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Abstract

by

Xiangyu Ni

While humankind’s intellectual limit is advancing forward, the implementations

of large-scale systems are expanding as well. No matter whether possessing inter-

connected appearances, those large-scale systems are often mathematically modelled

as dynamic networks which involve abundant nodes and intricate rules regarding the

interaction among those nodes. Hence, it can be anticipated that plentiful research

concerning dynamic networks exist in literature, including studies about graph theo-

ries, multi-agent systems and materials’ complicated behaviors. However, there exist

few applications of frequency-domain methods to a general class of dynamic networks,

mostly due to the complexity of computing their frequency response. That gap is

filled by this dissertation, which shows that problem is tractable once self-similarities

are leveraged and that the resultant outcomes can be further employed in dynamic

networks’ simulation, monitoring and control through available tools in the frequency

domain.

The proposed method in this work could efficiently simulate some quantities

spreading over complex systems that are typically described by partial differential

equations. In addition to being efficient, that method offers another degree of free-

dom by handling the situation where the physical properties of those complex systems

are nonuniformly distributed, in which case partial differential equations are almost
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impossible to be solved analytically. For health monitoring, this dissertation suggests

a new feature for candidate damage cases through their frequency response which can

identify the existence, location and extent of the damage state. For controlling dy-

namic networks, this study takes advantage of the fact that the frequency response of

a dynamic network is likely to form a set of neighboring plants when it is undergoing

some variations in order to design a unified controller for those different situations

by using robust control methods.

Another merit of this work is that it provides specific examples, i.e., infinite

dynamic networks, where fractional and irrational transfer functions naturally come

to light. That offers the possibilities for understanding the physical meaning of

fractional-order derivatives and implicit operators in the future.

The main motivation of this dissertation is to advocate studying dynamic networks

through their frequency response. The author hopes that this work would build a

bridge between monitoring and controlling complex systems and numerous frequency-

domain tools.
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CHAPTER 1

INTRODUCTION AND CONTEXTUAL BACKGROUND

1.1 Introduction

Networked dynamical systems are ubiquitous. Some of them are shaped by nature,

e.g., a river network within a drainage basin [93], and the circulatory system in our

body [67]. Others are purposefully designed in that form. For example, electrical grids

and cellular networks are set for our convenience, and fins with fractal geometries are

utilized to enhance heat exchangers’ performance [65]. In addition, numerous systems

can be modeled by networks in the similar spirit of finite element methods. For

instance, transmission lines can be viewed as networks consisting of various electrical

elements [169]. Buildings are often approximated by a shear-frame structure with a

lumped-mass planar network in the vibration control research area [75].

Because of countless applications brought by networked dynamical systems, it is

imperative to understand their behaviors. As indicated by the title of this disser-

tation, one of its contributions is gaining that aforementioned knowledge from the

perspective of networks’ frequency response, which is typically challenging, due to

the following two reasons. First, networks often consist of a great number of nodes

which lead to a state vector with a considerable size. Second, internal interactions

among nodes can be intricate. Therefore, this dissertation focuses on self-similar

networks where the interaction rule between any two adjacent generations is invari-

ant throughout the entire network. By leveraging that self-similarity, the resultant

response between any two nodes inside a network can be acquired directly without

simulating other nodes.
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One merit of this work is that its computations of networks’ frequency response

and transfer functions are not limited by the research domain. Based on previous

descriptions, we can easily observe that the employments of networked dynamical

systems cover numerous areas. As a result, experts in each field often have their own

customs to handle the corresponding applications. For instance, structural engineer-

ing researchers may appreciate the equation of motion,

Mẍ + Cẋ + Kx = F ,

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix,

and F represents the input forces. On the other hand, electrical engineers may be

more familiar with Kirchhoff’s circuit laws. In contrast, this work is designed for a

general class of networks and connects them to their frequency response regardless

of application domains. By doing so, the author hopes to offer experts with different

backgrounds a tool to efficiently obtain their networks’ frequency response which can

be utilized in their further analysis.

