θ5q6) and exp(−ξ̂4θ4g2q6). That is, a rotation of q6 about

ξ5 by an amount θ5 takes q6 to c. Next a rotation of c about ξ4 by an amount θ4

takes c to g2q6. The latter is equivalent to rotating the point g2q6 about ξ4 by an

amount -θ4, taking the point to c. Hence,

eξ̂5θ5q6 = c = e−ξ̂4θ4g2q6.

These points are shown in Figure 5.21.

Finding c is quite involved, and the interested reader is referred to Murray et

al. [47] for the details. Using their nomenclature and the particulars of the PUMA
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560 it is known that

α = ωT4 v,

β = ωT5 u,

γ2 = ‖u‖2 − α2 − β2, and

c = Pw + αω4 + βω5 + γ (ω4 × ω5) ,

where u = exp(ξ̂5θ5)q6 − Pw and v = g2q6 − Pw. With c known, the solutions for θ4

and θ5 can be determined using the first subproblem which was previously described

for the solution of θ1.

Once θ4 and θ5 are known, only θ6 is left to solve for. Its solution is another

subproblem 1 given that

eξ̂6θ6 = e−ξ̂5θ5e−ξ̂4θ4g2.

Applying this to a point P not on ξ6 gives

eξ̂6θ6P = e−ξ̂5θ5e−ξ̂4θ4g2P.

As shown in Figure 5.22, u and v are defined as

u = P − q6 and

v = e−ξ̂5θ5e−ξ̂4θ4g2P − q6.

As before, the projections are given by

u⊥ = u− ω6ω
T
6 u

v⊥ = v − ω6ω
T
6 v.

The solution for θ6 is

θ6 = atan2
(
ωT6 (u⊥ × v⊥) , u⊥ · v⊥

)
. (5.15)
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Figure 5.22. Geometric Descriptions for Solving for θ6

Results for a test of the inverse kinematics solution applied to one robot is shown

in Figure 5.23. The robot was commanded to trace out a 7” diameter circle in the

x-y plane. At each point in the trajectory, the orientation of the tool frame is desired

to be the same as that of the base frame. Each point in Figure 5.23 is a plot of

the desired configuration superimposed over the calculated configuration. The filled

circles represent the positions while the protruding lines represent the orientations of

the three base axes. That there is little difference in either case shows, qualitatively,

that the inverse kinematics solution presented is correct.

The inverse kinematics solution gives the joint angles necessary to achieve a

certain configuration of the tool frame. In practice, however, the configuration of

an end-effector attached to the tool frame is of greater interest. Before leaving this

then, it is necessary to locate the end-effector once the configuration of the tool

frame is established. For this work, the end-effectors are placed on the end of a

rigid rod which is mounted on the wrist. Therefore, the end-effector is located along

the direction of the newly oriented joint six twist, ωf6 , where the superscript f stands

for the final configuration after all joints have been rotated. This can be found by

calculating the forward kinematics. Then

ωf6 = Rf
stω6.
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Figure 5.23. Agreement of the Inverse Kinematics Solution
with the Desired Configuration of a PUMA 560

If l5 is the distance from the tool frame’s origin to the end-effector, the end-effector

is located at (xe, ye, ze) = l5ω
f
6 + pf , where the final configuration is given by

gfst =




Rf pf

0 1



 .

The POE formula is, however, general enough to accommodate arbitrary end-

effectors in a more direct fashion. Assuming the end-effector is connected to the

manipulator by a rigid body attached at the wrist, Equation 3.12 remains valid. All

that is required is to replace gst by gse = gst gte, the configuration of the end-effector

frame with respect to the station frame, where gte is the configuration of the end-

effector with respect to the tool frame. In fact, gte does not need to be known since,

as with gst(0), gse(0) can be written by inspection.

One way to observe this is by adding a seventh, fixed-length prismatic joint to

the forward kinematics of the robot, placing the “tool” frame at the end-effector,
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and writing g̃st(0) = exp(ξ̂7θ7)gst(0). In its zero configuration, the quasi prismatic

joint is at its fully-extended range which is simply the length of the rigid body

connecting the end-effector to the wrist, a fixed value. Therefore, exp(ξ̂7θ7) is known

and represents a rigid transformation from the wrist to the end-effector. The result

is that the POE formula reduces back to six matrix exponentials with gse replacing

gst, and the inverse kinematics solution proceeds directly as described above. As

expected, elements of the additional transformation appear in the solution for θ3,

which then propagate to θ2 and θ1 since, in this case, rotating the wrist does change

the position of the end-effector.

Although the general solution of the inverse kinematics is not unique, the ap-

proach taken here is to “prune the search tree,” eliminating possible joint angles as

the solution progresses. Initially, since the robot starts from its zero configuration,

the smaller of the two solutions for θ3 is chosen. In the case of manipulation, joint

angles are not expected to change greatly from point to point. So, in the remaining

cases, the solution that is closest to the previous value of the joint angle is the one

selected.

5.12 Lie Bracket Verification

In preparation for reconfigurable manipulation, the Lie bracket vector fields de-

termined in Equation 5.3 were executed on the robots to verify the new motions

generated. As shown in Section 4.2, the simplest Lie bracket is effecting a rotation

about the contact normal through rolling. The beginning and ending finger poses

for ψf = −5◦ for one robot are shown in Figure 5.24. The achieved twist, which

could normally be effected by simply actuating joint six, is indicated by the marker

attached to the top of the ball.
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Figure 5.24. Beginning and Ending Configurations of a
Robot Finger Following a Lie Bracket Motion to Effect
a -5◦ Rotation

The final angle was graphically measured as −5.2◦. Prior to beginning the Lie

bracket motion, the configuration of the finger was

gst =










0.997 −0.008 0.074 29.5

0.004 0.999 0.047 0.036

−0.074 −0.047 0.996 12.6

0 0 0 1










.

The Lie bracket equates to a −5◦ rotation about the x-axis of the robot’s station

frame. Theoretically, the Lie bracket performed resulted in a final angle of −5.15◦.

A pure rotation of −5.15◦ gives a final configuration of

gst =










0.997 −0.014 0.073 29.5

0.004 0.991 0.136 0.036

−0.074 −0.136 0.988 12.6

0 0 0 1










.

Based on the final encoder counts, the final configuration was

gst =










0.997 −0.045 0.069 29.5

0.036 0.990 0.136 −0.102

−0.074 −0.133 0.988 12.51

0 0 0 1










.
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Figure 5.25. Position of Wrist 1 with Respect to the Palm
Frame During Flow along g4, h4 = 0.1

The first column, representing the rotation about the x-axis, between these two con-

figurations is nearly identical. Only slight errors are present in the other directions.

These would be reduced by using the iterative approach described in Section 4.1.7.

In fact, an iterative approach is necessary to perform larger rotations since the finger

would roll too closely to one of its poles in one pass causing numerical issues.

An implementation of g4 on the robots is shown in Figure 5.25. This replaces

sliding in the y-direction, or along u as defined in Figure 4.7. Finally, an imple-

mentation of g5 on the robots is shown in Figure 5.26. This replaces sliding in the

x-direction, or along v as defined in Figure 4.7. In light of the seemingly superficial

motions depicted in Figures 5.24 - 5.26 it should be recalled that to avoid violating

the grasp constraint sometimes requires convoluted motions given by Lie bracketing.
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Figure 5.26. Position of Wrist 1 with Respect to the Palm
Frame During Flow along g5, h5 = 0.22

5.13 Manipulation Logic

As stated previously, the overall manipulation approach is to acquire the object,

rotate the object, reconfigure the fingers, and check the slip condition. This process

is repeated until the desired amount of rotation is met. Flowcharts showing the

overall logic to implement closed loop manipulation, to acquire an object, and to

manipulate an object are shown in Figures 5.27 – 5.29, respectively.
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Figure 5.27. General Logic Flowchart
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Figure 5.28. Procedure to Acquire an Object
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CHAPTER 6

MANIPULATION RESULTS AND CONCLUSIONS

This chapter presents experimental results for fixed-point manipulation and open

loop and closed loop reconfigurable manipulation of a rubber ball, and fixed-point

manipulation of a cube. It also lays the groundwork for reconfigurable manipulation

of a cube. Various factors relating to the theory in application and suggested avenues

for further research are discussed.

6.1 Fixed-Point Manipulation Experiments

The approach outlined in Section 3.9.2 was used to manipulate a rubber ball

and cube. Hence, the joint angles necessary to acquire the object and the initial

contact coordinates are assumed. Acquisition of the object is based solely on nominal

geometry of the test bed and object. Compliance is extremely useful in this situation

as modeling errors affect the forces applied to the object. For each case, the object

was acquired and then lifted prior to beginning manipulation1. The entire trajectory

was determined in Matlabr and the resulting position commands sent to the motion

control boards.

1During experimentation, Joint 5 on robot 2 was lost. Therefore, only 3 robots were used for

the manipulations described in this section. The motor was replaced, and all four robots were

operational during the open loop manipulation trials.
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Table 6.1

MANIPULATION RESULTS WITH RIGID, SPHERICAL FINGERS AND A

COMPLIANT BALL

Reconfiguration Twist Finger Displacement (in.)/
Trial Type (Trans/Rot) Axis Model Rotation (deg)

1 T (0, 1, 0) PCwF 5

2 T
(

1√
2
, 0, 1√

2

)

PCwF 5

3 R (0, 0, 1) PCwF 31
4 R (1, 0, 0) SF 45
5 R (1, 0, 0) CF 53

6 R
(

1√
3
, 1√

3
, 1√

3

)

PCwF —

6.1.1 Fixed-Point Manipulation of the Ball

Each finger contacts the spherical object on its equator as shown in Figure 6.1.

The results for several combinations of finger models and manipulations are given

in Table 6.1. For each translation trial, the desired displacement along any primary

axis was 6” and rotation was 45◦. For all trials, the desired trajectory is a straight

line between the initial and final configurations.

During the two translation trials, the ball was dropped prior to completing the

manipulation. In these cases, the displacement was reduced to 5 inches and the

experiment was rerun. The beginning and ending configurations of the ball for Trial

#1 are shown in Figure 6.2. Due to parallax in the images of Figure 6.2, it is difficult

to judge the beginning and ending points of the object. However, the initial starting

position was at 0. The second image is more accurate as the camera is more in line

with the object’s position indicator. It can be seen from this figure that the ball

has translated approximately 5”. Similar results were seen for trial #2; however,
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Figure 6.1. Top View of Fingers Contacting an Object

Figure 6.2. Beginning and Ending Configuration of Ball
Under Fixed-Point Translation
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no images of it are presented as it was difficult to view the scale after manipulation

was completed.

The beginning and ending configurations of the ball for Trial #3 are shown in

Figure 6.3. The final angle was measured to be 31◦. It is apparent from the final

picture that some sliding has occurred between the finger and the ball since the

contact location on the fingers has changed (recalling Figure 6.1). This slippage is

likely the cause of the decrease in the rotation angle.

o
31

Figure 6.3. Beginning and Ending Configuration of Ball
Under Fixed-Point Rotation about its z-Axis

To rotate the ball about its x-axis, only two fingers are required. Again, recalling

Figure 6.1, it would be sufficient for only fingers 3 and 4 to grasp the object. Then

rotation is effected by simply rotating joint 6 in the proper direction. This rotational

constraint is provided by the soft finger model. Since finger 1 is also in contact with

the object, it must translate in the direction of rotation. By contrast, the compliant

finger model basically states that the fingers and object move as a single rigid body.

Hence, finger 1 moves in such a motion as to additionally rotate the ball. The final

configurations of the ball using these two finger models are shown in Figure 6.4. It

can be seen that, in the case of the soft finger, finger 1 loses contact with the ball.
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(a) (b)

53o45o

Figure 6.4. Ending Configuration of Ball Under Fixed-
Point Rotation about Its x-Axis Using (a) the Soft Finger
Model, and (b) the Compliant Finger Model

However, this does not occur with the compliant finger. Finger 1 is on the right in

both cases, and the different trajectory taken by finger 1 in each case is evident.

This is likely the cause for the over rotation when using the compliant finger model.

If this model is an accurate representation of the contact, then it likely caused the

object to twist relative to fingers 3 and 4. Using the soft finger, however, finger 1

contributes little to the overall rotation of the ball. Instead, it is only effected by

the rotation of fingers 3 and 4 and ends up more accurately reaching the desired

angle.

The final trial was to rotate the ball about an arbitrary axis. The twist axis

chosen was along the line through the ball’s origin and through the point (1, 1, 1).

Rotation about an axis can be observed by viewing the motion of one of the fixed

points of the object related to the axis. In local coordinates, one of these fixed

points is located at u = 55◦, v = 45◦ as shown in Figure 6.5. It is a point lying on

the axis of rotation and on the surface of the object. Hence, it has no translational

velocity nor acceleration during motion.
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v = 45

u = 55
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Figure 6.5. Arbitrary Axis of Rotation for the Ball

Figure 6.6 shows several configurations of the ball during manipulation. The

fixed point is indicated by the light colored dot. Although this point does translate

slightly due to inaccuracies in placing the fixed point, it is obvious it translates much

less than the frame at the top of the ball. This is a good indication that the ball is

rotating about the desired axis.

6.1.2 Fixed-Point Manipulation of the Cube

Due to inaccuracies of finger placement, the cube tends to skew upon being

grasped. During testing, the issue of local position control in manipulation is obvious

with rigid fingers and a rigid object. The result is a very shaky motion due to the

inability of the joints to achieve their desired angles. In addition, position commands

can be “lost” since they are based on the previous position information. If the robot

is pushing against a rigid object, some of the current joint positions will not be as

expected, and the next command is fixed relative to the current motor position.

Finally, slipping of the contact frames during rotation adds an error element as well.

Switching to compliant fingers reduces the stress on the robots. The manipulation
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Figure 6.6. Several Configurations of Ball Under Fixed-
Point Rotation about an Axis Through (1, 1, 1) with Ro-
tating Fixed Point

trials done with the cube are summarized in Table 6.2. For all trials, the PCwF

finger model was assumed.

The beginning and ending configurations of the cube for Trial #1 are shown

in Figure 6.7, and the ending configuration for Trial #2 is shown in Figure 6.8.

Unlike the ball, which is somewhat fixed in its stand, the cube is free to slide. Any

misalignment in the setup or mistiming between the robots tends to cause the object

to be pushed. Pushing has been identified as a useful approach in manipulation [43,

54]. In fact, if speeds are slow enough, an object can be pushed in such a fashion
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Table 6.2

MANIPULATION SUMMARY FOR THE CUBE

Reconfiguration Twist Finger Grasp Displacement (in.)/
Trial Type (Trans/Rot) Axis Type Location Rotation (deg)

1 T (1, 0, 0) Rigid Plane 1.5
2 R (0, 0, 1) Rigid Plane 49
3 T (0, 0, 1) Rigid Edge —
4 R (0, 0, 1) Compliant Plane 46
5 T (1, 0, 0) Compliant Edge —
6 R (1, 0, 0) Compliant Edge —

that it appears to be rigidly fixed to the manipulator [36]. Although it makes

measurements more difficult, this allows for some flexibility in the orientation of the

cube prior to grasping since it will slide and partially self-center in the grasp.

As stated previously, a drawback of this combination of position control, finger

type, and rigid object is the stress applied to the system. Manipulation results using

the same object but with compliant fingers are given below. These results provide

motivation for the closed loop application discussed subsequently which incorporates

force control.

6.1.3 Effects of Compliant Fingers

As previously stated, compliance aids in open loop manipulation to an extent

because it allows for errors in the system. The beginning and ending configurations

of the cube being rotated using compliant fingers are shown in Figure 6.9. The

effect on the grasping system cannot be appreciated from a still photograph. Since

the joints are now able to achieve their position commands, the manipulation runs

more smoothly.
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Figure 6.7. Beginning and Ending Configuration of the
Cube Under Fixed-Point Translation

o49

Figure 6.8. Final Configuration of Cube Under Fixed-Point
Rotation about its z-Axis
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Figure 6.9. Beginning and Ending Configurations of Cube
Under Fixed-Point Rotation about its z-Axis with Com-
pliant Fingers

This is not the primary view of compliance taken in this work. Instead, compli-

ance comes into play when attempting to grasp and manipulate a nonsmooth object

on its edges. Using rigid fingers, the robots are unable to acquire the cube along

its edges. Due to the point contact, the positioning requirements are too restric-

tive. With compliant fingers, however, the robots are able to grasp the cube along

its edges. Figure 6.10 shows the beginning and ending photographs of the robots

grasping the cube on its edges during a translation. Additionally, a rotation was

carried out while maintaining a grasp along the edges of the cube but is not pictured

here.

6.2 Reconfigurable Manipulation Experiments

The main difference between fixed-point and reconfigurable manipulation is that

of rolling contact. Greater object rotations can ostensibly be effected through re-

configuration of the finger on the object, allowing a manipulation to proceed while

working within a small portion of the systems’ workspace or effectively increasing

it. For small objects, this is contrary to translation since, by definition, the object
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Figure 6.10. Compliant Fingers Translating a Cube while
Grasping along its Edges

will leave the workspace of at least one of the robots. Therefore, only manipulations

requiring rotation were considered for the remainder of the experiments. These

were conducted based on the results of Section 3.9.4 and the methods presented in

Chapter 5.

6.2.1 Open Loop Manipulation of the Ball

Referring to Figure 4.7, the local contact coordinates are given in Table 6.3.

Several experiments were done to manipulate the ball. These are summarized in

Table 6.4.

The beginning and ending configurations of the ball for a manipulation to 60◦

about its z-axis are shown in Figure 6.11. The final angle was measured to be

66◦. The additional mark on the ball in Figure 6.11 runs along the seam of the

outer cover created during the manufacturing process. Comparing the location of

the finger relative to this mark in the beginning and ending pictures gives a visual

indicator of how far the finger reconfigured due to Lie bracketing. Prior to rotating

the object, the configuration of Robot 1 was
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Table 6.3

CONTACT COORDINATES FOR A SPHERICAL FINGER ON A SPHERICAL

OBJECT

Finger uf vf uo vo ψ

1 0 0 0 −π/2 0
2 0 0 0 π/2 0
3 0 0 0 0 0
4 0 0 0 −π 0

gst =










0.998 −0.011 0.065 30.0

0.005 0.995 0.100 0.034

−0.066 −0.099 0.993 12.8

0 0 0 1










.

Ideally, after iterative Lie bracketing, the robot should be returned to this configu-

ration. After a series of 10 Lie bracket motions, the configuration was

gst =










0.991 −0.075 0.108 28.8

0.082 0.995 −0.064 0.354

−0.103 −0.072 0.992 13.0

0 0 0 1










.

The difference in orientation of the two frames is minimal. The error in the x- and

z-directions was measured to be 11◦ and 10◦, respectively. The differences between

the frames is shown in Figure 6.12.

In the open loop experiments, cutoffs for the Phillip Hall coordinates tried were

1× 10−3, 1× 10−8 and 1× 10−10. The full iterative method was never used. Instead

some preset limit of iterations was done. Finally, some experiments used fixed

values for the Phillip Hall coordinates while others recalculated the Phillip Hall

coordinates prior to each iteration (indicated as fixed or variable h’s in Table 6.4).
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Table 6.4

OPEN LOOP MANIPULATION EXPERIMENTS

Desired Max No. of
Rot. Rotation Fixed Pt Bracket

Amt (deg) Axis Rot. (deg) Iterations Notes Results

60 (0, 0, 1) 10 3 — complete, 66◦

45 (0, 0, 1) 15 3 — complete, 38◦

30 (-1, 1, 1) 15 5 10−3 cutoff for
h

dropped ball
right after
2nd rotation

30 (-1, 1, 1) 15 5 10−8 cutoff for
h

dropped ball
during 2nd ro-
tation

30 (-1, 1, 1) 10 3 10−8 cutoff for
h

dropped ball
during 2nd ro-
tation

60 (0, 0, 1) 15 10 fixed h dropped ball
2/3 through

75 (0, 0, 1) 15 10 variable h dropped ball
early

45 (-1, 1, 1) 15 5 variable h,
10−10 cutoff
for h

dropped ball
during 2nd ro-
tation

45 (-1, 1, 1) 15 5 variable h,
10−10 cutoff
for h, original
datafiles

dropped ball
during 2nd ro-
tation
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Figure 6.11. Beginning and Ending Configurations of a Ball
under Fixed Point Rotation with Finger Lie Bracketing to
Effect a 60◦ Rotation about the z-axis
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Figure 6.12. Orientation of the Tool Frame for Robot 1
Prior to Rotation and after Reconfiguration
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None of the combinations, however, allowed a manipulation beyond 60◦ about the

z-axis. Results for rotations about other axes were worse; no rotations beyond 30◦

were achieved and the ball was usually dropped during rotation.

Results of the open loop experiments show a marginal increase in the robots’

effective workspace. Although the robot’s workspace limit was not determined in

advance, it was observed that, during fixed-point rotation, links 2 and 3 on robot 3

are nearly in line at a z-axis rotation of 45◦. Therefore, rotation beyond this amount

is impossible without reconfiguring the fingers. With minimal reconfiguration, a

rotation of 60◦ was achieved. However, this result was not repeatable. It should

also be noted, by viewing the photograph on the right of Figure 6.11, that the

trajectory of robot 2 took its finger off the ball. Subsequent Lie bracketing in this

case would cause unwanted motion of the ball which would likely lead to the ball

being dropped during subsequent manipulations since the geometry assumptions

used for the open loop calculations are no longer valid. These results also show that

open loop manipulation works best for the simplest case, which is rotation about

the object’s z-axis.