In this dissertation, the knowledge of networked dynamical systems’ frequency

response and transfer functions is employed for monitoring their health and control-

ling their behavior. The motivation of networks’ health monitoring is based on a

well known fact that damages happening locally at some nodes inside a large-scale

network may initiate an avalanche effect and collapse the efficiency and safety of

the entire system. Those cascading failures can occur in different types of networks,

such as infrastructure, social and economy systems. One notable example in US and

Canada may be the Northeast blackout of 2003 [20, 33]. As a result, this dissertation

proposes a model-based component-level health monitoring strategy for networked

systems with the goal of returning a list of possibly damaged components and their

corresponding damage amounts given the frequency response measurements of the
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entire network.

Another incentive of this work is to control networked dynamical systems’ behav-

ior. Large amounts of research have been conducted concerning this type of problem

especially for multi-agent systems. One challenge of controlling large-scale networks

is that they are more likely to operate in different conditions compared to simple

systems. Thus, a robust control strategy is required. For example, the number

of cooperating unmanned aerial vehicles may change depending on implementation

environments, or components’ parameters inside a network may vary. This disser-

tation addresses that challenge by regarding a network’s frequency response under

various cases as a set of neighboring plants with uncertainties. Then, using robust

control methods, this dissertation designs a unified controller for all systems in that

set guaranteeing their stability and performance.

One novelty of networked dynamical systems’ frequency response and transfer

functions is that non-integer-order dynamics emerges naturally. As illustrated in

Chapter 2, to exactly describe an infinite network’s frequency response, non-integer-

order expressions have to be involved in its transfer function. In fact, when a finite

network’s behavior converges to that of the corresponding infinite variant, its integer-

order transfer function also converges to a non-integer-order expression. That expres-

sion may consist of two types of functions in the Laplace variable s. One type entails

fractional orders of s which corresponds to fractional-order integro-differentials in the

time domain. The other type includes irrational expressions of s which do not have

clear equivalent time-domain operations yet.

The rest of this dissertation is organized as follows. The remainder of this chapter

establishes the context for the results of this dissertation where literature context is

reviewed. Chapter 2 demonstrates one main contribution of this work where algo-

rithms of computing both frequency response and transfer functions for self-similar

networked dynamical systems under various operating conditions are elucidated. To
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showcase those algorithms’ capability of quickly predicting real networks’ behavior, in

Chapter 3, they are applied to simulating high-speed electrical railway track circuits

which determine the availability of a rail section. Chapter 4 proposes component-level

damage detection methods for networks making use of those modeling algorithms pre-

sented in Chapter 2. Chapter 5 tackles the robust control problem where a unified

controller is designed for a network under different operating conditions by consid-

ering them as a set of uncertain plants. Chapter 6 offers a rational approximation

method of some irrational expressions from the perspective of networked dynamical

systems. Finally, Chapter 7 concludes this dissertation and suggests future work.

1.2 Contextual Background

This section lays the contextual groundwork for the results in this dissertation.

Section 1.2.1 lists the applications of dynamical networked systems with emphasis

on simulating their response, monitoring their components’ health and controlling

their behavior. Then, Sections 1.2.2 to 1.2.4 address each of those three aspects,

where an outline of how each topic has evolved in the literature is discussed in detail.

Additionally, the research gap filled by this work for each of those three topics is also

analyzed. Finally, Section 1.2.5 reviews the history and the preliminaries of fractional

calculus, which, in Chapter 2, is proved to be an inevitable component for infinite

self-similar networks’ transfer functions.

1.2.1 Networked Dynamical Systems and Their Applications

It is unsurprising to see that research works regarding networked dynamical sys-

tems come from various perspectives given a great number of real-life applications.

One aspect initially emerged from thermodynamics with the currently leading princi-

ple called the Constructal Law, proposed by Dr. Bejan in 1996, which gives a reason

for the natural occurrence of flows patterns and predicts the progression of their con-
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figurations [12, 13], such as river networks [134] and circulatory systems [115]. The

main idea is that those configurations are continuously “optimized” by nature in ac-

cordance with the argument that “For a finite-size flow system to persist in time, it

must evolve such that it provides greater and greater access to the currents that flow

through it.” [14, 15] This collection of works relates a flow’s behavior to the shape of

its networked container.

Another field of study concerning the networks’ topology is often linked with graph

theory, whose starting point is usually credited to Euler’s solution to the Königsberg

Bridge Problem [17]. According to a detailed review [107], the primary goal of this

field is to understand the structure and function of complex networks, where the

empirical studies of the former, the structure of real-life networks, are the outset of

this research area. Those networks include social networks [16], information networks

like the World Wide Web [66], technological networks like cellular networks [161], and

biological networks [150]. The focus of those empirical studies at first was to quantify

a number of statistical properties of networks being important for their function,

which gradually unveiled that many statistical properties are commonly shared by

networks from different branches of science. The most famous one probably is the

small-world effect, demonstrated by Stanley Milgram’s letter-passing experiment in

the 1960s [99], which states that most pairs of vertices are connected by a short

path in networks. Those observations of networks’ non-randomness inspired thoughts

about seeking some possible mechanisms directing their formation which resulted

in abundant network models. The ongoing focus of this research domain mostly

shifts to explanations of processes occurring on networks via those mathematical

models, for example, search and navigation processes, and network transmission and

epidemiology [121].

As for the researchers in robotics, the most heavily investigated topic about net-

worked dynamical systems is multi-agent systems. The objective for this discipline is
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to design a strategy for two or more agents to achieve a global task in a cooperative

manner, though the knowledge about networks’ topology and graph theory is still

crucial [21]. One example global task is consensus problems where the states of all

robots are asked to converge to the same value [135]. Multi-agent systems have at

least two outstanding advantages over single-agent systems. First, multi-agent sys-

tems are more robust in the sense that if a few agents fail, the other agents could

quickly adapt the situation to continue finishing the global task. Second, multi-

agent systems can cover a much larger physical area simultaneously, or equivalently,

execute an involved task in a temporally parallel manner. The above two benefits

result in a wide spectrum of applications, such as search and rescue [29], distributed

map merging [5], collective transport [137], clock synchronization [142], sensor fusion

[148], localization [146], distributed support vector machine [50], and distributed air-

conditioning optimization [60]. The continuing emphases include incorporation be-

tween network topologies and agent dynamics, rigid formations in three-dimensional

space, and fully autonomous and distributed multi-agent systems.

Approximating intricate dynamical systems by using networks also attracts signif-

icant attentions, which, however, can be easily neglected by researchers concentrating

on networks since those systems usually do not possess networked appearances. For

instance, a long transmission line can be estimated by a electrical network where elec-

trical properties like resistance are lumped at each subsection [102], which is often

used to model railway track circuits with the purpose of detecting whether a certain

portion of a track is occupied [169, 141, 22]. A closely related equivalent is the repre-

sentation of a multi-story building as a shear-frame structure where a pair of parallel

spring and damper connecting two neighboring masses resembles the shearing motion

between two adjacent floors, which is often employed in structural vibration control

[75, 53, 57, 64]. Another class of applications falling into this classification is about re-

producing materials’ complicated behavior through large-scale networks. For a wide
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range of composite materials, one prominent phenomenon is that the magnitude of

their overall admittance is always in a power-law scaling relation with the frequency

under the alternating current field within an intermediate frequency region, which is

called the universal dielectric response, proposed by Dr. Jonscher [71, 72]. To date,

there is yet no agreement on the origins of such a response. However, it is possible to

reproduce that phenomenon by using random resistor-capacitor networks and show

that the ratio of quantities between resistors and capacitors determines the slope

of that power-law relation [95, 3, 167]. Interestingly, the same fact is also observed

from random biphasic mechanical truss networks which are constituted by springs

with two different constants [105]. Finally, using networks to model the rheology of

viscoelastic behavior is another example [62, 154].