The ultimate goal is to continuously manipulate an object. It is obvious an

open loop approach is not sufficient. The last set of experiments incorporates force

feedback to provide real-time contact coordinates and to maintain proper grasp

force.

6.2.2 Closed Loop Manipulation of the Ball

To acquire the object, the robots are commanded to a position purposely outside

the area of the object. Next, the fingers move based on output from the fuzzy

controller to acquire the object. During manipulation, the controller is tasked with
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ensuring the object is held secure. The sensors also give information on the finger’s

contact coordinates. The entire manipulation process is depicted in Figure 6.13.

The closed loop portion of the experiment2 entails adding feedback for force

control and for contact coordinates measurement. Both of these are accomplished

through the use of force sensors on the fingers. The trials are summarized in Ta-

ble 6.5. The first two trials were run to compare to the open loop results for the

same parameters. The last trial shows the improved generality of the closed loop

system versus the open loop.
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Figure 6.13. General Finger Path During Closed Loop Ma-
nipulation

2Most of the closed loop experiments were run with three robots as the wrist on robot four

became inoperable. While manipulation was done with three robots, results were better when

the fourth finger was placed in contact with the ball during Lie bracketing to provide additional

support.
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Table 6.5

CLOSED LOOP MANIPULATION EXPERIMENTS

Max No. of
Rotation Fixed Pt Bracket Achieved

Axis Rot. (deg) Iterations Rot. (deg) Results

(0, 0, 1) 10 3 50 dropped ball while
checking slip after
bracket at 50◦

(-1, 1, 1) 15 3 60 singularity during
bracket trajectory
calculations

(−
√

3/2, -1/2, 1) 10 3 50 failed to set finger
4 during second
bracket, dropped
ball during bracket
after 50◦

By comparing Tables 6.4 and 6.5, it can be seen that for rotating the ball about

its z-axis, the open loop case resulted in a greater rotation than the closed loop

case. However, this is not attributed to a deficiency in the overall closed loop plan

but rather to the fuzzy controller. The controller is not robust enough to account

for the very different conditions associated with checking the slip condition near a

zero rotation and at a large rotation angle. The straightforward correction for this

is additional Lie bracketing. Other possibilities will be discussed later. It is safe to

say that had the slip condition not been checked after the reconfiguration at 50◦,

rotation to at least 60◦ would have been achieved. The trajectory of the robots

during manipulation is shown in Figure 6.14.

An advantage of the closed loop system is in its repeatability. The open loop

results for the first trial were only obtained once. However, performance of the

closed loop system is more dependable. This difference is attributed to slight errors
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Figure 6.14. Path Followed by (a) Fingers During Manip-
ulation Experiment, and (b) An Exploded View of Finger
Three’s Path in (a) Showing Slip Correction, Rotation,
and Lie Bracketing

in initial conditions, most likely the zero configuration of the robots, from trial to

trial which negatively affects the open loop system’s performance.

Improvement using the closed loop system is also demonstrated when performing

rotations about an arbitrary axis. For a rotation about an axis through (-1, 1, 1),

the closed loop system was able to rotate the ball through 60◦ while the open

loop system was unable to achieve a rotation past 30◦. The closed loop system

stalled, in this case, due to one of the robots approaching a singularity configuration.

The final closed loop experiment was about an axis through (−
√

3/2, −1/2, 1) to

further demonstrate the generality of the closed loop system. During the second

reconfiguration, finger four was not set, and the ball slipped somewhat. This likely

led to contact errors later on, but the ball was still rotated 50◦ before it was dropped

during Lie bracketing.

For the first two closed loop trials, additional reconfiguration of the fingers would

have improved performance. Figure 6.15 shows the final positions of a finger relative

to the ball after 10 reconfigurations following a 10◦ fixed-point rotation. In this case,
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Figure 6.15. Finger Position on Ball at the End of Each of
10 Reconfigurations Following a Fixed-Point Rotation

the trajectory was recalculated after each bracket motion, and the slip condition

was checked after the fourth bracket. That the fingertip is “inside” the ball is an

indication that the ball is being squeezed. While the plot represents ideal rigid

bodies and exact measurements, neither is true with the physical setup.

The finger returned approximately 0.7” in the x-direction. Change along the z-

axis was only 0.04” which is important because, without any additional information

available regarding the contact between the finger and the object, it is desirable that

the finger not unintentionally move up or down on the ball since the new trajectory

will be calculated based on an errant assumption regarding the object’s surface. To

contrast, the displacement for a fixed-h reconfiguration was 0.4” and 0.2” in the x-

and z-directions, respectively.
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6.3 Approaches to Manipulating a Cube

While no manipulation of a cube was performed, the concepts presented in Sec-

tion 5.9 were verified, laying the groundwork for an approach to reconfigurable,

nonsmooth object manipulation.

6.3.1 Lie Bracketing on an Edge

The reason for showing fixed-point rotation of a cube by grasping its edges was

to verify the utility of compliance in the case of reconfigurable manipulation of

nonsmooth objects. In a closed loop experiment, after the cube was grasped on

its edges, the entire Lie bracket motion was completed without the finger slipping

between faces due to the compliance of the finger. Since the initial direction of

the flow is known, the correct face can be used for motion planning. The ability

of compliant fingers to grasp edges could be of use in certain situations, but a

more general approach is to formulate a method for traversing an edge while Lie

bracketing.

6.3.2 Face Switching

For this case, path planning was done to move from face 2 to face 5 as defined

in Figure 5.14. Flowing along g1 and g2 with face 5 in this configuration equates to

flowing in the increasing y-direction and increasing z-direction, respectively, when

referenced to the palm’s frame (see Figure 5.2). However, on the actual face, these

flows correspond to moving in the increasing y-direction and decreasing x-direction.

Therefore, it is necessary to make this correction along with corrections to the finger

orientation once the edge between the two faces has been reached. Figure 6.16 shows

several configurations of a finger while moving from the vertical face to the horizontal

face. The path of the wrist is shown in Figure 6.17. The wrist position is plotted
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(3) (4)

Figure 6.16. Configurations of a Finger While Switching
Faces on a Cube in between Lie Bracket Motions on the
Cube’s Vertical and Flat Face

instead of the fingertip to more easily visualize the Lie bracket motions. Noting that

the wrist moves in in arc about the contact point, it can be seen from this view that

the first bracket motion is along the vertical face of the cube, parallel to the y-axis.

After switching, the same bracket motion is performed on the top face which is in

the x− y plane. The sequence of flows on the top face is indicated in Figure 6.17.

Edge detection is vitally important in this case. It could be predicted based on

a nominal geometry, or it could be determined via feedback. Figure 6.18 shows the

sensor values associated with one finger while in contact with the cube on its face

and on its edge. Since the top sensors, 1, 2, and 6, are not in contact with the object

when the finger is near the edge of the cube, it is evident that the sensors used here

would be adequate to discern an edge. For the case of detecting an edge within a
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Lie bracket maneuver, the question of how often to check the sensor information is

raised, which was beyond the scope of this research.

6.4 General Discussion Relating to the Application

The experimental results suggest ways the overall process can be improved as

well as highlighting several disconnects with the theory that should be considered in

an application. Many of these have to do with increasing the speed with which the

Lie bracket motions are performed. Others are more specific to the test bed used

here.

6.4.1 Asymmetry and its Effect on Trajectory Generation

Manipulation involving a rotation about the z-axis is the simplest to implement

since a symmetry exists between the fingers and their locations on the object. The

only required motions are along the equator for a spherical object where the ge-

ometric surface parameters are well defined. Once rotation is attempted about a

different axis, this symmetry is lost. Even though the distance between the starting

and desired ending point of a finger is the same, each finger may take a different path

to the endpoint. The effect on the numerics is that a variable step size integration

routine may give different sized solutions for each finger. This is an issue since the

program sending position commands to the motion control boards expects all four

files to contain the same number of commands. This can be addressed by holding

some robots still while others finish their motion.

6.4.2 Improving the Fuzzy Controller

The current approach presents an additional challenge regarding the slip condi-

tion. Two inputs are being used to account for very different situations. The position

input is used mainly to guard against errant force readings. Changing the range on
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Frame During Lie Bracket Motions on a Cube
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Face and (b) an Edge of the Cube
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the x-position input affects the performance of the controller when acquiring the

object and when checking the slip condition. Since the x-position of the fingertip

can, theoretically, change by as much as the object’s radius for a sphere or the length

from the object’s center to a face for a cube due to incomplete finger reconfigura-

tion during manipulation, the robots tended to drop the ball when checking the slip

condition at large rotation angles. Attempting to account for this by changing the

x-position’s input range caused the object to be squeezed too tightly during object

acquisition. The first thought would be to accept this thinking that the grips will be

loosened later. However, this provides greater error in the rigid-body assumption.

An alternative would be to use position difference instead of x-position as an input,

where position difference is the difference between the actual x-position of the finger

and the theoretical x-position of the finger necessary to contact the object.

Another approach to balancing the controller between the tasks of object acqui-

sition and checking slip condition would be to weight the force input more than the

position input. A value of 1.5 was tested for this weighting, but the results were no

better than the original controller.

The ideas above represent corrections within the confines of the current controller

structure. However, it is also possible to make the controller more general by adding

additional inputs. For example, by including the object’s weight and compliance

as inputs, the controller could deal with a broader class of objects. In fact, one

could imagine an automated procedure where the robots determine the compliance

index as previously shown and estimate the object’s weight and the coefficient of

static friction between the object and the fingers. These variables could impact the

necessary force required to securely hold an object and could be determined with

no a priori knowledge other than the object’s general location within the robot’s

workspace. Finally, the system response due to incomplete reconfiguration can be
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characterized as a switching-type system. Thus, multiple fuzzy controllers could

be designed for the various types of control desired. Switching systems are briefly

discussed in Section 6.6.2.

6.4.3 Timing Issues

From a practical standpoint, Lie bracket motions provide a challenge to robotic

manipulation due to the time it takes to perform them. As was stated earlier,

the twisting motion is the simplest bracket to execute. For manipulation, however,

the more salient brackets are those that serve to slide the finger along the object

to reposition the finger after partial manipulation. This involves performing more

complicated brackets.

Based on the complexity of the Lie brackets, and the time required to integrate

the contact and constraint equations, it was decided that the practical, maximum

reconfiguration range of a finger was 15◦. For example, if it was desired to rotate a

spherical object 45◦ about its z-axis, the manipulation would be performed in three

steps involving three rotations of 15◦ each followed each time by a repositioning of

the finger to the original contact points shown in Figure 6.1. Performing one step of

this motion on a robot took approximately 18 minutes. Assuming only one finger is

repositioned at a time, it would require approximately 3.5 hours to rotate the ball

45◦ and to completely reposition the fingers.

To speed up the Lie bracketing, several shortcuts can be considered based on

answers to the following questions: First, can any bracket motions be ignored?

Second, how far from the nominal trajectory can a system stray before the Phillip

Hall coordinates must be recalculated? Finally, what is the lower bound on the

number of iterations necessary to provide an acceptable solution? Being biased
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toward an increase in speed, however, results in a decrease in accuracy. Finally,

speed can be increased by performing bracket motions of each finger simultaneously.

One way to increase the speed of the system is to provide a minimum value for

the Phillip Hall coordinates which will be executed. For example, if the primary

goal is to move the finger along v, then g5 must be executed. However, if the desired

end trajectory also requires a change in the contact angle, for example, lower-order

brackets will be necessary but at potentially much smaller times. By ignoring the

lower-order brackets, the implementation can proceed more rapidly but at a reduced

accuracy.

To determine joint trajectories, the contact and constraint equations were solved

in Matlabr. Some incompatibility exists between this method and applying the

resulting encoder counts to the robots, recalling that each set of calculated joint

angles must be converted to encoder counts for use with the robots. Therefore,

after integration was completed, the number of position commands was reduced

from the number generated by the differential equation solver. The counts from

several computed steps were combined into a single position command based on a

maximum change in counts of 500 for each joint. In other words, a robot can be

commanded to move one of its joints one count 500 times or 500 counts one time.

The latter is obviously faster when considering the speed profiles of the robot’s

joints. In the case of the iterative method to move the finger from (u, v) = (0, 0)

to (u, v) = (0, 15◦) along the ball (see Figure 4.7), the total number of position

commands was reduced from approximately 19,000 to 4,000.

6.4.4 Inverse Kinematics for Face Switching on the Cube

The method used to select an inverse kinematics solution is too restrictive for

the face-switching case. For this case, instead of simply taking the smallest angle,
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under the assumption that the joints have not moved much from position to position,

large changes in some joint angles are required. Therefore, the solutions must be

more carefully pruned to prevent an errant or “flip” solution. For the face-switching

experiment presented here, the solution of the wrist joint angles is of particular

interest.

6.4.5 Compliance and Contact Kinematics

The constraint equations are not complimentary with compliance. The restric-

tion of movement along the contact normal is not a function of any finger model but

rather fallout of the rigid-body assumption. Some work was done to integrate mo-

tion across the plane of the end-effector/object interface into the modified constraint

equation but the initial approach was mathematically impractical.

6.4.6 Compliance and Tactile Feedback

The force sensors used in this work were designed to measure normal forces.

Shear forces can damage them. However, it is precisely shear forces that provide

insight to a dynamic slip condition. Multi-axis force sensors exist, but they are very

expensive compared with a Flexiforcer sensor. In addition, these types of sensors

are not very amenable to a compliant analysis. They are typically made of aircraft

aluminum, and they are relatively large.

6.5 Conclusions

The experimental results showed an improvement in the range of the manipulator

workspace when using reconfigurable manipulation versus fixed-point manipulation

algorithms to manipulate a rubber ball. Integrating tactile feedback with reconfig-

urable manipulation also showed an improvement in the robustness of the manip-
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ulation system. Tactile feedback was realized with relatively inexpensive fingertip

force sensors that required no modifications to the aesthetics of the test bed.

Information from the force sensors was also used to verify a formulation of object

compliance based on the concept of shared space. A compliance index was exper-

imentally determined for three objects, and the results agreed with preconceived

notions regarding the compliance of each object. This information could be useful

feedback for the development of more intelligent manipulation systems. A compli-

ant finger model was presented as an additional wrench basis. Based on several

trials, it appears to be a valid model for the test bed used, and it generated better

joint trajectories when compared with the soft finger model for pure twisting. Since

the compliant finger model constrains all possible directions, however, it cannot be

used as a finger wrench basis with SUPCI. Instead, it is restricted to fixed-point

manipulation.

The more general utility of compliant fingers was also introduced and shown

to be useful when attempting to grasp and manipulate nonsmooth objects. Two

approaches were demonstrated using a cube to lay the foundation for an approach

to nonsmooth object manipulation. The methods keep the inherent mathemati-

cal framework intact despite mathematical anomalies associated with nonsmooth

objects.

Finally, this work demonstrated the modularity of fuzzy inference systems as a

fuzzy controller originally designed to control an inverted pendulum was used in two

facets of the manipulation plan with no changes to the system’s structure. Software

was developed to build a fuzzy inference system with only the range of the input and

output variables provided. Additional software was developed in Mathematicar to

automate the construction of the involutive closure for the underactuated, nonholo-

nomic systems used in this research.
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A conjecture of this work was that only tactile feedback is necessary to perform

certain types of manipulation. While this was shown to be a valid assumption for

the types tested, the necessary machinery, local contact kinematics, needed to effect

manipulation is restrictive. Grasping and manipulation may be better viewed from

a global perspective. For example, the formation of a force closure grasp does not

require the resolution provided by local contact information. In addition, tactile

feedback, in itself, is not conducive to cooperation. Therefore, all things being

equal, vision is a better feedback choice to achieve gross grasping postures. For this

to be realizable, a vision system would have to be sophisticated enough to access

information regarding multiple robots and an object in a single pass, offering better

cooperation. Of course, a trade-off in cost must still be considered between a vision

and tactile based system.

When starting this research, it was believed tactile feedback would relax the

accuracy requirements in calibrating the zero position of the robots. In retrospect,

however, it must be concluded that calibration of the zero position is more important

with tactile sensing than with vision. The method used to compute the object’s

contact coordinates is a slave to the zero configuration. This is not necessarily

the case for a vision system. Vision could be used to adjust the joint angles since

the actual contact coordinates can be known from a global frame of reference. A

calibration scheme using tactile sensors which parallels those for vision systems could

be developed, however.

The key results, those concerning reconfigurable manipulation, were less im-

pressive than expected. Due to the complexity involved in executing Lie bracket

motions combined with the small displacements they effect suggests this approach

is not conducive to object manipulation. For the goal of this work, the high accu-

racy associated with Lie bracketing proved to be a daunting challenge given that
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numerous reconfigurations were rarely achieved and did not contribute to the goal

of timely manipulation. To further increase speed, the fingers were allowed to roll

outside the range of the sensors. Since the motion planning algorithm generally

moves in the desired direction, it was assumed the final contact point would be

within the sensor’s range. Due to the mathematical framework, however, rolling

must still be limited. Small spheres mapped with orthogonal charts are not con-

ducive to large motions, nor, therefore, rapid manipulation. Instead, the stratified

approach, which incorporates intermittent contact but was passed over here in favor

of Lie bracketing, is likely a better manipulation method for the types desired here.

6.6 Future Directions

While Lie bracketing may not be best suited for manipulation tasks of the type

investigated here, it can still be useful in other domains such as those requiring ac-

curate pointing or positioning requirements, microscaling, and switching-type sys-

tems. Finally, stepping away from the nonholonomic viewpoint may provide a new

approach to reconfigurable manipulation.

6.6.1 Mechanical Design of Pointing Devices

Much research in recent years has been in the area of medical device engineer-

ing. For example, gamma knife neurosurgery uses a set of gamma rays to perform

“knifeless” brain surgery to remove tumors. Individually, the rays are not strong

enough to damage brain tissue. As a focused beam, however, it is strong enough to

destroy tissue. Lie bracket motions could be used to point such devices. Another

advantage lies in the trade-off between sophisticated software algorithms versus ex-

pensive mechanical designs. In the case of the PUMA’s, large motions of larger

joints can effect very small changes in the end-effector configuration. Savings result
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in the decreased need for high resolution, and therefore expensive, encoders for the

larger joints.

Similarly, telerobotic surgery can be performed where scaling is an issue. A

surgeon may be able to perform a virtual operation on a large scale to improve

accuracy while a robotic system acts as a slave, performing the actual operation

through appropriate scaling.

6.6.2 Switching-Type Systems

The application to switching systems takes advantage of the underactuated na-

ture of SUPCI. Imagine a manipulator working in a remote location which makes

mechanical repair impossible. If the manipulator lost one of its actuators, then

it would be quite advantageous to be able to switch to an underactuated control

scheme.

While a stratified system approach was forgone in favor of Lie bracketing, other

systems exist in which the underlying dynamics change depending on certain sys-

tem parameters. Systems which exhibit bifurcations are an example of this. Such

systems can be thought of as switching-type systems. Also, stratified systems can

generally be characterized as switching-type systems. One approach for modeling

and control of switching systems is to create several plant models, with associated

controllers, representing nonlinear dynamics or system uncertainties [57]. Typically,

a supervisor monitors system performance and effects switching between the various

plant models. Instability can result if the switching is done too fast [39]. Tanaka et

al. [67] used a fuzzy switching system for trajectory planning of a hovercraft model.

The switching is done based on the orientation of the craft. In this example, strata

switching may occur due to failure of an actuator, i.e., the hovercraft system may

evolve on S12 but if one thruster fails, the governing dynamics evolve on S1 (or S2).
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6.6.3 Sliding Reconfiguration

For the particular application, adhering to nonholonomic constraints may be

burdensome. In the case of an end-effector rolling on an object, the nonholonomic

constraint assumption is that the end-effector rolls along the object but never slides

along it. Sliding, however, is a viable method for re-establishing a manipulative

pose. The challenge to sliding reconfiguration lies in being able to control force and

position despite a poor model of friction.

6.7 Postscript

An intent of this work was to develop an intelligent manipulation system by

adding feedback similar to the types available to the most intelligent animals, hu-

mans. Based on experiences while performing the research, it is time for one final

comment on the quest for intelligent systems. The key to general systems lies as

much in feedback as it does in formulating planning algorithms such as the type dis-

cussed and used in this thesis. Ignoring the ability to learn for a moment, humans

are excellent at coping with new surroundings and tasks for the precise reason that

they can rapidly collect and process massive amounts of information. Interestingly

enough, what makes this possible is their ability to quickly eliminate superfluous

information. This aspect of data management systems is overlooked in favor of col-

lecting as much information as possible. So, it would seem to be a fruitless attempt

to blindly equip a robot with the amount of sensory information on par with a hu-

man, even if that were possible. Instead, care must be taken to identify the most

salient information from a plethora of potential feedback and to extract it. Then

ways must be found to fuse this sensor information with algorithms for completing

tasks.
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APPENDIX A

LIE BRACKET PROPERTIES

This appendix contains proofs to verify that a Lie bracket is a vector field and

partially constructs the geometric interpretation of a Lie bracket presented in Sec-

tion 3.2.