For the last category of applications, the nodes inside networks are often linked

to each other through idealized basic elements such as springs and capacitors, which

is the main type of network considered by this dissertation, although this work re-

laxes that limitation to all linear time-invariant operators, like proportional-integral-

derivative controller blocks. It is also worth pointing out that the main contents

provided by this work at the current state are far from multi-agent systems despite

the fact that the entailed networks can be viewed as being composed of many robots.

Actually, the relation between the study regarding multi-agent systems and this work

can be analogized by the connection between controller synthesis and controller anal-

ysis. According to [21], the main goal of multi-agent systems’ research is to compose

a strategy so that each robot can make decisions based on its local knowledge of the

surroundings to perform a global task cooperatively. Therefore, essentially, multi-

agent systems’ research strives to solve a controller synthesis problem. In contrast,

the networks in this dissertation come together with a defined rules of interaction

among agents. As a result, it is more like the case where a controller has already

been designed and we need to analyze the system’s closed-loop performance, and thus
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a controller analysis problem. However, it does not necessarily imply that this work

can never contribute to the multi-agent systems’ research in the future. The details

regarding that potential extension is discussed in Chapter 7.

One conclusion can be drawn from the above review of applications is that, like

any other dynamical systems, networked ones have research work from both passive

and active directions. On one hand, researchers attempt to understand a network’s

spontaneous evolution in time through modeling and characterization. On the other

hand, researchers design and modify a network to control its behavior or enhance its

performance. The Constructal Law is a great example, which later becomes a scien-

tific principle in engineering design, with the idea of mimicking how nature “makes

optimal decisions” in order to come up with strategies for more effective connections

of heat and fluid flow, people, goods and information [23]. Studies concerning net-

works’ topology and graph theory concentrate more on the passive direction, while

multi-agent systems clearly follow the active direction. Similarly, understanding in-

tricate dynamical systems’ behavior through network approximations comes from

the passive direction, while controlling buildings’ vibrations via simplified network

models is on the active direction. Undoubtedly, both directions are indispensable.

The observations of a dynamical system’s behavior often result in a theoretical math-

ematical model which can simulate its responses to different impacts under various

environments. Those predictions enable developers to validate their design and assist

them to obtain a better performance from the system without frequently conducting

hardware experiments [70].

From a passive perspective, this dissertation computes the frequency response and

transfer functions between any two nodes within a network. Besides, it also detects

potential damages inside networks’ components. From an active perspective, this

dissertation designs a unified controller to enhance networks’ stability and perfor-

mance under various operating conditions. The unique feature about this work is its
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frequency-domain approach where the knowledge concerning a networked dynamical

system’s frequency response is the core and is employed in both health monitoring and

control problems. In the next three sections, detailed literature review for the above

three aspects, modeling, health monitoring, and control, are provided respectively.

1.2.2 Modeling Networked Dynamical Systems

This section reviews networks’ modeling arising from the following two research

fields. The first field is research about graphs which focuses more on networks [107].

The network models used in this research discipline are mostly abstract and mathe-

matical, which cannot be comfortably drawn on paper due to their extensive scales.

Those mathematical models are used to derive statistical properties of the corre-

sponding networks, from which researchers understand how their structure is con-

nected with their functioning as well as understand the processes occurring on them.

The second research field emphasizes more on dynamics when dynamical systems are

connected. In this domain, the nodes are variables such as force and acceleration, and

the edges represent modules like a double integrator scaled by a mass relating accel-

erations to forces [164], which is similar to the block diagram of control systems. This

dissertation belongs to the second set of research although what the nodes and edges

represent is different. In this dissertation, nodes are similar to those in multi-agent

systems which have differential equations describing their evolutions depending on

their local knowledge of the surroundings whose availabilities are denoted by edges.