A.1 Derivation of the Lie Bracket

A Lie bracket is a vector field if it is linear over the reals and satisfies the

derivation property.

A.1.1 Linearity over the Reals

Given Xp : C∞p → R, f, g ∈ C∞p and α, β ∈ R the Lie bracket is linear if

[X, Y ]p (αf + βg) = α[X, Y ]p(f) + β[X, Y ]p(g).

[X, Y ]p (αf + βg) = Xp (Y (αf + βg))− Yp (X (αf + βg))

= Xp (αY (f) + βY (g))− Yp (αX(f) + βX(g))

= αXp (Y (f))− αYp (X(f)) + βXp (Y (g))− βYp (X(g))

= α [Xp (Y (f))− Yp (X(f))] + β [Xp (Y (g))− Yp (X(g))]

= α[X, Y ]p(f) + β[X, Y ]p(g). �
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A.1.2 Derivation Property

[X, Y ]p(fg) = Xp (Y (fg))− Yp (X(fg))

= Xp (Y (f)g + fY (g))− Yp (X(f)g + fX(g))

= Xp (Y (f)g) +Xp (fY (g))− Yp (X(f)g)− Yp (fX(g))

= Xp (Y (f)) gp + Yp(f)Xp(g) +Xp(f)Yp(g) +Xp (Y (g)) fp

−Yp (X(f)) gp −Xp(f)Yp(g)− Yp(f)Xp(g)− Yp (X(g)) fp

= [Xp (Y (f))− Yp (X(f))] gp + [Xp (Y (g))− Yp (X(g))] fp

+Xp(f)Yp(g)−Xp(f)Yp(g) +Xp(g)Yp(f)−Xp(g)Yp(f)

= [X, Y ]p fgp + [X, Y ]p gfp. �

A.1.3 Geometric Interpretation

Based on the nomenclature shown in Figure 3.1 it is desired to estimate a solution

to q̇ = ag1(q) + bg2(q). The solution is estimated at small time ǫ, i.e., the state of

the system is given at t = ǫ using a Taylor series expansion about time 0 with a = 1,

b = 0 and q(0) = qo. The initial expansion is

q(ǫ) = q(0) + q̇(0)(ǫ− 0) +
1

2
q̈(0)(ǫ− 0)2 +O(ǫ3)

= qo + ǫg1(qo) +
1

2
ǫ2q̈(0) +O(ǫ3).

Since

q̈(0) =
d

dt
q̇(0) =

d

dt
g1(qo) =

∂g1(qo)

∂q

dq(0)

dt
=
∂g1(qo)

∂q
g1(qo),

the state at time ǫ is approximately

qǫ := q(ǫ) = qo + ǫg1(qo) +
1

2
ǫ2
∂g1(qo)

∂q
g1(qo) +O(ǫ3).
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Next, the solution is expanded about t = ǫ for the solution at 2ǫ. This expansion

is

q(2ǫ) = q(ǫ) + q̇(ǫ)(2ǫ− ǫ) +
1

2
q̈(ǫ)(2ǫ− ǫ)2 +O(ǫ3)

= qǫ + ǫg2(qǫ) +
1

2
ǫ2
∂

∂q
g2(qǫ)g2(qǫ) +O(ǫ3).

Substituting for qǫ gives

q(2ǫ) = qo + ǫg1(qo) +
1

2
ǫ2
∂g1(qo)

∂q
g1(qo) + ǫg2(qo + ǫg1(qo))

+
1

2
ǫ2
∂

∂q
g2(qo)g2(qo) +O(ǫ3).

The last two terms reduce since the approximation is second order, and any substi-

tutions beyond ǫ2 in the ǫg2 term and beyond ǫ in the last term yield a third-order

term in ǫ. Hence, up to second order, g2(qǫ) ≈ qo + ǫg1(qo) and g2(qǫ) ≈ g2(qo) with

the remaining terms going to O(ǫ3).

At this point it is necessary to additionally expand g2(qǫ) about qo giving

g2(qǫ) ≈ g2(qo) +
∂

∂q
q2(qo)(qǫ − qo)

≈ g2(qo) +
∂

∂q
q2(qo)(qO + ǫg1(go)− qo)

≈ g2(qo) + ǫ
∂

∂q
q2(qo)g1(go).

The state at time 2ǫ is estimated as

q2ǫ := q(ǫ) = qo + ǫ (g1(qo) + g2(qo)) +
1

2
ǫ2
(
∂

∂q
q1(qo)g1(go)

+
∂

∂q
g2(qo)g2(go) + 2

∂

∂q
q2(qo)g1(go)

)

+O(ǫ3).

It remains to expand this solution for an approximation at 3ǫ and then that

solution to obtain the final estimate at 4ǫ.
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A.2 Lie Bracket Properties

The two most important properties of Lie brackets in regards to this work are

skew symmetry and the Jacobi identity because vector fields that are dependent

through skew symmetry or the Jacobi identity must be eliminated from the Phillip

Hall basis. The Phillip Hall basis construction presented in Section 3.2 does this

“automatically”. Skew symmetry is easy to show using local coordinates; however,

the Jacobi identity is more amenable to a global proof. Only a proof of skew

symmetry is given. The proof is constructive.

skew symmetry: [f, g] = − [g, f ]

From the definition of a Lie bracket

[f, g] =
∂g

∂x
f − ∂f

∂x
g

= −
(
∂f

∂x
g − ∂g

∂x
f

)

= − [g, f ] �
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APPENDIX B

THE UNABRIDGED KINEMATIC CAR

This appendix provides additional information associated with the car parking

example presented in Section 4.1.1.

B.1 Annihilating Constraint Equations

For each case, it is necessary to check ω · f ?
= 0. For the first case,

ω1 · f = [sin(θ + φ) − cos(θ + φ) − l cosφ 0]










cos θ

sin θ

tanφ/l

0










= (sin θ cosφ+ cos θ sinφ) cos θ − (cos θ cosφ− sin θ sinφ) sin θ − l cosφ sinφ

cosφ l
= cos2 θ sinφ+ sin2 θ sinφ− sinφ

= (cos2 θ + sin2 θ) sinφ− sinφ

= 0.

For the second case,

ω2 · f = (sin θ − cos θ 0 0)










cos θ

sin θ

tanφ/l

0










= sin θ cos θ − cos θ sin θ

= 0.
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For the third case,

ω1 · g = [sin(θ + φ) − cos(θ + φ) − l cosφ 0]










0

0

0

1










= 0.

Finally,

ω2 · f = (sin θ − cos θ 0 0)










0

0

0

1










= 0.

B.2 Rank of the Distribution

Checking the dependency of the vector fields shows















cos θ sin θ tanφ/l 0

0 0 0 1

0 0 −1
l cos2 φ

0

− sin θ
l cos2 φ

cos θ
l cos2 φ

0 0

0 0 −2 tanφ
cos2 φ

0















R5:−2 tanφ lR3+R5−−−−−−−−−−−→















cos θ sin θ tanφ/l 0

0 0 0 1

0 0 −1
l cos2 φ

0

− sin θ
l cos2 φ

cos θ
l cos2 φ

0 0

0 0 0 0















Therefore, g5 = f(g3) and either one can be eliminated.
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APPENDIX C

ROBOT CODE

This Appendix contains the C-code used to perform the robot motion and ma-

nipulation tasks based on the logic presented in Chapter 5. A description of the

eleven programs is given below.

• main.c – This is the main program to perform robot functions. The options are
move a robot in a circle trajectory, move a robot point-to-point, and perform
manipulation. It queries the user for appropriate information based on each
selection, and calls the necessary functions to perform the desired task.

• move options.c – This program is called from main.c, and contains functions
to generate a set of desired trajectories based on the user option for the robot
tasks. The configuration list is stored in a file for use in determining the
inverse kinematics.

• move pt2pt.c – This program is called from move options to generate the
desired trajectory to move a robot from point to point.

• move circle.c – This program is called from move options to generate the
desired trajectory to move a robot in a circle.

• inverse kinematics.c – This program reads a file containing desired robot con-
figurations and determines the joint angles required to achieve them. It writes
two files, final angles.dat which contains the set of calculated joint angles,
and prcounts.dat which contains a set of relative encoder counts to achieve
the calculated angles. If a manipulation is being performed, it writes four such
files, one for each robot. The latter is used by move robot to write position
commands to the boards. It also returns a pointer to the last set of calculated
joint angles.

• matrix.c – This program contains several functions to perform vector and
matrix operations mostly needed to determine the inverse kinematics.

• move robot.c – This program reads the datafiles containing encoder counts,
parses them for each robot and sends the commands to the appropriate motion
control boards.
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• acquire object.c – This program is called by main.c to acquire an object.
It generates an identical, initial point-to-point movement for each robot and
then uses information from the forces sensors to determine the next position
movement for each robot.

• talk2matlab.c – This program stores information in matlab info.dat for use
with Matlabr to determine the joint trajectories for closed loop, reconfigurable
manipulation.

• slip.c – This program is called from talk2matlab.c to check the slip condition
after a finger reconfiguration.

• fuzzy ctlr.c – This program is called from slip.c and from acquire object.c.
It contains the code to implement the fuzzy controller which outputs position
commands based on the finger’s current position and on the value of a finger’s
sensor readings.

In addition, there is code defining a set of functions to access the motion control

boards. These can be found in [76]. The complete code is listed below. At the

cost of readability, the size of the text has been decreased to reduce the number of

pages.

C.1 File main.c

/* *****************************************************************

**********************************************************

* Written by: Neil Petroff *

* Program: main.c *

* Date Written: 22 OCT 2005 *

* Last Date Modified: 14 JUL 2006 *

* Written for: research *

**********************************************************

This is the main program to perform robot functions. The options are

move a robot in a circle trajectory, move a robot point-to-point, and

perform manipulation. It queries the user for appropriate information

based on each selection, and calls the necessary functions to perform

the desired task.

********************** REVISION LOG *************************

10/22/05: The flow of my multi-file program didn’t seem very smooth.

So, this is my first attempt at reorganizing it.

11/07/05: Incorporated code to move all the robots.

11/10/05: Added code to have 3 robots touch object based on sensor

readings. Currently, Robot #2 has a joint problem, so I haven’t

been using it.

11/11/05: Added code to remove appended datafiles with each new run.

Added code to remove temporary data files. Added code to store the

last x-position for each robot when it’s acquiring the object so, if

there’s a sensor glitch, and a robot thinks it’s touching the object

when it isn’t, and starts moving again, it will continue from it’s

last position rather than a "global" last position. Added function

acquire_object which is called after manipulation choice to "find"

the object and lift it prior to the motion planning.

04/15/06: Added task type 3 to move a robot using an existing

datafile containing relative counts. This is done to implement robot

simulations in which the joint angles are determined from the contact

constraint equation. Eventually should be capable of reading a file

for each robot.

04/17/06: Task type 3 currently assumes a datafile exists for each

robot.

07/10/06: Added fuzzy controller for finger position control to
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adjust grasp strength.

07/13/06: Began adding code to perform fixed point rotation.

****************************************************************** */

/* Include Files */

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <math.h>

#include <time.h>

#include "puma.h"

#include "move_options.h"

#include "inverse_kinematics.h"

#include "move_robot.h"

#include "dmclinux.h"

#include "acquire_object.h"

#include "fuzzy_ctlr.h"

#include "talk2matlab.h"

/* Main Function */

int main()

{

int i, type, robot_num, object;

int board_num;

int cube_side;

float xo[] = {0,0,0}, xf[] = {0,0,0};

float x_ctr, y_ctr, z_ctr;

float radius, ro = 0;

double rotation_axis[3] = {0,0,0};

float rotation_amt = 0;

long int final_counts[6] = {0,0,0,0,0,0};

long int jtcts[6] = {0,0,0,0,0,0};

char file_name[20];

/* delete appended datafiles for a new run */

for (i = 1; i <= 4; i++)

{

sprintf(file_name,"Tdes%d.dat", i);

remove(file_name);

sprintf(file_name,"final_angles%d.dat", i);

remove(file_name);

sprintf(file_name,"robot%d_pos.dat", i);

remove(file_name);

}

iopl(3);

Clear(1);

Clear(2);

Clear(3);

for (board_num = 1; board_num <= 3; board_num++)

Write("DR -2;", board_num);

/* Get task */

printf("\nNeil’s Robot Controller\n");

printf("Compiled on %s at %s\n",__DATE__, __TIME__);

printf("\nWhat type of movement would you like to peform?\n");

printf("0: circle, 1: point-to-point, 2: manipulation, \

3: from file ... ");

scanf("%d",&type);

if (type == 0 || type == 1 || type == 3)

{

printf("\nEnter robot number (1-4) you would like to \

use ... ");

scanf("%d",&robot_num);

if (robot_num != 1 && robot_num != 2 && robot_num != 3 \

&& robot_num != 4)

{

printf("\nNot a valid selection.\n");

exit(EXIT_FAILURE);

}

}

if (type == 0)

{

printf("\nAt the zero configuration, the finger\n");

printf("is located at %.2f, %.2f, %.2f",l2+l5, l3-l1, \

lo-l4);

printf("\nEnter the location of the circle’s center \

(x, y, z) ... ");

scanf("%f %f %f",&x_ctr, &y_ctr, &z_ctr);

printf("\nEnter the radius of the circle (in.) ... ");

scanf("%f", &radius);

move_circle(x_ctr, y_ctr, z_ctr, radius);

inverse_kinematics(robot_num, type, jtcts);
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move_robot(robot_num, final_counts);

}

else if (type == 1)

{

printf("\nAt the zero configuration, the finger\n");

printf("is located at %.2f, %.2f, %.2f",l2+l5, l3-l1, \

lo-l4);

printf("\nEnter the coordinates of the starting point \

(x, y, z) ... ");

scanf("%f %f %f", &xo[0], &xo[1], &xo[2]);

printf("\nEnter the coordinates of the end point \

(x, y, z) ... ");

scanf("%f %f %f", &xf[0], &xf[1], &xf[2]);

move_pt2pt(xo,xf);

inverse_kinematics(robot_num, type, jtcts);

move_robot(robot_num, final_counts);

}

else if (type == 3)

{

move_robot(robot_num, final_counts);

}

else if (type == 2)

{

printf("\nPlease select object type.\n");

printf("0: ball, 1: egg, 2: cube ... ");

scanf("%d",&object);

if (object == 1)

{

printf("\nNot yet available.\n");

exit(EXIT_FAILURE);

}

else if (object == 0 || object == 2)

{

if (object == 0)

ro = 4.25;

else

{

printf("\nPlease select an orientation\n");

printf("1: plane, 2: edge ... ");

scanf("%d",&cube_side);

if (cube_side == 1)

ro = 2.875;

else if (cube_side == 2)

ro = 4.066;

else

{

printf("\nInvalid Selection.\n");

exit(EXIT_FAILURE);

}

}

printf("\nPlease select rotation axis.\n");

printf("(A rotation about the z-axis is \

(0, 0, 1)) ... ");

scanf("%lf %lf %lf",&rotation_axis[0],\

&rotation_axis[1],&rotation_axis[2]);

printf("\nPlease select rotation amount \n");

printf("in degrees ... ");

scanf("%f", &rotation_amt);

}

else

{

printf("\nInvalid Selection.\n");

exit(EXIT_FAILURE);

}

acquire_object(object, type);

talk2matlab(ro, rotation_axis, rotation_amt, type, object);

}

else

{

printf("\nNot a valid selection.\n");

exit(EXIT_FAILURE);

}

if (type == 2)

remove("Tdes.dat");

if (type == 0 || type == 1)

{

for (i = 1; i <= 4; i++)

{

sprintf(file_name, "robot%d_cts.dat", i);

remove(file_name);

}

}

sleep(10);

printf("Returning to zero position ...");
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Write("PRA=-1000;",3);

Write("PRC=-1000;",3);

Write("PRE=-1000;",3);

Write("PRG=-1000;",3);

Write("BG;",3);

printf("...");

sleep(1);

Write("PA 0,0,0,0,0,0,0,0;BG;", 1);

Write("PA 0,0,0,0,0,0,0,0;BG;", 2);

Write("PA 0,0,0,0,0,0,0,0;BG;", 3);

printf("...");

sleep(1);

for (board_num = 1; board_num <= 3; board_num++)

Write("DR 0;", board_num);

printf("...");

printf(" done.\n\n");

return 0;

}

C.2 File move options.c

/* *****************************************************************

**********************************************************

* Written by: Neil Petroff *

* Program: move_options.c *

* Date Written: 22 OCT 2005 *

* Last Date Modifiesd: 11 NOV 2005 *

* Written for: research *

**********************************************************

This sub-program is called from main, and contains functions to

generate a set of desired trajectories based on the user option

for the robot tasks. The configuration list is stored in a file

for use in determining the inverse kinematics.

********************** REVISION LOG *************************

10/22/05: I’ve combined the 3 movement options into this 1 file.

11/11/05: Added code in manipulate() to write both permanent and

temporary datafiles depending on the motion requested. Tdes1-4.dat

stores the complete set of desired configurations for each robot

during a mainpulation task. Tdes.dat is the temporary file read by

inverse_kinematics() to calculate the required joint angles. Tdes.dat

is later deleted by the main program.

*/

/* Include Files */

#include <stdio.h>

#include <math.h>

#include "move_options.h"

/* move a robot in a straight line between 2 points */

void move_pt2pt(float *xo,float *xf)

{

float pos_vector[4] = {0,0,0,1};

int num_pts;

float rotation_matrix[4][3] = {{1,0,0},{0,1,0},{0,0,1},{0,0,0}};

int i, j, k;

FILE *ofp;

num_pts = sqrt((xf[0]-xo[0])*(xf[0]-xo[0]) + (xf[1]-xo[1])* \

(xf[1]-xo[1]) + (xf[2]-xo[2])*(xf[2]-xo[2])) + 1;

ofp = fopen("Tdes.dat","w");

if (num_pts == 0)

{

for (j = 0; j < 3; j++)

pos_vector[j] = xo[j];

for (k = 0; k < 4; k++)

fprintf(ofp,"%f\t%f\t%f\t%f\n",rotation_matrix[k][0],\

rotation_matrix[k][1],rotation_matrix[k][2], pos_vector[k]);

}

else

{

for (i = 1; i <= num_pts; i++)

{

for (j = 0; j < 3; j++)
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{

pos_vector[j] = xo[j] + (i/((float) \

num_pts))*(xf[j] - xo[j]);

}

for (k = 0; k < 4; k++)

fprintf(ofp,"%f\t%f\t%f\t%f\n",\

rotation_matrix[k][0],rotation_matrix[k][1],rotation_matrix[k][2], pos_vector[k]);

}

}

fclose(ofp);

}

void move_circle(float xctr, float yctr, float zctr, float radius)

{

float step = 0.1;

float theta;

float z = 9.4;

float pos_vector[4] = {0,0,z,1};

float rotation_matrix[4][3] = {{1,0,0},{0,1,0},{0,0,1},{0,0,0}};

int i;

FILE *ofp;

ofp = fopen("Tdes.dat","w");

for (theta = 0; theta <= 2*M_PI; theta += step)

{

pos_vector[0] = radius * cos(theta) + xctr;

pos_vector[1] = radius * sin(theta) + yctr;

for (i = 0; i < 4; i++)

fprintf(ofp,"%f\t%f\t%f\t%f\n",rotation_matrix[i][0],\

rotation_matrix[i][1],rotation_matrix[i][2], pos_vector[i]);

}

fclose(ofp);

}

void manipulate(float *xo,float *xf, double **rotation_matrix, int \

robot_num)

{

float pos_vector[4] = {0,0,0,1};

int num_pts;

//float rotation_matrix[4][3] = {{1,0,0},{0,1,0},{0,0,1},{0,0,0}};

int i, j, k;

FILE *ofp, *ofptemp;

num_pts = sqrt((xf[0]-xo[0])*(xf[0]-xo[0]) + (xf[1]-xo[1])*\

(xf[1]-xo[1]) + (xf[2]-xo[2])*(xf[2]-xo[2])) + 1;

ofptemp = fopen("Tdes.dat","w");

if (robot_num == 1)

ofp = fopen("Tdes1.dat","a");

else if (robot_num == 2)

ofp = fopen("Tdes2.dat","a");

else if (robot_num == 3)

ofp = fopen("Tdes3.dat","a");

else

ofp = fopen("Tdes4.dat","a");

if (num_pts == 0)

{

for (j = 0; j < 3; j++)

pos_vector[j] = xo[j];

for (k = 0; k < 4; k++)

{

fprintf(ofp,"%f\t%f\t%f\t%f\n",\

rotation_matrix[k][0],rotation_matrix[k][1],rotation_matrix[k][2], \

pos_vector[k]);

fprintf(ofptemp,"%f\t%f\t%f\t%f\n",\

rotation_matrix[k][0],rotation_matrix[k][1],rotation_matrix[k][2], \

pos_vector[k]);

}

}

else

{

for (i = 1; i <= num_pts; i++)

{

for (j = 0; j < 3; j++)

pos_vector[j] = xo[j] + (i/((float) num_pts))*\

(xf[j] - xo[j]);

for (k = 0; k < 3; k++)

{

fprintf(ofp,"%lf\t%lf\t%lf\t%f\n",\

rotation_matrix[k][0],rotation_matrix[k][1],rotation_matrix[k][2],\
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pos_vector[k]);

fprintf(ofptemp,"%lf\t%lf\t%lf\t%f\n",\

rotation_matrix[k][0],rotation_matrix[k][1],rotation_matrix[k][2], \

pos_vector[k]);

}

fprintf(ofp,"%lf\t%lf\t%lf\t%f\n",0.0,0.0,0.0,\

pos_vector[k]);

fprintf(ofptemp,"%lf\t%lf\t%lf\t%f\n",\

0.0,0.0,0.0, pos_vector[k]);

}

}

fclose(ofp);

fclose(ofptemp);

}

C.3 File move pt2pt.c

/* *****************************************************************

**********************************************************

* Written by: Neil Petroff *

* Program: move_pt2pt.c *

* Date Written: 22 JUL 2005 *

* Last Date Modified: 22 JUL 2005 *

* Written for: research *

**********************************************************

This program generates a set of robot configurations to move the end-

effector in a straight line.

********************** REVISION LOG *************************

***** Variable Definitions ***** */

/* Include Files */

#include <stdio.h>

#include <math.h>

#include "move_pt2pt.h"

//#include "inverse_kinematics.h"

//#include "matrix.h"

void move_pt2pt(float *xo,float *xf)

{

float pos_vector[4] = {0,0,0,1};

int num_pts;

float rotation_matrix[4][3] = {{1,0,0},{0,1,0},{0,0,1},{0,0,0}};

int i, j, k;

FILE *ofp;

num_pts = sqrt((xf[0]-xo[0])*(xf[0]-xo[0]) + (xf[1]-xo[1])*\

(xf[1]-xo[1]) + (xf[2]-xo[2])*(xf[2]-xo[2]));

ofp = fopen("Tdes.dat","w");

if (num_pts == 0)

{

for (j = 0; j < 3; j++)

pos_vector[j] = xo[j];

for (k = 0; k < 4; k++)

fprintf(ofp,"%f\t%f\t%f\t%f\n",rotation_matrix[k][0],\

rotation_matrix[k][1],rotation_matrix[k][2], pos_vector[k]);

}

else

{

for (i = 1; i <= num_pts; i++)

{

for (j = 0; j < 3; j++)

{

pos_vector[j] = xo[j] + (i/((float) \

num_pts))*(xf[j] - xo[j]);

}

for (k = 0; k < 4; k++)

fprintf(ofp,"%f\t%f\t%f\t%f\n",\

rotation_matrix[k][0],rotation_matrix[k][1],rotation_matrix[k][2], \

pos_vector[k]);

}

}

fclose(ofp);
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}

void get_object(float *xo,float *xf)

{

float pos_vector[4] = {0,0,0,1};

int num_pts;

float rotation_matrix[4][3] = {{1,0,0},{0,1,0},{0,0,1},{0,0,0}};

double final_angles[6] = {0,0,0,0,0,0};

int i, j, k;

FILE *ofp;

//gst = (double **) malloc((unsigned) 4*sizeof(double*));

num_pts = sqrt((xf[0]-xo[0])*(xf[0]-xo[0]) + (xf[1]-xo[1])*\

(xf[1]-xo[1]) + (xf[2]-xo[2])*(xf[2]-xo[2]));

ofp = fopen("Tdes.dat","w");

if (num_pts == 0)

{

for (j = 0; j < 3; j++)

pos_vector[j] = xo[j];

for (k = 0; k < 4; k++)

fprintf(ofp,"%f\t%f\t%f\t%f\n",rotation_matrix[k][0],\

rotation_matrix[k][1],rotation_matrix[k][2], pos_vector[k]);

}

else

{

for (i = 1; i <= num_pts; i++)

{

for (j = 0; j < 3; j++)

{

pos_vector[j] = xo[j] + (i/((float) \

num_pts))*(xf[j] - xo[j]);

}

for (k = 0; k < 4; k++)

fprintf(ofp,"%f\t%f\t%f\t%f\n",\

rotation_matrix[k][0],rotation_matrix[k][1],rotation_matrix[k][2], \

pos_vector[k]);

}

}

fclose(ofp);

inverse_kinematics(final_angles);

printf("\n");

for (i = 0; i < 6; i++)

printf(".2%lf\t",final_angles[i]);

printf("\n");

//gst = forward_kinematics(final_angles, gst);

}

C.4 File move circle.c

/* *****************************************************************

**********************************************************

* Written by: Neil Petroff *

* Program: circle_traj.c *

* Date Written: 30 MAR 2004 *

* Last Date Modified: 02 FEB 2005 *

* Written for: research *

**********************************************************

*/

/* Include Files */

#include <math.h>

#include <stdio.h>

#include "move_circle.h"

void move_circle(float xctr, float yctr, float zctr, float radius)

{

float theta, beta;

float z = 9.4;

//float y_center = -5.5, z_center = 9.4,

float pos_vector[4] = {0,0,z,1};

float rotation_matrix[4][3] = {{1,0,0},{0,1,0},{0,0,1},{0,0,0}};

int i;

FILE *ofp;
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ofp = fopen("Tdes.dat","w");

//beta = M_PI/2; //atan(17.05/17);

for (theta = 0; theta <= 2*M_PI; theta += STEP)

{

//pos_vector[1] = radius * cos(theta-beta) + y_center;

//pos_vector[2] = radius * sin(theta-beta) + z_center;

pos_vector[0] = radius * cos(theta) + xctr;

pos_vector[1] = radius * sin(theta) + yctr;

for (i = 0; i < 4; i++)

fprintf(ofp,"%f\t%f\t%f\t%f\n",rotation_matrix[i][0],\

rotation_matrix[i][1],rotation_matrix[i][2], pos_vector[i]);

}

fclose(ofp);

}

C.5 File inverse kinematics.c

/* *****************************************************************

**********************************************************

* Written by: Neil Petroff *

* Program: inverse_kinematics.c *

* Date Written: 09 JUN 2004 *

* Last Date Modified: 01 AUG 2006 *

* Written for: research *

**********************************************************

This program reads a file containing desired robot configurations and

determines the joint angles required to achieve them. It writes two

files, final_angles.dat which contains the set of calculated joint

angles, and prcounts.dat which contains a set of relative encoder

counts to achieve the calculated angles. The latter is used by

move_robot to write pr commands to the boards. It also returns a

pointer to the last set of calcuated joint angles.

********************** REVISION LOG *************************

02/02/05: The wrist orientation (theta4 and 6) can’t be determined if

theta5 is zero. These were determined by equating matrix elements

instead of using the subproblem method because the original zero

configuration chosen wasn’t conducive to subproblems,i.e., axes 4 and

6 can’t line up.

02/28/05: Changed the zero configuration so axes 4 and 6 are no longer

in line. Redid calculations for theta4, 5, and 6. Also placed tool

frame at wrist, which eliminates l5 (for now).

03/08/05: Followed MLS’s method using subproblems, resulting in new

solutions for theta2 and theta1. Used subproblem 1 to determine theta1

but not how they describe in the book, i.e. exp^-z1(theta1)q=c. Instead,

used exp^z1(theta1)p=q, where p now includes twist about theta2.

03/09/05: Everything looks good except for theta6. Rechecking wrist

solutions. Test at zero configuration gives -0.05, 0.17, 0, 0.05, -0.17,

and 57.3 degrees for theta1-theta6, respectively. Obviously, theta6

isn’t right! Forgot to take acos of stuff for theta6. Looks good now.

Didn’t work on the actual robot. I thought it was because gst(0) was

off a sign for y. Should be l3-l1 not l1-l3 on the actual robot. But

this really messed things up! Theta3 is 0, but everything else seems

off by 90 degrees.

03/10/05: Fixed error in theta3 equation. Theta3 is the only one that

is correct!

07/22/05: backup latest stand-alone version of inverse_kinematics.c.

Now editing this one to work in move_robot.c.

09/28/05: Redid entire inverse kinematics using suproblems. Feel

good about theta1, theta2, and theta3. Has been implemented in Matlab.

10/04/05: Replacing inverse kinematics with suproblem approach.

10/05/05: Did subproblem approach first in Matlab, then algebraically

in Mathematica. I’m using the Mathematica solutions in here so I don’t

have to write a bunch of functions to do matrix manipulation. But I

guess I will eventually anyway to compute the forward kinematics. The

subproblem approach gave better position results than what I first had;

the orientation results are the same.

10/19/05: The explicit solutions for the wrist angles were very long,

so I’m writing functions to perform the calculations, basically

converting my Matlab code to C.

10/24/05: Added code to read the current robot position prior to

calculating the invere kinematics. Otherwise, while acquiring the

object, the relative counts will be wrong since the program will think

the robot started from its zero configuration. This is only true

before the first move.

11/11/05: Added code to store both temporary and permanent datafiles.

The temporary ones are used in the motion planning as the robots are

required to do additional movements. These are later deleted by the
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main program, but the permanent files store the calculated joint angles

for each set of movements for each robot.

11/29/05: Changed code so that theta5 = 0 if we are doing robot

number 2. This is because joint 5 is not working so well on robot 2.

Also, set theta6 = 0 for all robots since rotation in this direction

breaks the nonholonomic constraint requirement. Also, that shear can

damage the sensors.

04/26/06: Added finger length variable l5 so the location of the tool

frame can be moved. It appears in the calculation for igsto.

07/11/06: Added l5 in puma.h. It is the distance from the wrist,

the intersection of joints 4, 5, and 6, to the end of the finger.

Turned theta6 "on"

07/14/06: moved definitions for qs and omegas out of puma.h and

into here since I couldn’t figure a way to #define an array. This

fixed the problem with things being previously defined. And I can

now use the l’s for the finger position instead of hard coding it.

07/22/06: Added corrections to theta5 and theta6 due to mechanical

coupling of the wrist.

07/23/06: The wrist angles were determined incorrectly. It only

cropped up when I tried to achieve a rotation matrix other than

identity. Made corrections.

07/25/06: changed order of wrist joint corrections so that theta6 is

corrected prior to theta5. This changes theta6 based on the

calculated theta5 instead of theta5’s corrected value.

07/26/06: Still making corrections to the wrist angle calculations.

I think it’s finally correct now. Corrections complete for the

inverse kinematics. I’m going to archive this, and start making

changes to bring the desired fingertip configurations, which are stored

in Tdes, back to the wrist. It appears the inverse kinematics only

works with the desired tool frame at the wrist. Once the orientation

is far enough from identity, the ball is dropped because the error

at the fingertip. There was an error in the calculation for theta3.

Making corrections to this, and it now appears the inverse kinematics

WILL work with an arbitrary end-effector frame!

07/27/06: Took correction out of theta6 so it is always zero when

performing inverse kinematics. This prevents the finger from

twisting on the ball while checking the slip condition. Hopefully,

this saves some wear on the sensors and prevents the finger from

twisting on its frame. The latter could affect the newly added

corrections to the sensor locations which are affected by the finger

orientation.

07/31/06: Fixed another error in the calculation for theta4, had the

indices switched in calculation for u = c - Pw.

08/01/06: Changed theta 6 so that its value equals its previous value.

This is to prevent the finger from twisting on the ball while regripping.

Originally I had set theta 6 = 0, but this only worked during the object

acquisition phase since theta 6 started at zero. After finger

reconfiguration, however, this is no longer the case.

***** Variable Definitions ***** */

/* Include Files */

#include <stdlib.h>

#include <unistd.h>

#include <math.h>

#include "inverse_kinematics.h"

#include "matrix.h"

#include "puma.h"

#include "dmclinux.h"

#include "fuzzy_ctlr.h"

#define NAN 2147483648UL

#define DOF 6

void inverse_kinematics(int robot_num, int type, long int *jtcts)

{

char file_name[20];

long int encoder[256];

long int robot_enc[6]={0,0,0,0,0,0};

int board_num, start = 0, which;

double theta3 = 0.0, th4[2] = {0,0}, th5[2] = {0,0}, cosphi;

double theta1 = 0.0, theta2 = 0.0, theta4 = 0.0, theta5 = 0.0, \

theta6 = 0.0;

double x, y, num, num2, den;

long int counts[6], prev_counts[6] = {0,0,0,0,0,0}, new_cts[6] \

= {0,0,0,0,0,0};

double gstd[4][4] = {{0,0,0,0}}, **g2;

double uproj[3] = {0,0,0}, vproj[3] = {0,0,0};

double mag_uproj = 0, mag_vproj = 0;

double cross[3] = {0,0,0}, delta = 0;

double igsto[4][4] = {{1,0,0,-(l2+l5)},{0,1,0,l1-l3},\

{0,0,1,l4-lo},{0,0,0,1}};

double z[3] = {0,0,0}, alpha = 0, beta = 0, gamma[2] = {0,0};

double u[4] = {0,0,0,0}, c[3][2] = {{0,0}};

double v[4] = {0,0,0,0};

double **dummy1;

double **dummy2;

double **dummy3, **dummy4, **dummy5, **prod;

double mexp1[4][4] = {{0,0,0,0}};
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double mexp2[4][4] = {{0,0,0,0}}, g2c[4][4] = {{0,0,0,0}};

double mexp3[4][4] = {{0,0,0,0}}, mexp4[4][4] = {{0,0,0,0}}, \

mexp5[4][4] = {{0,0,0,0}};

double omega1[3] = {0,0,1}, omega2[3] = {0,1,0}, omega3[3] = \

{0,-1,0};

double omega4[3] = {0,0,1}, omega5[3] = {0,1,0}, omega6[3] = \

{-1,0,0};

double w4xw5[3] = {-1,0,0};

double q1[3] = {0,0,0}, q2[3] = {0,0,lo}, q3[3] = {l2, 0, lo}, \

Pw[3] = {l2, l3-l1, lo-l4};

double q4[3] = {l2, l3-l1, 0}, q5[3] = {l2, 0, lo-l4}, zero[3] = \

{0,0,0};

double q6[3] = {0, l3-l1, lo-l4};

int i, j = 0, k = 0, joint = 0, end_of_file, f = 1, n;

FILE *ifp, *ofp, *ofp1[4];

g2 = (double **) malloc((unsigned) 4*sizeof(double*));

dummy1 = (double **) malloc((unsigned) 4*sizeof(double*));

dummy2 = (double **) malloc((unsigned) 4*sizeof(double*));

dummy3 = (double **) malloc((unsigned) 4*sizeof(double*));

dummy4 = (double **) malloc((unsigned) 4*sizeof(double*));

dummy5 = (double **) malloc((unsigned) 4*sizeof(double*));

prod = (double **) malloc((unsigned) 4*sizeof(double*));

for(i = 0; i < 4; i++)

{

g2[i]=(double *) malloc((unsigned) 4*sizeof(double));

dummy1[i]=(double *) malloc((unsigned) 4*sizeof(double));

dummy2[i]=(double *) malloc((unsigned) 4*sizeof(double));

dummy3[i]=(double *) malloc((unsigned) 4*sizeof(double));

dummy4[i]=(double *) malloc((unsigned) 4*sizeof(double));

dummy5[i]=(double *) malloc((unsigned) 4*sizeof(double));

prod[i]=(double *) malloc((unsigned) 4*sizeof(double));

}

// num_elements = num_cols*(sizeof(mat1)/sizeof(mat1[0]));

//sleep(1);

if (robot_num == 1)

start = 12;

else if (robot_num == 2)

start = 26;

else if (robot_num == 3)

start = 40;

else

start = 54;

for (board_num = 1; board_num <= 3; board_num++)

{

if (board_num == 1)

joint = 0;

else

if (board_num == 2)

joint = 1;

else

joint = 2;

ReturnEncoder(encoder,board_num);

for (k = 0; k < 2; k++)

{

robot_enc[joint] = encoder[start+7*k];

joint += 3;

}

}

for (i = 0; i < 6; i++)

prev_counts[i] = robot_enc[i];

sprintf(file_name,"final_angles%d.dat",robot_num);

ofp = fopen(file_name,"a");

sprintf(file_name,"robot%d_cts.dat",robot_num);

ofp1[0] = fopen(file_name,"w");

ifp = fopen(INPUT_FILE,"r");

if (type == 0 || type == 1)

{

for (i = 0; i < 4; i++)

{

if (i+1 != robot_num)

{

sprintf(file_name,\

"robot%d_cts.dat",i+1);

ofp1[f] = fopen(file_name,"w");

f += 1;

}

}

}

if (ifp == NULL)
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{

printf("Can’t open %s\n",INPUT_FILE);

exit(EXIT_FAILURE);

}

while ((end_of_file = getc(ifp)) != EOF)

{

ungetc(end_of_file,ifp);

delta = 0;

mag_uproj = 0;

mag_vproj = 0;

/* Read the desired configuration. */

for(i = 0; i < 4; i++)

fscanf(ifp,"%lf%lf%lf%lf",&gstd[i][0],&gstd[i][1],\

&gstd[i][2],&gstd[i][3]);

/* Solve for theta3 */

num2 = -2*gstd[0][3]*l5*gstd[0][0] + l5*l5*gstd[0][0]*\

gstd[0][0] - 2*gstd[1][3]*l5*gstd[1][0] + l5*l5*gstd[1][0]* \

gstd[1][0] - 2*gstd[2][3]*l5*gstd[2][0] + 2*l5*lo*gstd[2][0] + l5* \

l5*gstd[2][0]*gstd[2][0];

num = gstd[0][3]*gstd[0][3] + gstd[1][3]*gstd[1][3] + \

gstd[2][3]*gstd[2][3] + lo*lo - l1*l1 -l2*l2 - l3*l3 - l4*l4 + \

2*l1*l3 - 2*gstd[2][3]*lo + num2;

den = 2.0*l2*l4;

theta3 = asin(num/den);

/* Solve for theta2 */

//num = lo*lo + l1*l1 + l2*l2 + l3*l3 + l4*l4 - \

2*l1*l3 + 2*l2*l4*sin(theta3) - gstd[0][3]*gstd[0][3] - \

gstd[1][3]*gstd[1][3] - gstd[2][3]*gstd[2][3];

num = lo*lo + l1*l1 + l2*l2 + l3*l3 + l4*l4 - 2*l1*l3 + \

2*l2*l4*sin(theta3) - pow(gstd[0][3] - gstd[0][0]*l5,2) - \

pow(gstd[1][3] - gstd[1][0]*l5,2) - pow(gstd[2][3] - gstd[2][0]*l5,2);

den = 2 * lo * sqrt(l4*cos(theta3)*l4*cos(theta3) + \

(l2 + l4*sin(theta3))*(l2 + l4*sin(theta3)));

cosphi = num/den;

x = lo * l4 * cos(theta3);

y = lo * (l2 + l4*sin(theta3));

theta2 = atan2(y,x) - acos(cosphi);

/* Solve for theta1 */

//x = gstd[1][3]*(l3 - l1) + gstd[0][3]*(l2*cos(theta2) \

- l4*sin(theta2-theta3));

//y = gstd[0][3]*(l1 - l3) + gstd[1][3]*(l2*cos(theta2) \

- l4*sin(theta2-theta3));

x = (gstd[1][3] - gstd[1][0]*l5)*(l3 - l1) + (gstd[0][3] \

- gstd[0][0]*l5)*(l2*cos(theta2) - l4*sin(theta2-theta3));

y = (gstd[0][3] - gstd[0][0]*l5)*(l1 - l3) + \

l2*cos(theta2)*(gstd[1][3] - gstd[1][0]*l5) - l4*sin(theta2- \

theta3)*(gstd[1][3] - gstd[1][0]*l5);

theta1 = atan2(y,x);

/* Solve for the wrist angles, theta 5 first */

dummy1 = matrix_exponential(omega1, q1, -theta1, dummy1);

dummy2 = matrix_exponential(omega2, q2, -theta2, dummy2);

dummy3 = matrix_exponential(omega3, q3, -theta3, dummy3);

for (i = 0; i < 4; i++)

{

for (j = 0; j < 4; j++)

{

mexp1[i][j] = dummy1[i][j];

mexp2[i][j] = dummy2[i][j];

mexp3[i][j] = dummy3[i][j];

}

}

g2 = matrix_product(5, 4, g2, mexp3, mexp2, mexp1, \

gstd, igsto);

for (i = 0; i < 3; i++)

u[i] = q6[i] - Pw[i];

get_delta(g2, q6, Pw, v);

alpha = dotprod(omega4, v, 3);

beta = dotprod(omega5, u, 3);

gamma[0] = sqrt(dotprod(u, u, 3) - alpha*alpha - \

beta*beta);

gamma[1] = -gamma[0];

for (i = 0; i < 2; i++)

{

for (j = 0; j < 3; j++)

{

z[j] = alpha*omega4[j] + beta*omega5[j] \

+ gamma[i]*w4xw5[j];
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c[j][i] = z[j] + Pw[j];

}

}

projection(u, omega5, uproj);

for (i = 0; i < 2; i++)

{

for (j = 0; j < 3; j++)

v[j] = c[j][i] - Pw[j];

projection(v, omega5, vproj);

y = 0;

x = dotprod(uproj, vproj, 3);

cross_product(uproj, vproj, cross);

y = dotprod(omega5, cross, 3);

th5[i] = atan2(y,x);

}

if (fabs(th5[0]) < fabs(th5[1]))

which = 0;

else

which = 1;

theta5 = th5[which];

/* Solve for theta4 */

get_delta(g2, q6, Pw, v);

projection(v, omega4, vproj);

for (i = 0; i < 2; i++)

{

for (j = 0; j < 3; j++)

u[j] = c[j][i] - Pw[j];

projection(u, omega4, uproj);

y = 0;

x = dotprod(uproj, vproj, 3);

cross_product(uproj, vproj, cross);

y = dotprod(omega4, cross, 3);

th4[i] = atan2(y, x);

}

if (fabs(th4[0]) < fabs(th4[1]))

which = 0;

else

which = 1;

theta4 = th4[which];

/* Solve for theta6 */

theta6 = prev_counts[5]/RAD2COUNT6;

/* apply correction to theta6 */

theta6 = theta6 - c46*theta4 - c56*theta5;

/* apply correction to theta5 */

theta5 = theta5 - c45*theta4;

if ((long int) theta1 == NAN || (long int) theta2 == \

NAN || (long int) theta3 == NAN || (long int) theta4 == NAN || \

(long int) theta5 == NAN || (long int) theta6 == NAN)

{

printf("\nFailure during inverse kinematics. \

Configuration can not be acheived.\n\n");

exit(EXIT_FAILURE);

}

counts[0] = theta1*RAD2COUNT1;

counts[1] = theta2*RAD2COUNT2;

counts[2] = theta3*RAD2COUNT3;

counts[3] = theta4*RAD2COUNT4;

counts[4] = theta5*RAD2COUNT5;

counts[5] = prev_counts[5]; //theta6*RAD2COUNT6;

for (i = 0; i < 6; i++)

new_cts[i] = counts[i] - prev_counts[i];

//printf("%lf %lf %lf %lf %.2lf %.2lf\n",theta1,theta2,\

theta3,theta4,theta5,theta6);

//printf("%.2lf\t%.2lf\t%.2lf\t%.2lf\t%.2lf\t%.2lf\n",\

theta1*R2D,theta2*R2D,theta3*R2D,theta4*R2D,theta5*R2D,theta6*R2D);

fprintf(ofp,"%.2lf\t%.2lf\t%.2lf\t%.2lf\t%.2lf\t%.2lf\n",\

theta1*R2D,theta2*R2D,theta3*R2D,theta4*R2D,theta5*R2D,theta6*R2D);

fprintf(ofp1[0],"%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

new_cts[0],new_cts[1],new_cts[2],new_cts[3],new_cts[4],new_cts[5]);

if (type == 0 || type == 1)

{
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for (i = 1; i < 4; i++)

fprintf(ofp1[i],"0\t0\t0\t0\t0\t0\n");

}

for (i = 0; i < 6; i++)

prev_counts[i] = counts[i];

}

/*

final_angles[0] = theta1;

final_angles[1] = theta2;

final_angles[2] = theta3;

final_angles[3] = theta4;

final_angles[4] = theta5;

final_angles[5] = theta6;

*/

fclose(ifp);

fclose(ofp);

if (type == 2)

{

n = fclose(ofp1[0]);

if (n == EOF)

{

sprintf(file_name,"robot%d_cts.dat",robot_num);

printf("\nProblem closing file %s\n", file_name);

exit(EXIT_FAILURE);

}

}

else

for (i = 0; i < f; i++)

{

n = fclose(ofp1[i]);

if (n == EOF)

{

sprintf(file_name,"robot%d_cts.dat",i+1);

printf("\nProblem closing file %s\n", \

file_name);

}

}

}

C.6 File matrix.c

#include "matrix.h"

#include <stdarg.h>

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

/* take the vector omega and return the skew symmetric matrix \

smmat */

void skewsm(const double *omega, double *smmat)

{

*smmat = 0.0;

*(smmat + 1) = -omega[2];

*(smmat + 2) = omega[1];

*(smmat + 3) = omega[2];

*(smmat + 4) = 0.0;

*(smmat + 5) = -omega[0];

*(smmat + 6) = -omega[1];

*(smmat + 7) = omega[0];

*(smmat + 8) = 0.0;

}

/* return the scalar product of two vectors */

double dotprod(const double *vector1, const double *vector2, const \

int size)

{

int i;

double result = 0.0;

for (i = 0; i < size; i++)

result += vector1[i]*vector2[i];

return result;

}

/* return the cross product of two vectors */

void cross_product(const double *vector1, const double *vector2, \

double *result)

{

result[0] = vector1[1]*vector2[2] - vector1[2]*vector2[1];

result[1] = vector1[2]*vector2[0] - vector1[0]*vector2[2];
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result[2] = vector1[0]*vector2[1] - vector1[1]*vector2[0];

}

double** matrix_product(int n, int r, double **c, ...)

{

va_list ap;

int i, j, m, s, a;

double sum = 0.0;

double *mat1, *mat2;

mat1 = malloc(r*r * sizeof(double));

mat2 = malloc(r*r * sizeof(double));

for (i = 0; i < r; i++)

for (j = 0; j < r; j++)

c[i][j] = 0.0;

va_start(ap, c);

mat1 = va_arg(ap, double*);

for (m = 1; m < n; m++)

{

s = 0;

mat2 = va_arg(ap, double*);

for (a = 0; a < r; a++)

{

for (i = 0; i < r; i++)

{

sum = 0.0;

for (j = 0; j < r; j++)

sum += *(mat1 + r*a + j) * *(mat2 + \

r*j + i);

//sum += mat1[r*a+j] * mat2[r*j+i];

c[a][i] = sum;

}

}

for (i = 0; i < r; i++)

{

for (j =0; j < r; j++)

{

*(mat1 + s) = c[i][j];

s += 1;

}

}

}

va_end(ap);

return c;

}

double** matrix_exponential(double *w, double *q, double th, double \

**result)

{

int i, j;

int eye3[3][3] = {{1,0,0},{0,1,0},{0,0,1}};

double smmat[3][3] = {{0,0,0},{0,0,0},{0,0,0}};

double temp[3][3] = {{0,0,0}};

double **prod;

double v[3] = {0,0,0};

double v1[3] = {0,0,0};

double wt[3][3] = {{0,0,0},{0,0,0},{0,0,0}};

double omg_exp[3][3] = {{0,0,0},{0,0,0},{0,0,0}};

prod = (double **) malloc((unsigned) 3*sizeof(double*));

for(i = 0; i < 3; i++) {

prod[i] =(double *) malloc((unsigned) 3*sizeof(double));

}

for (i = 0; i < 4; i++)

for (j = 0; j < 4; j++)

result[i][j] = 0.0;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

wt[i][j] = w[i]*w[j];

cross_product(q, w, v);

cross_product(w, v, v1);

skewsm(w, smmat[0]);

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

temp[i][j] = smmat[i][j];

prod = matrix_product(2, 3, prod, temp, temp);
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for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

{

omg_exp[i][j] = eye3[i][j] + smmat[i][j] * sin(th) \

+ (prod[i][j] * (1 - cos(th)));

result[i][j] = omg_exp[i][j];

}

for (i = 0; i < 3; i++)

{

for (j = 0; j < 3; j++)

{

result[i][3] += (eye3[i][j] - omg_exp[i][j]) * \

v1[j] + wt[i][j]*v[j]*th;

}

}

/* for a revolute joint, e(zhat*th) = [ e^(what*th) \

[0; 0; 0]; 0 1] */

for (i = 0; i < 3; i++)

result[3][i] = 0.0;

result[3][3] = 1.0;

return result;

}

void get_delta(double **g2, double *qa, double *qb, double *p)

{

int i, j;

double sum;

double qc[4] = {qa[0],qa[1],qa[2],1};

double qd[4] = {qb[0], qb[1], qb[2], 1};

for (i = 0; i < 4; i++)

{

sum = 0;

for (j = 0; j < 4; j++)

sum += g2[i][j] *qc[j];

p[i] = sum - qd[i];

}

}

void projection(double *v, double *w, double *p)

{

int i, j;

double sum;

double wt[3][3] = {{0,0,0},{0,0,0},{0,0,0}};

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

wt[i][j] = w[i]*w[j];

for (i = 0; i < 3; i++)

{

sum = 0;

for (j = 0; j < 3; j++)

sum += wt[i][j] *v[j];

p[i] = v[i] - sum;

}

}

double** forward_kinematics(double *qs, double *omegas, double \

*ths, double *gsto, double **gst)

{

int i, j;

double **mexp1, **mexp2, **mexp3, **mexp4, **mexp5, **mexp6;

double mexp11[4][4] = {{0,0,0,0}}, mexp22[4][4] = {{0,0,0,0}}, \

mexp33[4][4] = {{0,0,0,0}};

double mexp44[4][4] = {{0,0,0,0}}, mexp55[4][4] = {{0,0,0,0}}, \

mexp66[4][4] = {{0,0,0,0}};

mexp1 = (double **) malloc((unsigned) 4*sizeof(double*));

mexp2 = (double **) malloc((unsigned) 4*sizeof(double*));

mexp3 = (double **) malloc((unsigned) 4*sizeof(double*));

mexp4 = (double **) malloc((unsigned) 4*sizeof(double*));

mexp5 = (double **) malloc((unsigned) 4*sizeof(double*));

mexp6 = (double **) malloc((unsigned) 4*sizeof(double*));

for (i = 0; i < 4; i++)

for (j = 0; j < 4; j++)

gst[i][j] = 0.0;

for(i = 0; i < 4; i++)

{
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mexp1[i]=(double *) malloc((unsigned) 4*sizeof(double));

mexp2[i]=(double *) malloc((unsigned) 4*sizeof(double));

mexp3[i]=(double *) malloc((unsigned) 4*sizeof(double));

mexp4[i]=(double *) malloc((unsigned) 4*sizeof(double));

mexp5[i]=(double *) malloc((unsigned) 4*sizeof(double));

mexp6[i]=(double *) malloc((unsigned) 4*sizeof(double));

}

mexp1 = matrix_exponential(&omegas[0], &qs[0], ths[0], mexp1);

mexp2 = matrix_exponential(&omegas[3], &qs[3], ths[1], mexp2);

mexp3 = matrix_exponential(&omegas[6], &qs[6], ths[2], mexp3);

mexp4 = matrix_exponential(&omegas[9], &qs[9], ths[3], mexp4);

mexp5 = matrix_exponential(&omegas[12], &qs[12], ths[4], mexp5);

mexp6 = matrix_exponential(&omegas[15], &qs[15], ths[5], mexp6);

for (i = 0; i < 4; i++)

{

for (j = 0; j < 4; j++)

{

mexp11[i][j] = mexp1[i][j];

mexp22[i][j] = mexp2[i][j];

mexp33[i][j] = mexp3[i][j];

mexp44[i][j] = mexp4[i][j];

mexp55[i][j] = mexp5[i][j];

mexp66[i][j] = mexp6[i][j];

}

}

gst = matrix_product(7, 4, gst, mexp11, mexp22, mexp33, mexp44, \

mexp55, mexp66, &gsto[0]);

return gst;

}

C.7 File move robot.c

/* *****************************************************************

**********************************************************

* Written by: Neil Petroff *

* Program: move_robot.c *

* Date Written: 18 JUL 2005 *

* Last Date Modified: 30 JUL 2006 *

* Written for: research *

**********************************************************

This program queries the user for the type of robot motion to perform.

It calls the appropriate functions to determine the subsequent encoder

counts to perform the motion. It reads this file and writes it to the

boards.

********************** REVISION LOG *************************

7/18/05: This is a copy of circle2.c. Which would write the board

information after reading and parsing prcounts.dat. To generate a

robot motion currently takes 3 runs - 1 to determine the trajectory

which generates the desired robot configuration at each point

(Tdes.dat), 1 to peform the inversed kinematics which generates the

desired encoder counts (prcounts.dat), then finally circle2. I want

this all to be done in one run. Which would ultimately include

manipulation choices.

7/26/05: Cleaned up code to read each line of prcounts.dat.

10/23/05: This used to be the main program to query the user for a

robot motion, determine the inverse kinematics, and send commands to

the control boards. I’ve redone the program flow so that, now, this

is a sub-program called by main to only send commands to the boards.

11/04/05: This program now needs to read four input files, one for

each robot, and combine each line. Right now, however, the lines

aren’t being read correctly.

11/07/05: This is working now. It reads 4 seperate encoder files,

parses them, and writes them to the boards to move each robot.

11/11/05: Added code to write all files for the encoder counts for

manipulation or only 1 for specific robot if simple move is selected.

Added timestamp to the datafiles.

11/29/05: Added robot 2 to the mix.

04/15/06: Added code to remove temporary robot_cts.dat datafiles if

one of the datafiles cannot be read. Otherwise, we are left with

empty files.

07/30/06: Changed the way the encoder counts are stored and printed

to a file. Just put them all in a matrix instead of having 4 arrays.

They didn’t appear to be printing properly the first way. And I

know the new way works because I wrote and tested it just recently

in slip.c.

***** Variable Definitions *****
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NUMBRDS - number of motion control boards (3). Each board is capable

of controlling 8 axes. Board 1 controls joints 1 and 4 on each of

the 4 robots, board 2 controls joints 2 and 5, and board 3

controls joints 3 and 6.

NUMJOINTS - number of joints controlled by each board (8)

CYCLES - number of times to move each joint

response - response buffer from the boards after interrogation, a

string

joints - string containing the axes definitions for each joint. A

and B refer to robot 1, C and D to robot 2, etc.

commands - string containing the a 2-letter, executable instruction for

a board.

move_amt - a string that sets the encoder counts for a position command.

brd_cmd - a string containing a board command, e.g. PRA=2000 means set

the position relative to 2000 encoder counts on joint A. Depending on

the board, this would be joint 1, 2, or 3 on robot 1. The command is

built through combinations of commands, joints, and move_amt.

Currently, only position commands are done

i,j - loop counters

board_num - loop counter to loop through each board, set by NUMBRDS

which_joint - loop counter to loop through each joint, set by

NUMJOINTS

************************************************************************* */

/* Include Files */

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <time.h>

#include "dmclinux.h"

#include "move_robot.h"

#include "puma.h"

#define NUMBRDS 3

#define NUMJOINTS 8

/* Function Prototypes */

void TellPosition(const char *, const char *);

void PositionAbsolute(const long int *, const long int *, const long \

int *, const long int *, const int, char *);

/* Main Function */

void move_robot(int robot_num, long int *final_counts)

{

char brd_cmd[20], file_name[20];

int brd_cmds = 0;

long int move_amt;

long int robot1[] = {0,0,0,0,0,0};

long int robot2[] = {0,0,0,0,0,0};

long int robot3[] = {0,0,0,0,0,0};

long int robot4[] = {0,0,0,0,0,0};

long int robot_enc_cts[NUM_ROBOTS][6] = {{0,0,0,0,0,0}};

long int encoder[256];

int i = 0, counter, j = 0, k, m, board_num, joint = 0, ch;

int ready;

long int sum[] = {0,0,0,0,0,0};

FILE *ifp[4], *ofpp, *ofp[4];

time_t start_time = time(NULL);

for (i = 0; i < 4; i++)

{

sprintf(file_name,"robot%d_cts.dat",i+1);

ifp[i] = fopen(file_name,"r");

if (ifp[i] == NULL)

{

printf("Can’t open %s\n",file_name);

for (i = 1; i <= 4; i++)

{

sprintf(file_name, "robot%d_cts.dat", i);

remove(file_name);

}

exit(EXIT_FAILURE);

}

}

//#if 0

for (j = 0; j <= sizeof(brd_cmd); j++) /* initialize brd_cmd \

array */

brd_cmd[j] = ’\0’;

//for (board_num = 1; board_num <= NUMBRDS; board_num++)

//Write("SH;",board_num);
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if (robot_num == 5) /* there are only 4 robots, a 5 indicates

manipulation in which all robots are used */

{

for (i = 0; i < 4; i++)

{

sprintf(file_name,"robot%d_pos.dat", i+1);

ofp[i] = fopen(file_name,"a");

}

}

else

{

sprintf(file_name,"robot%d_pos.dat", robot_num);

ofpp = fopen(file_name,"w");

}

i = 0;

for (board_num = 1; board_num <= 3; board_num++)

{

ReturnEncoder(encoder,board_num);

for (m = 0; m < 4; m++)

{

if (board_num == 1)

joint = 0;

else

if (board_num == 2)

joint = 1;

else

joint = 2;

for (k = 0; k < 2; k++)

{

robot_enc_cts[m][joint] = encoder[12+7*i];

i += 1;

joint += 3;

}

}

i = 0;

}

if (robot_num == 5)

{

fprintf(ofp[0],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[0][0],\

robot_enc_cts[0][1],robot_enc_cts[0][2],robot_enc_cts[0][3],\

robot_enc_cts[0][4],robot_enc_cts[0][5]);

fprintf(ofp[1],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[1][0],\

robot_enc_cts[1][1],robot_enc_cts[1][2],robot_enc_cts[1][3],\

robot_enc_cts[1][4],robot_enc_cts[1][5]);

fprintf(ofp[2],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[2][0],\

robot_enc_cts[2][1],robot_enc_cts[2][2],robot_enc_cts[2][3],\

robot_enc_cts[2][4],robot_enc_cts[2][5]);

fprintf(ofp[3],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[3][0],\

robot_enc_cts[3][1],robot_enc_cts[3][2],robot_enc_cts[3][3],\

robot_enc_cts[3][4],robot_enc_cts[3][5]);

}

else if (robot_num == 1)

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[0][0],\

robot_enc_cts[0][1],robot_enc_cts[0][2],robot_enc_cts[0][3],\

robot_enc_cts[0][4],robot_enc_cts[0][5]);

else if (robot_num == 2)

{

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[1][0],\

robot_enc_cts[1][1],robot_enc_cts[1][2],robot_enc_cts[1][3],\

robot_enc_cts[1][4],robot_enc_cts[1][5]);

}

else if (robot_num == 3)

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[2][0],\

robot_enc_cts[2][1],robot_enc_cts[2][2],robot_enc_cts[2][3],\

robot_enc_cts[2][4],robot_enc_cts[2][5]);

else if (robot_num == 4)

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[3][0],\

robot_enc_cts[3][1],robot_enc_cts[3][2],robot_enc_cts[3][3],\

robot_enc_cts[3][4],robot_enc_cts[3][5]);

/* enter contour mode */

for (j = 1; j <= NUMBRDS; j++)

{

Write("CM ABCDEFGH;",j);

Write("DT 8;",j);

}

/* Input file contains rows of, ultimately, 24 encoder counts

for a desired trajectory. Currently, there are only six,
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corresponding to the first robot. Board 1 controls joints 1,4; board

2 controls joints 2,5; board 3 controls joints 3,6. */

while ((ch = getc(ifp[0])) != EOF)

{

ungetc(ch, ifp[0]);

for (i = 0; i < 4; i++)

{

/* read until a line of data. The first 6

entries belong to robot 1, the next 6 to robot 2, and so on. */

counter = 0;

while ((ch = getc(ifp[i])) != ’\n’)

{

ungetc(ch, ifp[i]);

fscanf(ifp[i],"%ld",&move_amt);

//printf("\n%ld\t%d\t%d\t%d",move_amt,j,\

counter,ch);

if (i == 0)

{

robot1[counter] = move_amt;

//printf("robot1[%d] = %ld\t",\

counter,move_amt);

}

else if (i == 1)

{

robot2[counter] = move_amt;

//printf("robot2[%d] = %ld\t",\

counter,move_amt);

}

else if (i == 2)

robot3[counter] = move_amt;

else

robot4[counter] = move_amt;

sum[i] += move_amt;

counter += 1;

}

}

//#if 0

/* write the Command Data to each board. Board 1 gets

robot[0], robot[3] (joints 1 and 4), board 2 gets robot[1], robot[4]

(joints 2 and 5), and Board 3 gets robot[2], robot[5] (joints 3 and 6)

for each robot. */

for (board_num = 1; board_num <= NUMBRDS; board_num++)

{

/* the function name is a remnant from when I

was trying to use PA commands instead of CD. */

PositionAbsolute(robot1, robot2, robot3, robot4, \

board_num, brd_cmd);

//printf("\n%s",brd_cmd);

//#if 0

/* keep writing to the board until it’s ready to receive

another command. I don’t remember exactly why I do this. I think the

computer would write too fast to the board and some of the data would

be missed, I guess if both the holding and processing buffers were full.

Therefore, the desired trajectory would not be followed and the

C-program would end well before the robot motion was finished. */

ready = Write(brd_cmd,board_num);

while (ready)

ready = Write(brd_cmd,board_num);

}

brd_cmds += 1;

printf("%d\n",brd_cmds);

i = 0;

for (board_num = 1; board_num <= 3; board_num++)

{

ReturnEncoder(encoder,board_num);

for (m = 0; m < 4; m++)

{

if (board_num == 1)

joint = 0;

else

if (board_num == 2)

joint = 1;

else

joint = 2;

for (k = 0; k < 2; k++)

{

robot_enc_cts[m][joint] = encoder[12+7*i];

i += 1;

joint += 3;

}

}

i = 0;
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}

if (robot_num == 5) /* write data for all the robots */

{

fprintf(ofp[0],"%.4gg\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[0][0],\

robot_enc_cts[0][1],robot_enc_cts[0][2],robot_enc_cts[0][3],\

robot_enc_cts[0][4],robot_enc_cts[0][5]);

fprintf(ofp[1],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[1][0],\

robot_enc_cts[1][1],robot_enc_cts[1][2],robot_enc_cts[1][3],\

robot_enc_cts[1][4],robot_enc_cts[1][5]);

fprintf(ofp[2],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[2][0],\

robot_enc_cts[2][1],robot_enc_cts[2][2],robot_enc_cts[2][3],\

robot_enc_cts[2][4],robot_enc_cts[2][5]);

fprintf(ofp[3],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[3][0],\

robot_enc_cts[3][1],robot_enc_cts[3][2],robot_enc_cts[3][3],\

robot_enc_cts[3][4],robot_enc_cts[3][5]);

}

else if (robot_num == 1)

fprintf(ofpp,"%.4g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[0][0],\

robot_enc_cts[0][1],robot_enc_cts[0][2],robot_enc_cts[0][3],\

robot_enc_cts[0][4],robot_enc_cts[0][5]);

else if (robot_num == 2)

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[1][0],\

robot_enc_cts[1][1],robot_enc_cts[1][2],robot_enc_cts[1][3],\

robot_enc_cts[1][4],robot_enc_cts[1][5]);

else if (robot_num == 3)

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[2][0],\

robot_enc_cts[2][1],robot_enc_cts[2][2],robot_enc_cts[2][3],\

robot_enc_cts[2][4],robot_enc_cts[2][5]);

else if (robot_num == 4)

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[3][0],\

robot_enc_cts[3][1],robot_enc_cts[3][2],robot_enc_cts[3][3],\

robot_enc_cts[3][4],robot_enc_cts[3][5]);

}

/* wait to make sure the boards are ready to receive more

commands and then turn the contour mode off. */

sleep(2);

for (j = 1;j <= 3; j++)

{

Write("DT0;",j);

Write("CD0;",j);

}

i = 0;

for (board_num = 1; board_num <= 3; board_num++)

{

ReturnEncoder(encoder,board_num);

for (m = 0; m < 4; m++)

{

if (board_num == 1)

joint = 0;

else

if (board_num == 2)

joint = 1;

else

joint = 2;

for (k = 0; k < 2; k++)

{

robot_enc_cts[m][joint] = \

encoder[12+7*i];

i += 1;

joint += 3;

}

}

i = 0;

}

if (robot_num == 5)

{

fprintf(ofp[0],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[0][0],\

robot_enc_cts[0][1],robot_enc_cts[0][2],robot_enc_cts[0][3],\

robot_enc_cts[0][4],robot_enc_cts[0][5]);

fprintf(ofp[1],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[1][0],\

robot_enc_cts[1][1],robot_enc_cts[1][2],robot_enc_cts[1][3],\

robot_enc_cts[1][4],robot_enc_cts[1][5]);

fprintf(ofp[2],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[2][0],\
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robot_enc_cts[2][1],robot_enc_cts[2][2],robot_enc_cts[2][3],\

robot_enc_cts[2][4],robot_enc_cts[2][5]);

fprintf(ofp[3],"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[3][0],\

robot_enc_cts[3][1],robot_enc_cts[3][2],robot_enc_cts[3][3],\

robot_enc_cts[3][4],robot_enc_cts[3][5]);

}

else if (robot_num == 1)

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[0][0],\

robot_enc_cts[0][1],robot_enc_cts[0][2],robot_enc_cts[0][3],\

robot_enc_cts[0][4],robot_enc_cts[0][5]);

else if (robot_num == 2)

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[1][0],\

robot_enc_cts[1][1],robot_enc_cts[1][2],robot_enc_cts[1][3],\

robot_enc_cts[1][4],robot_enc_cts[1][5]);

else if (robot_num == 3)

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[2][0],\

robot_enc_cts[2][1],robot_enc_cts[2][2],robot_enc_cts[2][3],\

robot_enc_cts[2][4],robot_enc_cts[2][5]);

else if (robot_num == 4)

fprintf(ofpp,"%g\t%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n",\

difftime(time(NULL),start_time), robot_enc_cts[3][0],\

robot_enc_cts[3][1],robot_enc_cts[3][2],robot_enc_cts[3][3],\

robot_enc_cts[3][4],robot_enc_cts[3][5]);

for (i = 0; i < 4; i++)

fclose(ifp[i]);

if (robot_num == 5)

{

for (i = 0; i < 4; i++)

fclose(ofp[i]);

}

else

fclose(ofpp);

}

/* This function changes the command that is sent to the board in

the main program. */

void PositionAbsolute(const long int *robot1, const long int \

*robot2, const long int *robot3, const long int *robot4, const int \

board_num, char *full_cmd)

{

switch(board_num)

{

default:

printf("\nError occured in file move_robot --- No valid

controller specified\n");

case 1:

sprintf(full_cmd,"CD %ld,%ld,%ld,%ld,%ld,%ld,%ld,%ld; \

WC;", robot1[0],robot1[3],robot2[0],robot2[3],robot3[0],robot3[3], \

robot4[0],robot4[3]);

break;

case 2:

sprintf(full_cmd,"CD %ld,%ld,%ld,%ld,%ld,%ld,%ld,%ld; \

WC;", robot1[1],robot1[4],robot2[1],robot2[4],robot3[1],robot3[4], \

robot4[1],robot4[4]);

break;

case 3:

sprintf(full_cmd,"CD %ld,%ld,%ld,%ld,%ld,%ld,%ld,%ld; \

WC;", robot1[2],robot1[5],robot2[2],robot2[5],robot3[2],robot3[5], \

robot4[2],robot4[5]);

break;

}

}

C.8 File acquire object.c

/* *****************************************************************

**********************************************************

* Written by: Neil Petroff *

* Program: read_sensors.c *

* Date Written: 11 NOV 2005 *

* Last Date Modified: 11 AUG 2006 *

* Written for: robots *

**********************************************************

This is a sub-program called by main to check whether the end-effector

has sufficiently contacted the object at the beginning of the

manipulation routine.
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********************** REVISION LOG *************************

11/11/05: Moved code to touch the object based on sensor values from

main to here. Going to add code to lift the object, and then return

to call the motion planning.

11/29/05: Changed code to incorporate robot 2.

12/19/05: Added position code to set position vector to acquire cube,

and added code to store the last force sensor data. This is used to

determine object compliance.

04/17/06: Added code to remove the temporary counts datafiles, then

rename openloop motion plan files, and call move_robot again. The

openloop datafiles are currently generated in using the grasp

constraint equation.

04/20/06: Changed code so that robot 2 isn’t used. Joint 5 is dead.

07/10/06: Added call to fuzzy controller for change in x position

of finger. Turned Robot 2 back on since joint 5’s motor was replaced.

07/12/06: Replaced code that checked all 8 analog inputs to determine

if a robot was sufficiently contacting the object. The new code first

determines the maxium force associated with each robot by comparing

the 6 sensor readings. Then, only the max is checked.

07/30/06: Changed code so average force values for each finger are

sent to the fuzzy controller instead of just the max for each finger.

08/11/06: added object to call of fuzzy controller.

***************************************************************** */

#include <time.h>

#include <math.h>

#include "acquire_object.h"

#include "move_robot.h"

#include "dmclinux.h"

#include "move_options.h"

#include "puma.h"

#include "inverse_kinematics.h"

#include "fuzzy_ctlr.h"

int acquire_object(int object, int type)

{

int i, j;

int robot_num;

int board_num;

int robot_flag[4] = {1,1,1,0}; /* flag to stop robot. 1 if true,

0 if false */

short int anin[256];

double **Rd;

double robot_anin[4][6]={{0,0,0,0,0,0}};

long int jtcts[6] = {0,0,0,0,0,0};

long int final_counts[6] = {0,0,0,0,0,0};

float xo[] = {0,0,0}, xf[] = {0,0,0}, xnew[3] = {0,0,0}, \

xnext[4] = {0,0,0,0};

float xlift[3] = {0,0,0};

float dx = 0;

short int new_max;

short int max_force[4] = {0,0,0,0};

double sum, avg_force[4] = {0,0,0};

char file_name[20];

FILE *ofp;

//time_t start_time = time(NULL);

Rd = (double **) malloc((unsigned) 3*sizeof(double*));

for (i = 0; i < 3; i++)

Rd[i] = (double *) malloc((unsigned) 4*sizeof(double));

for (i = 0; i < 3; i++)

{

for (j = 0; j < 3; j++)

{

if (i == j)

Rd[i][j] = 1;

else

Rd[i][j] = 0;

}

}

printf("\n acquiring object ...\n");

xo[0] = l2 + l5;

xo[1] = l3 - l1;

xo[2] = lo - l4;

if (object == 0)

{

xf[0] = 28;

xf[1] = 0;

xf[2] = 8.5;

}

else if (object == 2)

{

xf[0] = 29;
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xf[1] = 0;

xf[2] = 8.5;

}

for (i = 0; i < 4; i++)

xnext[i] = xf[0];

for (robot_num = 1; robot_num <= 4; robot_num++)

{

manipulate(xo, xf, Rd, robot_num);

inverse_kinematics(robot_num, type, jtcts);

}

move_robot(5, final_counts);

for (board_num = 1; board_num <= 3; board_num++)

{

printf("\n");

ReturnAnlg(anin, board_num);

/* if force readings < 0, set them to 0 */

for (j = 0; j < 8; j++)

anin[33+14*j] = MAX(anin[33+14*j], 0);

/* for (j = 0; j < 8; j++)

{

if (j == 0)

robot_anin[k][i] = anin[33+14*j]*ANALOG_RES;

else if (j == 1)

robot_anin[k][i+1] = anin[33+14*j]*ANALOG_RES;

else if (j == 2)

robot_anin[k+1][i] = anin[33+14*j]*ANALOG_RES;

else if (j == 3)

robot_anin[k+1][i+1] = anin[33+14*j]*ANALOG_RES;

else if (j == 4)

robot_anin[k+2][i] = anin[33+14*j]*ANALOG_RES;

else if (j == 5)

robot_anin[k+2][i+1] = anin[33+14*j]*ANALOG_RES;

else if (j == 6)

robot_anin[k+3][i] = anin[33+14*j]*ANALOG_RES;

else

robot_anin[k+3][i+1] = anin[33+14*j]*ANALOG_RES;

}

i += 2; */

for (robot_num = 1; robot_num <= 4; robot_num++)

{

if (robot_num == 1)

{

new_max = MAX(anin[117],anin[131]);

if (new_max > max_force[robot_num - 1])

max_force[robot_num - 1] = new_max;

}

else if (robot_num == 2)

{

new_max = MAX(anin[61],anin[75]);

if (new_max > max_force[robot_num - 1])

max_force[robot_num - 1] = new_max;

}

else if (robot_num == 3)

{

new_max = MAX(anin[89],anin[103]);

if (new_max > max_force[robot_num - 1])

max_force[robot_num - 1] = new_max;

}

else if (robot_num == 4)

{

new_max = MAX(anin[33],anin[47]);

if (new_max > max_force[robot_num - 1])

max_force[robot_num - 1] = new_max;

}

}

}

for (i = 0; i < 4; i++)

{

sum = 0;

for (j = 0; j < 6; j++)

sum += robot_anin[i][j];

avg_force[i] = sum/6.0;

}

while (robot_flag[0] || robot_flag[1] || robot_flag[2] || \

robot_flag[3])

{

for (i = 0; i < 4; i++)

{

if (robot_flag[i])

{

xf[0] = xnext[i];

dx = fuzzy_controller(max_force[i]* \

ANALOG_RES, xf[0], object);
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xnext[i] = xf[0] + dx; //0.25;

xnew[0] = xnext[i];

xnew[1] = xf[1];

xnew[2] = xf[2];

manipulate(xf, xnew, Rd, i+1);

inverse_kinematics(i+1, type, jtcts);

printf("New trajectory for Robot #%d \

calculated.\n\n\n",i+1);

}

else

{

sprintf(file_name,"robot%d_cts.dat", i+1);

ofp = fopen(file_name, "w");

fprintf(ofp,"0\t0\t0\t0\t0\t0\n");

fprintf(ofp,"0\t0\t0\t0\t0\t0\n");

fclose(ofp);

}

if (fabs(dx) <= TOL)

robot_flag[i] = 0;

}

move_robot(5, final_counts);

for (board_num = 1; board_num <= 3; board_num++)

{

printf("\n");

ReturnAnlg(anin, board_num);

/* if force readings < 0, set them to 0 */

for (j = 0; j < 8; j++)

anin[33+14*j] = MAX(anin[33+14*j], 0);

/* for (j = 0; j < 8; j++)

{

if (j == 0)

robot_anin[k][i] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 1)

robot_anin[k][i+1] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 2)

robot_anin[k+1][i] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 3)

robot_anin[k+1][i+1] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 4)

robot_anin[k+2][i] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 5)

robot_anin[k+2][i+1] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 6)

robot_anin[k+3][i] = anin[33+14*j]* \

ANALOG_RES;

else

robot_anin[k+3][i+1] = anin[33+14*j]* \

ANALOG_RES;

}

i += 2; */

for (robot_num = 1; robot_num <= 4; robot_num++)

{

if (robot_num == 1)

{

new_max = MAX(anin[117],anin[131]);

if (new_max > max_force[robot_num \

- 1])

max_force[robot_num - 1] = \

new_max;

}

else if (robot_num == 2)

{

new_max = MAX(anin[61],anin[75]);

if (new_max > max_force[robot_num \

- 1])

max_force[robot_num - 1] = \

new_max;

}

else if (robot_num == 3)

{

new_max = MAX(anin[89],anin[103]);

if (new_max > max_force[robot_num \

- 1])

max_force[robot_num - 1] = \

new_max;

}

else if (robot_num == 4)

{

new_max = MAX(anin[33],anin[47]);
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if (new_max > max_force[robot_num \

- 1])

max_force[robot_num - 1] = \

new_max;

}

}

}

for (robot_num = 1; robot_num <= 4; robot_num++)

printf("%.2f\t", max_force[robot_num - 1]*ANALOG_RES);

printf("\n");

for (i = 0; i < 4; i++)

{

sum = 0;

for (j = 0; j < 6; j++)

sum += robot_anin[i][j];

avg_force[i] = sum/6.0;

}

}

/* lift object */

printf("\nlifting object\n\n");

for (i = 0; i < 4; i++)

{

xnew[0] = xnext[i];

xlift[0] = xnew[0];

xlift[1] = xnew[1];

xlift[2] = xnew[2] + 5.0;

if (xlift[2] < 6.0)

{

printf("\nWARNING: motion may damage robot, \

aborting\n");

exit(EXIT_FAILURE);

}

manipulate(xnew, xlift, Rd, i+1);

inverse_kinematics(i+1, type, jtcts);

}

move_robot(5, final_counts);

return 0;

}

C.9 File talk2matlab.c

/* *****************************************************************

**********************************************************

* Written by: Neil Petroff *

* Program: talk2matlab.c *

* Date Written: 20 JUL 2006 *

* Last Date Modifiesd: 05 AUG 2006 *

* Written for: research *

**********************************************************

This sub-program is called from main, and contains code to perform a

fixed-point rotation of an object once it has been acquired by the

robots.

********************** REVISION LOG *************************

07/20/06: This is a streamlined version of rotate_object.c. I’m

removing everything that isn’t needed when combining with matlab.

07/25/06: changed matlab_info.dat to save current counts instead of

coverting to angles. The extra step isn’t really necessary, and

should make it easier to perform wrist joint corrections in matlab.

07/30/06: Changed finding the finger’s contact coordinate from the

maximum sensor value to the centroid of all sensors.

08/05/06: Added current rotation and object’s twist axis to matlab’s

datafile

***** Variable Definitions ***** */

/* Include Files */

#include <stdio.h>

#include <math.h>

#include <time.h>

#include "acquire_object.h"

#include "move_robot.h"

#include "dmclinux.h"

#include "move_options.h"

#include "puma.h"

#include "inverse_kinematics.h"

#include "fuzzy_ctlr.h"

#include "matrix.h"

#include "slip.h"
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#include "talk2matlab.h"

int talk2matlab(const float ro, const double *rot_axis, const float \

rot_amt, int type, int object)

{

int i, j, k, kb = 1, joint, board_num, robot_num, times;

long int final_counts[6] = {0,0,0,0,0,0};

long int robot_enc_cts[NUM_ROBOTS][6] = {{0,0,0,0,0,0}};

long int encoder[256];

float current_rot = 0;

double sensor_radius = 3.0/16.0;

double robot_anin[4][6]={{0,0,0,0,0,0}};

double uf[NUM_ROBOTS] = {0,0,0,0};

double vf[NUM_ROBOTS] = {0,0,0,0};

double sum_force[NUM_ROBOTS] = {0,0,0,0};

double numu[NUM_ROBOTS] = {0,0,0,0};

double numv[4] = {0,0,0,0};

double du[6] = {sensor_radius, sensor_radius, -sensor_radius, \

-sensor_radius, -sensor_radius, sensor_radius};

double dv[6] = {0, -2*sensor_radius, -2*sensor_radius, 0, \

2*sensor_radius, 2*sensor_radius};

short int anin[256];

double po[3] = {47, 47, 9+ro};

double ks[3] = {0,0,0};

double Rgen[3][3] = {{0,0,0}}, Rdot[3][3] = {{0,0,0}}, \

Vpos[6] = {0,0,0,0,0,0};

double vth = 1 - cos(THF);

double thdot = THF/ROT_T;

FILE *ofp;

/* determine general object twist */

for (i = 0; i < 3; i++)

ks[i] = rot_axis[i]/sqrt(dotprod(rot_axis,rot_axis,3));

/* calculate general rotation matrix */

for (i = 0; i < 3; i++)

{

for (j = 0; j < 3; j++)

{

if (i == j)

Rgen[i][j] = ks[i]*ks[j]*vth + cos(THF);

else

Rgen[i][j] = ks[i]*ks[i]*vth;

}

}

Rgen[0][1] += -ks[2]*sin(THF);

Rgen[0][2] += ks[1]*sin(THF);

Rgen[1][0] += ks[2]*sin(THF);

Rgen[1][2] += -ks[1]*sin(THF);

Rgen[2][0] = ks[0]*ks[2]*vth - ks[1]*sin(THF);

Rgen[2][1] = ks[1]*ks[2]*vth + ks[0]*sin(THF);

skewsm(ks,*Rdot);

for (i = 0; i < 3; i++)

{

for (j = 0; j < 3; j++)

Rdot[i][j] = thdot * Rdot[i][j];

}

/* spatial velocity of object wrt palm */

for (i = 0; i < 3; i++)

Vpos[0] += -Rdot[0][i] * po[i];

for (i = 0; i < 3; i++)

Vpos[1] += -Rdot[1][i] * po[i];

for (i = 0; i < 3; i++)

Vpos[2] += -Rdot[2][i] * po[i];

Vpos[3] = Rdot[2][1];

Vpos[4] = Rdot[0][2];

Vpos[5] = Rdot[1][0];

while (rot_amt - 1 > current_rot)

{

i = 0;

k = 0;

for (board_num = 1; board_num <= 3; board_num++)

{

printf("\n");

ReturnAnlg(anin, board_num);

/* if force readings < 0, set them to 0 */

for (j = 0; j < 8; j++)

anin[33+14*j] = MAX(anin[33+14*j], 0);

for (j = 0; j < 8; j++)

{
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if (j == 0)

robot_anin[k][i] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 1)

robot_anin[k][i+1] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 2)

robot_anin[k+1][i] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 3)

robot_anin[k+1][i+1] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 4)

robot_anin[k+2][i] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 5)

robot_anin[k+2][i+1] = anin[33+14*j]* \

ANALOG_RES;

else if (j == 6)

robot_anin[k+3][i] = anin[33+14*j]* \

ANALOG_RES;

else

robot_anin[k+3][i+1] = anin[33+14*j]* \

ANALOG_RES;

}

i += 2;

}

/* calculate the centroid of the force readings and make

this the contact coordinate */

for (robot_num = 1; robot_num <= 4; robot_num++)

{

numu[robot_num-1] = 0;

numv[robot_num-1] = 0;

sum_force[robot_num-1] = 0;

for (i = 0; i < 6; i++)

{

numu[robot_num-1] += du[i]* \

robot_anin[robot_num-1][i];

numv[robot_num-1] += dv[i]* \

robot_anin[robot_num-1][i];

sum_force[robot_num-1] += \

robot_anin[robot_num-1][i];

}

uf[robot_num-1] = numu[robot_num-1] / \

sum_force[robot_num-1];

vf[robot_num-1] = numv[robot_num-1] / \

sum_force[robot_num-1];

}

i = 0;

sleep(1);

for (board_num = 1; board_num <= 3; board_num++)

{

ReturnEncoder(encoder,board_num);

for (robot_num = 0; robot_num < 4; robot_num++)

{

if (board_num == 1)

joint = 0;

else

if (board_num == 2)

joint = 1;

else

joint = 2;

for (k = 0; k < 2; k++)

{

robot_enc_cts[robot_num][joint] \

= encoder[12+7*i];

i += 1;

joint += 3;

}

}

i = 0;

}

ofp = fopen("matlab_info.dat","w");

fprintf(ofp,"%.4lf\t%.4lf\t%.4lf\t%.4lf\t%.4lf\t% \

.4lf\n",Vpos[0],Vpos[1],Vpos[2],Vpos[3],Vpos[4],Vpos[5]);

fprintf(ofp,"%.4lf\t%.4lf\t%.4lf\t%.4lf\t%.4lf\t \

%.4lf\n",uf[0],uf[1],uf[2],uf[3],0.0,0.0);

fprintf(ofp,"%.4lf\t%.4lf\t%.4lf\t%.4lf\t%.4lf\t \

%.4lf\n",vf[0],vf[1],vf[2],vf[3],0.0,0.0);

for (robot_num = 0; robot_num < 4; robot_num++)

fprintf(ofp,"%ld\t%ld\t%ld\t%ld\t%ld\t%ld\n", \

robot_enc_cts[robot_num][0],robot_enc_cts[robot_num][1], \

robot_enc_cts[robot_num][2],robot_enc_cts[robot_num][3], \
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robot_enc_cts[robot_num][4],robot_enc_cts[robot_num][5]);

fclose(ofp);

printf("\nContact and joint information saved.\n");

printf("\nReady to rotate object ... \n");

printf("\nWaiting for new encoder count files,\n");

printf("enter 0 to continue ... ");

while (kb)

scanf("%d",&kb);

kb = 1;

/* rotate the object */

move_robot(5, final_counts);

sleep(1);

// slip(type);

//printf("\n ... done.\n");

current_rot += THF*R2D;

printf("\n rotation = %f deg.\n",current_rot);

if (rot_amt - 1 > current_rot)

{

for (times = 0; times < 1; times++)

{

/* reconfigure fingers */

for (board_num = 1; board_num <= 3; \

board_num++)

{

printf("\n");

ReturnAnlg(anin, board_num);

/* if force readings < 0, set

them to 0 */

for (j = 0; j < 8; j++)

anin[33+14*j] = \

MAX(anin[33+14*j], 0);

for (j = 0; j < 8; j++)

{

if (j == 0)

robot_anin[k][i] = \

anin[33+14*j]*ANALOG_RES;

else if (j == 1)

robot_anin[k][i+1] \

= anin[33+14*j]*ANALOG_RES;

else if (j == 2)

robot_anin[k+1][i] \

= anin[33+14*j]*ANALOG_RES;

else if (j == 3)

robot_anin[k+1][i+1] \

= anin[33+14*j]*ANALOG_RES;

else if (j == 4)

robot_anin[k+2][i] \

= anin[33+14*j]*ANALOG_RES;

else if (j == 5)

robot_anin[k+2][i+1] \

= anin[33+14*j]*ANALOG_RES;

else if (j == 6)

robot_anin[k+3][i] \

= anin[33+14*j]*ANALOG_RES;

else

robot_anin[k+3][i+1] \

= anin[33+14*j]*ANALOG_RES;

}

i += 2;

}

/* calculate the centroid of the force

readings and make this the contact coordinate */

for (robot_num = 1; robot_num <= 4; \

robot_num++)

{

numu[robot_num-1] = 0;

numv[robot_num-1] = 0;

sum_force[robot_num-1] = 0;

for (i = 0; i < 6; i++)

{

numu[robot_num-1] += \

du[i]*robot_anin[robot_num-1][i];

numv[robot_num-1] += \

dv[i]*robot_anin[robot_num-1][i];

sum_force[robot_num-1] \

+= robot_anin[robot_num-1][i];
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}

uf[robot_num-1] = \

numu[robot_num-1] / sum_force[robot_num-1];

vf[robot_num-1] = \

numv[robot_num-1] / sum_force[robot_num-1];

}

i = 0;

sleep(1);

for (board_num = 1; board_num <= 3; \

board_num++)

{

ReturnEncoder(encoder,board_num);

for (robot_num = 0; robot_num < \

4; robot_num++)

{

if (board_num == 1)

joint = 0;

else

if (board_num == 2)

joint = 1;

else

joint = 2;

for (k = 0; k < 2; k++)

{

\

robot_enc_cts[robot_num][joint] = encoder[12+7*i];

i += 1;

joint += 3;

}

}

i = 0;

}

k = 0;

/* during reconfiguration Vpos = 0 */

ofp = fopen("matlab_info.dat","w");

fprintf(ofp,"%.4lf\t%.4lf\t%.4lf\t \

%.4lf\t%.4lf\t%.4lf\n",0.0,0.0,0.0,0.0,0.0,0.0);

fprintf(ofp,"%.4lf\t%.4lf\t%.4lf\t \

%.4lf\t%.4lf\t%.4lf\n",uf[0],uf[1],uf[2],uf[3],0.0,0.0);

fprintf(ofp,"%.4lf\t%.4lf\t%.4lf\t \

%.4lf\t%.4lf\t%.4lf\n",vf[0],vf[1],vf[2],vf[3],0.0,0.0);

for (robot_num = 0; robot_num < 4; \

robot_num++)

fprintf(ofp,"%ld\t%ld\t%ld\t%ld\t \

%ld\t%ld\n",robot_enc_cts[robot_num][0],robot_enc_cts[robot_num][1], \

robot_enc_cts[robot_num][2],robot_enc_cts[robot_num][3], \

robot_enc_cts[robot_num][4],robot_enc_cts[robot_num][5]);

fprintf(ofp,"%f\t%.4lf\t%.4lf\t%.4lf \

\t%d\t%d\n", current_rot, ks[0], ks[1], ks[2], 0, 0);

fclose(ofp);

printf("\nContact and joint information \

saved.\n");

printf("\nReady to reposition fingers \

... \n");

printf("\nWaiting for new encoder count \

files,\n");

printf("enter 0 to continue \

... ");

while (kb)

scanf("%d",&kb);

kb = 1;

move_robot(5, final_counts);

sleep(1);

if (times == 1)

{

slip(type, object);

printf("\n ... done.\n");

}

}

}

}

return 0;

}

204



C.10 File slip.c

/* *****************************************************************

**********************************************************

* Written by: Neil Petroff *

* Program: slip.c *

* Date Written: 23 JUL 2006 *

* Last Date Modified: 30 JUL 2006 *

* Written for: research *

**********************************************************

This function checks the slip condition between an object and the

fingers, and makes adjustments based on a fuzzy controller output

for the finger’s x-position. It is called from talk2matlab.c after

each object rotation and finger repositioning.

********************** REVISION LOG *************************

07/30/06: Changed code so average force values for each finger

are sent to the fuzzy controller instead of just the max for each

finger.

*/

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

#include "acquire_object.h"

#include "move_robot.h"

#include "matrix.h"

#include "inverse_kinematics.h"

#include "puma.h"

#include "dmclinux.h"

#include "talk2matlab.h"

#include "fuzzy_ctlr.h"

#include "move_options.h"

#include "slip.h"

#define NAN 2147483648UL

#define DOF 6

void slip(int type, int object)

{

int robot_flag[4] = {1,1,1,0}; /* flag to stop robot 1 if

true, 0 if false */

int i, j, k = 0, joint, robot_num, board_num;

float dx = 0, xf[3] = {0,0,0}, xnew[3] = {0,0,0};

long int robot_enc_cts[NUM_ROBOTS][6] = {{0,0,0,0,0,0}};

double robot_anin[4][6]={{0,0,0,0,0,0}};

long int encoder[256], final_counts[6] = {0,0,0,0,0,0};

short int max_force[NUM_ROBOTS] = {0,0,0,0}, anin[256], new_max \

= 0;

double sum, avg_force[4] = {0,0,0};

double **gst, **Rd;

double xpos[4] = {0,0,0,0}, ypos[4] = {0,0,0,0}, zpos[4] = \

{0,0,0,0};

double current_jt_angles[6] = {0,0,0,0,0,0};

double omegas[6][3] = {{0,0,1},{0,1,0},{0,-1,0},{0,0,1},\

{0,1,0},{-1,0,0}};

double qs[6][3] = {{0,0,0},{0,0,lo},{l2, 0, lo},{l2, l3-l1, 0},\

{l2, 0, lo-l4},{0, l3-l1, lo-l4}};

double gsto[4][4] = {{1,0,0,l2+l5},{0,1,0,l3-l1},{0,0,1,lo-l4},\

{0,0,0,1}};

FILE *ofp;

char file_name[20];

gst = (double **) malloc((unsigned) 4*sizeof(double*));

Rd = (double **) malloc((unsigned) 3*sizeof(double*));

for (i = 0; i < 4; i++)

gst[i] = (double *) malloc((unsigned) 4*sizeof(double));

for (i = 0; i < 3; i++)

Rd[i] = (double *) malloc((unsigned) 4*sizeof(double));

printf("\nchecking slip condition ...\n\n");

while (robot_flag[0] || robot_flag[1] || robot_flag[2] || \

robot_flag[3])

{

for (board_num = 1; board_num <= 3; board_num++)

{

ReturnAnlg(anin, board_num);

/* if force readings < 0, set them to 0 */

for (j = 0; j < 8; j++)

anin[33+14*j] = MAX(anin[33+14*j], 0);

/* for (j = 0; j < 8; j++)

{

if (j == 0)
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robot_anin[k][i] = anin[33+14*j]*ANALOG_RES;

else if (j == 1)

robot_anin[k][i+1] = anin[33+14*j]*ANALOG_RES;

else if (j == 2)

robot_anin[k+1][i] = anin[33+14*j]*ANALOG_RES;

else if (j == 3)

robot_anin[k+1][i+1] = anin[33+14*j]*ANALOG_RES;

else if (j == 4)

robot_anin[k+2][i] = anin[33+14*j]*ANALOG_RES;

else if (j == 5)

robot_anin[k+2][i+1] = anin[33+14*j]*ANALOG_RES;

else if (j == 6)

robot_anin[k+3][i] = anin[33+14*j]*ANALOG_RES;

else

robot_anin[k+3][i+1] = anin[33+14*j]*ANALOG_RES;

}

i += 2; */

for (robot_num = 1; robot_num <= 4; robot_num++)

{

if (robot_num == 1)

{

new_max = MAX(anin[117],anin[131]);

if (new_max > \

max_force[robot_num - 1])

max_force[robot_num - 1] \

= new_max;

}

else if (robot_num == 2)

{

new_max = MAX(anin[61],anin[75]);

if (new_max > \

max_force[robot_num - 1])

max_force[robot_num - 1] \

= new_max;

}

else if (robot_num == 3)

{

new_max = MAX(anin[89],anin[103]);

if (new_max > \

max_force[robot_num - 1])

max_force[robot_num - 1] \

= new_max;

}

else if (robot_num == 4)

{

new_max = MAX(anin[33],anin[47]);

if (new_max > \

max_force[robot_num - 1])

max_force[robot_num - 1] \

= new_max;

}

}

}

sleep(1);

i = 0;

for (board_num = 1; board_num <= 3; board_num++)

{

ReturnEncoder(encoder,board_num);

for (robot_num = 0; robot_num < 4; robot_num++)

{

if (board_num == 1)

joint = 0;

else

if (board_num == 2)

joint = 1;

else

joint = 2;

for (k = 0; k < 2; k++)

{

robot_enc_cts[robot_num][joint] \

= encoder[12+7*i];

i += 1;

joint += 3;

}

}

i = 0;

}

for (i = 0; i < 4; i++)

{

if (robot_flag[i])

{

current_jt_angles[0] = \

robot_enc_cts[i][0]*COUNT2RAD1;

current_jt_angles[1] = \

robot_enc_cts[i][1]*COUNT2RAD2;

current_jt_angles[2] = \

robot_enc_cts[i][2]*COUNT2RAD3;
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current_jt_angles[3] = \

robot_enc_cts[i][3]*COUNT2RAD4;

current_jt_angles[4] = \

robot_enc_cts[i][4]*COUNT2RAD5;

current_jt_angles[5] = \

robot_enc_cts[i][5]*COUNT2RAD6;

gst = forward_kinematics(&qs[0][0], \

&omegas[0][0],current_jt_angles,&gsto[0][0],gst);

xpos[i] = gst[0][3];

ypos[i] = gst[1][3];

zpos[i] = gst[2][3];

xf[0] = gst[0][3];

xf[1] = gst[1][3];

xf[2] = gst[2][3];

for (j = 0; j < 3; j++)

{

for (k = 0; k < 3; k++)

Rd[j][k] = gst[j][k];

}

dx = fuzzy_controller(max_force[i]* \

ANALOG_RES, xpos[i], object);

xpos[i] += dx*gst[0][0];

ypos[i] += dx*gst[1][0];

zpos[i] += dx*gst[2][0];

xnew[0] = xpos[i];

xnew[1] = ypos[i];

xnew[2] = zpos[i];

manipulate(xf, xnew, Rd, i+1);

inverse_kinematics(i+1, type, \

&robot_enc_cts[i][0]);

printf("New trajectory for Robot #%d \

calculated.\n",i+1);

}

else

{

sprintf(file_name,"robot%d_cts.dat", i+1);

ofp = fopen(file_name, "w");

fprintf(ofp,"0\t0\t0\t0\t0\t0\n");

fprintf(ofp,"0\t0\t0\t0\t0\t0\n");

fclose(ofp);

}

if (fabs(dx) <= TOL)

robot_flag[i] = 0;

}

/* for (robot_num = 1; robot_num <= 4; robot_num++)

printf("%.2f\t", max_force[robot_num - 1]*ANALOG_RES);

printf("\n"); */

move_robot(5, final_counts);

}

free(gst);

free(Rd);

}

C.11 File fuzzy ctlr.c

/* ****************************************************************

**********************************************************

* Written by: Neil Petroff *

* Program: fuzzy_ctlr.c *

* Date Written: 10 JUL 2006 *

* Last Date Modifiesd: 14 AUG 2006 *

* Written for: research *

**********************************************************

This sub-program is called from main, and contains a fuzzy controller

used to determine the local x-position change of the finger to

acquire/maintain proper contact with an object. The inputs are

object weight, object compliance index, and the current contact force.

The output is the change in x-position of the fingertip. It is

assumed that the rest of the desired configuration is constant.

********************** REVISION LOG *************************

07/10/06: new program.

07/13/06: changed inputs to function call. Currently, they are

current maximum force, and current x-position.

08/11/06: added object to function call. The range of the x-pos

variable has to change depending on the object type. Currently have

values for ball and cube. Also partially implemented automated
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membership function calculations based on the range for an input

variable. Only did it for x-pos input since I’ve been tweaking this

a lot.

08/13/06: Changing range on x-position input to controller for the

ball. Seems the robots drop the ball a lot during slip check when

far from the zero position.

08/14/06: Can’t strike a good balance with the finger positions

changing so much during manipulation. Either it squeezes the ball

too tight when it first grabs it, or it drops it during the slip

check later. Instead of changing the x-pos range again, I’m going

to try weighting the force input. Start with a weight of 1.5.

*/

/* Include Files */

#include <stdio.h>

#include <stdlib.h>

#include "fuzzy_ctlr.h"

float fuzzy_controller(float contact_force, float current_x, const \

int object)

{

int rules[NUM_RULES][LEN]={{0,0,4},{1,0,4},{2,0,4},{3,0,3}, \

{4,0,2},{0,1,4},{1,1,4},{2,1,3},{3,1,2},{4,1,1},{0,2,4},{1,2,3}, \

{2,2,2},{3,2,1},{4,2,0},{0,3,3},{1,3,2},{2,3,1},{3,3,0},{4,3,0}, \

{0,4,2},{1,4,1},{2,4,0},{3,4,0},{4,4,0}};

int i, j;

float mu_force = 0.0, mu_xpos = 0.0;

float dx = 0.0, implication, intersect = 0.0, area = 0.0;

float numerator = 0.0, denominator = 0.0, watot = 0.0, atot = 0.0;

float peak_ball[3][5] = {{0,1,2,3,4},{0,0,0,0,0}, \

{-1,-0.5,0,0.5,1}};

float span_ball[3][5] = {{1,2,2,2,1},{0,0,0,0,0}, \

{0.5,1,1,1,0.5}};

float peak_cube[3][5] = {{0,1.25,2.5,3.75,5},{0,0,0,0,0}, \

{-1,-0.5,0,0.5,1}};

float span_cube[3][5] = {{1.25,2.5,2.5,2.5,1.25},{0,0,0,0,0}, \

{0.5,1,1,1,0.5}};

float range_ball[2] = {28, 31};

float range_cube[2] = {29, 31};

float range = 0, wgt = 1.0;

float peak[3][5] = {{0,0,0,0,0}};

float span[3][5] = {{0,0,0,0,0}};

/* the rule vectors can take on values from 0-4 which represent

linquistic variables LN, N, Z, P, and LP, respectively. The first 2

are for the input variables, contact force and current x position,

and the last element is for the output variable dx.*/

if (object == 0)

{

range = range_ball[1] - range_ball[0];

peak_ball[1][0] = range_ball[0];

peak_ball[1][4] = range_ball[1];

span_ball[1][0] = range/4.;

span_ball[1][4] = range/4.;

for (i = 1; i < 4; i++)

{

peak_ball[1][i] = range_ball[0] + ((i * range)/4.);

span_ball[1][i] = range / 2.;

}

for (i = 0; i < 3; i++)

{

for (j = 0; j < 5; j++)

{

peak[i][j] = peak_ball[i][j];

span[i][j] = span_ball[i][j];

}

}

}

else if (object == 2)

{

range = range_cube[1] - range_cube[0];

peak_cube[1][0] = range_cube[0];

peak_cube[1][4] = range_cube[1];

span_cube[1][0] = range/4.;

span_cube[1][4] = range/4.;

for (i = 1; i < 4; i++)

{

peak_cube[1][i] = range_cube[0] + ((i * \

range)/4.);

span_cube[1][i] = range / 2.;

}

for (i = 0; i < 3; i++)

{

for (j = 0; j < 5; j++)

{

peak[i][j] = peak_cube[i][j];

span[i][j] = span_cube[i][j];

}
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}

}

else

{

printf("\nNo controller specified for selected object.\n");

exit(EXIT_FAILURE);

}

/* determine the membership value of the contact force in the

linguistic variable maxforce */

printf("\n%f\t%f\t",contact_force, current_x);

for (i = 0; i < NUM_RULES; i++)

{

if (rules[i][0] == 0) /* if input1 is LN */

{

if (contact_force < peak[0][0])

mu_force = 1.0;

else if (contact_force >= peak[0][0] && \

contact_force <= (peak[0][0] + span[0][0]))

mu_force = (1./span[0][0])*(peak[0][0] - \

contact_force) + 1;

else if (contact_force > (peak[0][0]+span[0][0]))

mu_force = 0.;

}

else if (rules[i][0] == 1) /* if input1 is N */

{

if (contact_force < (peak[0][1]-span[0][1]/2.) \

|| contact_force > (peak[0][1]+span[0][1]/2.))

mu_force = 0.;

else if (contact_force >= peak[0][1]- \

span[0][1]/2. && contact_force <= peak[0][1])

mu_force = (2/span[0][1])*(contact_force - \

peak[0][1]) + 1;

else if (contact_force > peak[0][1] && \

contact_force <= peak[0][1] + span[0][1]/2.)

mu_force = (2/span[0][1])*(-contact_force + \

peak[0][1]) + 1;

}

else if (rules[i][0] == 2) /* if input1 is zero */

{

if (contact_force < (peak[0][2]-span[0][2]/2.) \

|| contact_force > (peak[0][2]+span[0][2]/2.))

mu_force = 0.;

else if (contact_force >= peak[0][2]- \

span[0][2]/2. && contact_force <= peak[0][2])

mu_force = (2/span[0][2])*(contact_force - \

peak[0][2]) + 1;

else if (contact_force > peak[0][2] && \

contact_force <= peak[0][2] + span[0][2]/2.)

mu_force = (2/span[0][2])*(-contact_force + \

peak[0][2]) + 1;

}

else if (rules[i][0] == 3) /* if input1 is P */

{

if (contact_force < (peak[0][3]-span[0][3]/2.) \

|| contact_force > (peak[0][3]+span[0][3]/2.))

mu_force = 0.;

else if (contact_force >= peak[0][3]- \

span[0][3]/2. && contact_force <= peak[0][3])

mu_force = (2/span[0][3])*(contact_force - \

peak[0][3]) + 1;

else if (contact_force > peak[0][3] && \

contact_force <= peak[0][3] + span[0][3]/2.)

mu_force = (2/span[0][3])*(-contact_force + \

peak[0][3]) + 1;

}

else if (rules[i][0] == 4) /* if input1 is LP */

{

if (contact_force < peak[0][4]-span[0][4])

mu_force = 0.;

else if (contact_force >= peak[0][4]-span[0][4] \

&& contact_force <= peak[0][4])

mu_force = (1/span[0][4])*(contact_force - \

peak[0][4]) + 1;

else if (contact_force > peak[0][4])

mu_force = 1.0;

}

/* determine the membership value of x-position in

linguistic variable currentx */

if (rules[i][1] == 0) /* if input2 is LN */

{

if (current_x < peak[1][0])

mu_xpos = 1.0;

else if (current_x >= peak[1][0] && current_x <= \

(peak[1][0] + span[1][0]))

mu_xpos = (1./span[1][0])*(peak[1][0] - \

current_x) + 1;
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else if (current_x > (peak[1][0]+span[1][0]))

mu_xpos = 0.;

}

else if (rules[i][1] == 1) /* if input2 is N */

{

if (current_x < (peak[1][1]-span[1][1]/2.) || \

current_x > (peak[1][1]+span[1][1]/2.))

mu_xpos = 0.;

else if (current_x >= peak[1][1]-span[1][1]/2. \

&& current_x <= peak[1][1])

mu_xpos = (2/span[1][1])*(current_x - \

peak[1][1]) + 1;

else if (current_x > peak[1][1] && current_x \

<= peak[1][1] + span[1][1]/2.)

mu_xpos = (2/span[1][1])*(-current_x + \

peak[1][1]) + 1;

}

else if (rules[i][1] == 2) /* if input2 is zero */

{

if (current_x < (peak[1][2]-span[1][2]/2.) || \

current_x > (peak[1][2]+span[1][2]/2.))

mu_xpos = 0.;

else if (current_x >= peak[1][2]-span[1][2]/2. \

&& current_x <= peak[1][2])

mu_xpos = (2/span[1][2])*(current_x - \

peak[1][2]) + 1;

else if (current_x > peak[1][2] && current_x \

<= peak[1][2] + span[1][2]/2.)

mu_xpos = (2/span[1][2])*(-current_x + \

peak[1][2]) + 1;

}

else if (rules[i][1] == 3) /* if input2 is P */

{

if (current_x < (peak[1][3]-span[1][3]/2.) || \

current_x > (peak[1][3]+span[1][3]/2.))

mu_xpos = 0.;

else if (current_x >= peak[1][3]-span[1][3]/2. \

&& current_x <= peak[1][3])

mu_xpos = (2/span[1][3])*(current_x - \

peak[1][3]) + 1;

else if (current_x > peak[1][3] && current_x \

<= peak[1][3] + span[1][3]/2.)

mu_xpos = (2/span[1][3])*(-current_x + \

peak[1][3]) + 1;

}

else if (rules[i][1] == 4) /* if input2 is LP */

{

if (current_x < peak[1][4]-span[1][4])

mu_xpos = 0.;

else if (current_x >= peak[1][4]-span[1][4] && \

current_x <= peak[1][4])

mu_xpos = (1/span[1][4])*(current_x - \

peak[1][4]) + 1;

else if (current_x > peak[1][4])

mu_xpos = 1.0;

}

/* do the rule evaluation */

/* since each rule is an and, simply take the min

membership value */

implication = MIN(mu_force, mu_xpos);

/* now, apply these to each output to do the implication.

This gives a fuzzy output set for each rule */

/* determine fuzzy output membership function areas for

change in x */

if (implication != 0)

{

if (rules[i][2] == 0) /* then output is LN */

{

intersect = span[2][0]*(1 - implication);

area = (1./2.)*implication*(intersect + \

span[2][0]);

numerator = area * (peak[2][0] + \

(span[2][0]/3.));

/* numerator is area of cropped

fuzzy set */

denominator = area;

/* times center (peak) of original fuzzy

set - symmetry */

if (implication == mu_force)

{

numerator = numerator * wgt;

denominator = denominator * wgt;

}

}
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else if (rules[i][2] == 1) /* then output is N */

{

intersect = span[2][1]*(1 - implication);

area = (1/2.)*implication*(intersect + \

span[2][1]);

numerator = area * peak[2][1];

denominator = area;

if (implication == mu_force)

{

numerator = numerator * wgt;

denominator = denominator * wgt;

}

}

else if (rules[i][2] == 2) /* then output is

zero */

{

intersect = span[2][2]*(1 - implication);

area = (1/2.)*implication*(intersect + \

span[2][2]);

numerator = area * peak[2][2];

denominator = area;

if (implication == mu_force)

{

numerator = numerator * wgt;

denominator = denominator * wgt;

}

}

else if (rules[i][2] == 3) /* then output is P */

{

intersect = span[2][3]*(1 - implication);

area = (1./2.)*implication*(intersect + \

span[2][3]);

numerator = area * peak[2][3];

denominator = area;

if (implication == mu_force)

{

numerator = numerator * wgt;

denominator = denominator * wgt;

}

}

else if (rules[i][2] == 4) /* then output is LP */

{

intersect = span[2][4]*(1 - implication);

area = (1./2.)*implication*(intersect + \

span[2][4]);

numerator = area * (peak[2][4] - \

(span[2][4]/3.));

denominator = area;

if (implication == mu_force)

{

numerator = numerator * wgt;

denominator = denominator * wgt;

}

}

watot += numerator;

atot += denominator;

}

}

/* calculate crisp output */

if (atot != 0.)

dx = watot / atot;

else

dx = 0.;

printf("%f\n",dx);

return dx;

}
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APPENDIX D

A MATHEMATICA PROGRAM FOR DETERMINING THE INVOLUTIVE

CLOSURE OF AN UNDERACTUATED SYSTEM

This appendix contains the code for a Mathematicar notebook to generate the

involutive closure of an underactuated system. It uses the function LieB to calculate

a Lie bracket vout given two existing vector fields v1 and v2 and a set of local

coordinates list. It can then be used to verify that the set of vector fields generates

the involutive closure for the system. The results shown are for a spherical object

rolling on a flat plane given by Equation 5.2.

(* lie_bracket.nb

Written by: Neil Petroff *)

g1={0,-Sec[uf],rf*Sin[si],rf*Cos[si],Tan[uf]};

g2={1,0,rf*Cos[si],-rf*Sin[si],0};

xs={uf,vf,uo,vo,si};

LieB[v1_,v2_,list_,vout_]:=

Module[{jm1,jm2},

Do[jm1=Table[D[v1[[i]],list[[j]]],{i,Length[v1]},

{j,Length[list]}],{i,Length[v1]},{j,Length[list]}];

Do[jm2=Table[D[v2[[i]],list[[j]]],{i,Length[v2]},

{j,Length[list]}],{i,Length[v2]},{j,Length[list]}];

vout=FullSimplify[jm2.v1-jm1.v2]]

LieB[g1,g2,xs,g3];

LieB[g1,g3,xs,g4];

LieB[g2,g3,xs,g5];

closure=FullSimplify[Transpose[{g1,g2,g3,g4,g5}]];

MatrixRank[closure]
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5

MatrixForm[closure]

i

k

jjjjjjjjjjjjjjjjjjjj

0 1 0 0 0

-Sec@ufD 0 Sec@ufD Tan@ufD 0 Sec@ufD HSec@ufD2 + Tan@ufD2L

rf Sin@siD rf Cos@siD -rf Sin@siD Tan@ufD rf Cos@siD -2 rf Sec@ufD2 Sin@siD

rf Cos@siD -rf Sin@siD -rf Cos@siD Tan@ufD -rf Sin@siD -2 rf Cos@siD Sec@ufD2

Tan@ufD 0 -Sec@ufD2 0 -2 Sec@ufD2 Tan@ufD

y

{

zzzzzzzzzzzzzzzzzzzz

213



BIBLIOGRAPHY

[1] P. E. Agre and D. Chapman, What are plans for? In P. Maes, editor, Designing
Autonomous Agents: Theory and Practice from Biology to Engineering and
Back , pages 17–34, The MIT Press: Cambridge, MA, USA (1990).

[2] J. S. Albus and A. M. Meystel, Engineering of Mind: An Introduction to the
Science of Intelligent systems . John Wiley and Sons, Inc. (2001).

[3] J. R. Anderson, M. V. Albert and J. M. Fincham, Tracing problem solving
in real time: fMRI analysis of the subject-paced tower of Hanoi. Journal of
Cognitive Neuroscience, 17: 1261–1274 (2005).

[4] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere and Y. L.
Qin, An integrated theory of the mind. Psychological Review , 111(4): 1036–
1060 (2004).

[5] Automated assembly device with remote center compliance: Com-
pensator from ATI. webpage (January 31, 2006), http://www.ati-
ia.com/products/compliance/assembly compliance device.aspx.

[6] E. T. Baumgartner and S. B. Skaar, An autonomous vision-based mobile robot.
IEEE Transactions on Automatic Control , 39: 493–502 (March 1994).

[7] R. A. Brooks, Flesh and Machines : How Robots Will Change Us . Pantheon
Books (2002).

[8] M. Buss and H. Hashimoto, Dextrous robot hand experiments. In IEEE Inter-
national Conference on Robotics and Automation, volume 2, pages 1680–1686
(May 1995).

[9] C. Cai and B. Roth, On the spatial motion of rigid bodies with point contact.
In Proceedings of the 1987 International IEEE Conference on Robotics and
Automation, pages 686–695, Raleigh, NC (1987).

[10] W. T. Cerven and F. Bullo, On trajectory optimization for polynomial systems
via series expansions. In Proceedings of the 39th IEEE Conference on Decision
and Control , volume 1, pages 772–777, Sydney, Australia (December 2000).

[11] D. C. Chang and M. R. Cutkosky, Rolling with deformable fingertips. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems , volume 2, pages 194–199 (1995).

214



[12] W. Z. Chen, U. A. Korde and S. B. Skaar, Position control experiments using
vision. The International Journal of Robotics Research, 13(3): 199–208 (June
1994).

[13] J. J. Craig, Introduction to Robotics: Mechanics and Control . Addison-Wesley,
second edition (1989).

[14] J. DeSchutter and H. V. Brussel, Compliant robot motion i. a formalism or
specifying compliant motion tasks. The International Journal of Robotics Re-
search, 7(4): 3–17 (1988).

[15] M. J. Er and Y. L. Sun, Hybrid fuzzy proportional-integral plus conventional
derivative control of linear and nonlinear systems. IEEE Transactions on In-
dustrial Electronics , 48(6): 1109–1117 (December 2001).

[16] R. S. Fearing and J. M. Hollerbach, Basic solid mechanics for tactile sensing.
The International Journal of Robotics Research, 4(3): 40–54 (1985).

[17] J. M. Fincham, C. S. Carter, V. van Veen, V. A. Stenger and J. R. Ander-
son, Neural mechanisms of planning: A computational analysis using event-
related fMRI. Proceedings of the National Academy of Sciences , 99(5): 3346–
3351 (2002).

[18] V. Goel and J. Grafman, Are the frontal lobes implicated in planning func-
tions? interpreting data from the tower of Hanoi. Neuropsychologia, 33: 632–
642 (1995).

[19] J. W. Goodwine, Control of Stratified Systems with Robotic Applications . Ph.D.
thesis, California Institute of Technology (1998).

[20] I. A. Gravagne and I. D. Walker, Manipulability, force, and compliance anal-
ysis for planar continuum manipulators. IEEE Transactions on Robotics and
Automation, 3(18): 263–273 (June 2002).

[21] N. Gulley and R. J. S. Jang, Fuzzy Logic Toolbox for use with Matlabr. The
MathWorks, Inc. (1995).

[22] L. Han, Y. S. Guan, Z. X. Li, Q. Shi and J. C. Trinkle, Dextrous manipulation
with rolling contacts. In Proceedings of the 1997 IEEE International Conference
on Robotics and Automation, pages 992–997 (1997).

[23] K. Harada, M. Kaneko and T. Tsuji, Active force closure for multiple objects.
Journal of Robotic Systems , 19(3): 133–141 (2002).

[24] B. Hayes-Roth, K. Pfleger, P. Morignot, P. Lalanda and M. Balabanovic, 1993.
available at http://citeseer.ist.psu.edu/hayes-roth93plans.html (1993).

[25] R. Hermann, Differential Geometry and the Calculus of Variations. Academic
Press (1968).

[26] M. Hershkovitz, U. Tasch and M. Teboulle, Toward a formulation of the human
grasping quality sense. Journal of Robotic Systems , 12(4): 249–256 (1995).

215



[27] S. A. Huettel, A. W. Song and G. McCarthy, Decisions under uncertainty:
Probabilistic context influences activation of prefrontal and parietal cortices.
Journal of Neuroscience, 25(13): 3304–3311 (March 2005).

[28] E. L. Ince, Ordinary Differential Equations . Dover Publications, Inc. (1956).

[29] R. S. Johansson and G. Westling, Roles of glabrous skin receptors and senso-
rimotor memory in automatic control of precision grip when lifting rougher or
more slippery objects. Experiments in Brain Research, 56: 550–564 (1984).

[30] T. J. Koo, Stable model reference adaptive fuzzy control of a class of nonlinear
systems. IEEE Transactions on Fuzzy Systems , 9(4): 624–636 (August 2001).

[31] B. Kosko, Fuzzy Thinking: The New Science of Fuzzy Logic. Hyperion (1993).

[32] B. Kosko, Fuzzy Engineering . Prentice Hall (1997).

[33] S. A. Kyle, Non-contact measurement for robot calibration. In R. Bernhardt
and S. L. Albright, editors, Robot Calibration, pages 79–100, Chapman & Hall
(1993).

[34] G. Lafferriere and H. J. Sussmann, A differential geometric approach to motion
planning. In X. Li and J. F. Canny, editors, Nonholonomic Motion Planning ,
pages 235–270, Kluwer (1993).

[35] S. M. LaValle, Rapidly-exploring random trees: A new tool for path planning.
available at http://msl.cs.uiuc.edu/rrt/papers.html.

[36] S. M. LaValle, Planning Algorithms . Cambridge University Press (also available
at http://msl.cs.uiuc.edu/planning/) (2006).

[37] S. J. Lederman and R. L. Klatzky, The intelligent hand: An experimental
approach to human object recognition and implications for robotics and AI. AI
Magazine, 15(1): 26–38 (1994).

[38] J.-W. Li, H. Liu and H.-G. Cai, On computing three-finger force-closure grasps
of 2-D and 3-D objects. IEEE Transactions on Robotics and Automation, 19(1):
155–161 (2003).

[39] D. Liberzon and A. S. Morse, Basic problems in stability and design of switched
systems. IEEE Control Systems Magazine, 19(5): 59–70 (October 1999).

[40] H.-O. Lim and K. Tanie, Human safety mechanisms of human-friendly robots:
Passive viscoelastic trunk and passively movable base. The International Jour-
nal of Robotics Research, 19(4): 307–335 (April 2000).

[41] H. Liu, T. Iberall and G. A. Bekey, The multi-dimensional quality of task
requirements for dexterous robot hand control. In Proceedings of the 1989 IEEE
International Conference of Robotics Automation, pages 452–457 (May 1989).

[42] S. Liu and H. Asada, Transferring manipulative skills to robots: Representation
and acquisition of tool manipulative skills using a process dynamic model. In
Modeling and Control of Compliant Rigid Motion Systems , volume 31, ASME
(1991).

216



[43] M. T. Mason and J. J. Kenneth Salisbury, Robot Hands and the Mechanics of
Manipulation. The MIT Press (1985).

[44] A. M. Meystel and J. S. Albus, Intelligent Systems : Architecture, Design, and
Control . John Wiley and Sons, Inc. (2002).

[45] D. J. Montana, The kinematics of contact and grasp. The International Journal
of Robotics Research, 7(3): 17–32 (1988).

[46] D. J. Montana, The kinematics of contact with compliance. In Proceedings of the
1989 IEEE International Conference on Robotics and Automation, volume 2,
pages 770–774 (1989).

[47] R. M. Murray, Z. Li and S. S. Sastry, A Mathematical Introduction to Robotic
Manipulation. CRC Press (1994).

[48] R. M. Murray and S. S. Sastry, Nonholonomic motion planning: Steering using
sinusoids. IEEE Transactions on Automatic Control , 38: 700–716 (May 1993).

[49] C. Natale and L. Villani, Adaptive control of a robot manipulator in contact
with a curved compliant surface. In Proceedings of the American Control Con-
ference, pages 288–292, San Diego, California (June 1999).

[50] S. D. Newman, P. A. Carpenter, S. Varma and M. A. Just, Frontal and parietal
participation in problem solving in the tower of london: fMRI and computa-
tional modeling of planning and high-level perception. Neuropsychologia, 41:
1668–1682 (2003).

[51] V.-D. Nguyen, Constructing force-closure grasps. The International Journal of
Robotics Research, 7(3): 3–16 (1988).

[52] B. E. Paden, Kinematics and Control of Robot Manipulators . Ph.D. thesis,
University of California at Berkeley (1985).

[53] K. Passino and S. Yurkovich, Fuzzy Control . Addison-Wesley (1998).

[54] M. A. Peshkin, Robotic Manipulation Strategies . Prentice Hall (1990).

[55] N. Petroff, A neural network for determining forward kinematics of a 6 degree
of freedom robot. Technical report, University of Notre Dame (2000), AME
598, Applications of Artificial intelligence in engineering, Spring 2000.

[56] N. Petroff, Nonorthogonal coordinate maps for robotic manipulation. Project
report for AME 598, Solid Modeling.

[57] H. E. Rauch, Autonomous control reconfiguration. IEEE Control Systems Mag-
azine, 15(6): 37–48 (December 1995).

[58] S. J. Remis and M. M. Stanisic, Design of a singularity-free articulated arm-
subassembly. Journal of Robotics and Automation, 9(6): 816–824 (1994).

[59] L. Reznik, Fuzzy Controllers . Newnes (1997).

217



[60] Z. S. Roth, W. B. Mooring and B. Ravani, An overview of robot calibration.
IEEE Journal of Robotics and Automation, RA–3(5): 377–384 (1987).

[61] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control . Springer-Verlag
(1999).

[62] J. M. Selig, Geometrical Methods in Robotics . Springer (1996).

[63] K. B. Shimoga, Robot grasp synthesis algorithms: A survey. The International
Journal of Robotics Research, 15(3): 230–266 (June 1996).

[64] M. R. Spiegel, Mathematical Handbook of Formulas and Tables . McGraw-Hill
Book Company (1968).

[65] L. A. Suchman, Plans and Situated Actions: The Problem of Human-Machine
Communication. Cambridge University press (1987).

[66] H. J. Sussmann, A product expansion for the Chen series. In C. I. Byrnes and
A. Lindquist, editors, Theory and Applications of Nonlinear Control Systems,
pages 323–335, Elsevier Science (1986).

[67] K. Tanaka, M. Iwasaki and H. O. Wang, Switching control of an R/C hovercraft:
Stabilization and smooth switching. IEEE Transactions on Systems, Man, and
Cybernetics — Part B: Cybernetics , 31(6): 853–863 (2001).

[68] K. S. Tang, K. F. Man, G. Chen and S. Kwong, An optimal fuzzy PID con-
troller. IEEE Transactions on Industrial Electronics , 48(4): 757–765 (August
2001).

[69] S. Tian-Soon, M. H. A. Jr. and L. Kah-Bin, A compliant end-effector coupling
for vertical assembly: Design and evaluation. Robotics and Computer-Integrated
Manufacturing , 13(1): 21–30 (March 1997).

[70] J. Trinkle and R. Paul, Planning for dexterous manipulation with sliding con-
tacts. The International Journal of Robotics Research, 9(3): 24–48 (1990).

[71] Unimate PUMA mark II robot: 500 series equipment manual for VAL II and
VAL PLUS operating systems.

[72] V. S. Varadarajan, The Selected Works of V. S. Varadarajan. American Math-
ematical Society (1999).

[73] A. H. Wallace, Differential Topology: First Steps . W. A. Benjamin, Inc. (1968).

[74] J. Wang, S. J. Dodds and W. N. Bailey, Co-ordinated control of multiple robotic
manipulators handling a common object — theory and experiments. IEE Pro-
ceedings — Control Theory and Applications, 144: 73–84 (January 1997).

[75] J. R. Weeks, The Shape of Space. Marcel Dekker (2002).

[76] Y. Wei, Theoretical and Experimental Investigation of Stratified Robotic Finger
Gaiting and Manipulation. Ph.D. thesis, University of Notre Dame (2002).

218



[77] J. M. Wiitala and M. M. Stanisic, Design of an overconstrained and dextrous
spherical wrist. Journal of Mechanical Design, 122(1): 347–353 (2000).

[78] D. Willis, The Sand Dollar and the Slide Rule: Drawing Blueprints from Na-
ture. Addison-Wesley (1995).

[79] A. M. Wing, P. Harggard and R. J. Flanagan, Hand and Brain: The Neuro-
physiology and Psychology of Hand Movements . Academic Press, Inc. (1996).

[80] R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control . John
Wiley & Sons, Inc. (1994).

[81] G. Yan, Decomposible Closed-Form Inverse Kinematics for Reconfigurable
Robots using Product-of-Exponentials Formula. Master’s thesis, Nanyang Tech-
nological University (2000).

[82] B. Yao and M. Tomizuka, Adaptive control of robot manipulators in constrained
motion-controller design. Journal of Dynamic Systems, Measurement, and Con-
trol , 117: 320–328 (September 1995).

[83] C. A. Yates, Design of a Three-Fingered Gripper with the Capability of Manip-
ulating an Object . Master’s thesis, University of Florida (1999).

[84] K.-Y. Young and C.-C. Fan, Control of voluntary limb movements by using a
fuzzy system. In Proceedings of the 32nd Conference on Decision and Control ,
pages 1759–1764, IEEE (1993).

[85] L. A. Zadeh, Fuzzy sets. Information and Control , 8: 338–353 (1965).

[86] M. H. Zand, P. Torab and A. Bahri, Hybrid position/force control of a dexterous
hand based on fuzzy control strategy. In Proceedings of the 1997 IEEE 8th
International Conference on Advanced Robotics , pages 133–139 (July 7–9 1997).

219