The research on graphs started with empirical studies to quantify a number of

statistical properties of networks [107]. The following are several examples of those

properties. The mean shortest distance, which for an undirected network with n
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vertices is defined as

l =
1

1

2
n(n+ 1)

∑
i≥j

dij,

where dij is the shortest distance between the vertex i and vertex j. That mean

shortest distance is usually much smaller than the number of vertices for real-life

networks, which becomes the so-called small-world effect proving how fast information

or a virus could spread throughout a population [30] (as demonstrated by the year

2020). A network’s transitivity is the probability of three vertices being all directly

connected in a network, or the density of triangles in a network’s graph, which is

quantified by a clustering coefficient. An example is the probability that a friend of

your friend is also your friend. Transitivity usually converges to a nonzero constant as

the number of vertices increases for various types of real networks. A vertex’s degree

inside a network equals the number of edges connected to it. The probability pk is

then defined as the fraction of vertices that have degree k, whose distribution is often

highly right-skewed in most networks, meaning that the distribution has a longer

tail in the high-k region compared to the low-k one. Moreover, many of them follow

power laws in the high-k region: pk ≈ k−α [10], which provides evidence that large

networks are often organized into a scale-free condition by themselves. Others follow

an exponential decay: pk ≈ e−k/κ [143]. One related property is the network resilience

which measures the toughness of a network against the removal of its vertices. That

can be quantified by how the mean shortest distance grows with an increasing number

of vertices being removed, which is meaningful for studies of vaccination [120] and

research against sabotage of the Internet [2]. Many real networks, especially social

networks, also exhibit community structures, that is many groups of vertices have

a higher density of edges within them, while have fewer connections among groups,

which leads to a research topic called community discovery [136].
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From the above list of networks’ representative properties, we can observe that

those properties are usually shared by many classes of networks. That non-ran-

domness inspires researchers to propose mathematical models for complex networks,

which have four main types [107]. The first type is called random graphs, denoted by

Gn,p, where the network has n vertices and each pair of them is connected with the

probability p [45]. Random graphs are a great starting point of comprehending com-

plex networks’ function. However, they don’t resemble most of the above-mentioned

common properties of real networks except for the small-world effect, some of which

can be overcome by their generalizations [108]. The second type is exponential ran-

dom graphs [151] and Markov graphs [51] which is a candidate model to understand

networks’ transitivity. The problem of this type of model is that under some special

conditions, the networks generated have subsets of vertices where every possible edge

exists, which is not frequently observed in real networks. The third type is small-

world model, which is another candidate to understand the transitivity [163]. This

class of networks is more tractable in the sense that those statistical properties can be

solved analytically and are often consistent with the observations. As a result, small-

world models become the substrate of understanding the processes taking place on

networks. The last type is called models of network growth, which is used to explain

how those common statistical properties emerge in the first place. The models of this

type gradually increase in the number of vertices and edges to imitate the growth of

real networks [9]. Note that the last type of models is no longer static as opposed

to the first three types. Therefore, some literature names them dynamic networks to

distinguish them from the others [81].

The second class of research focuses on modeling the dynamics of networked sys-

tems, which is often data-driven, since applying principles of physics to each element

within a large-scale network is tedious and error-prone. Therefore, identification and

learning are often used interchangeably with the word modeling regarding this topic.
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The relation between this domain and the previous one is that the networks in this

research area can be viewed as extensions from those in the previous one with dy-

namical behaviors included in the edges. That relation provides some graph models

as candidates for the model selection in this research area [8]. However, there are

other candidate models from distinct origins, which justifies the previous claim that

this research domain is not a subset of the previous one. The other candidate models

include probabilistic models [78], state-space network models [59], and transfer func-

tion network models [28]. The basic idea is to select the model from a set which offers

the best reproduction of the observations, although different models typically require

different identification methods. For example, state-space network models are usually

obtained by subspace identification based on state-space realizations [59], while trans-

fer function network models are normally acquired by prediction error methods which

is closely related to Maximum Likelihood estimators [156] or by Bayesian estimators

when theoretical information is available [28]. The modeling goals are identifying the

connecting structure of networks [140], identifying one dynamical system [46], and

identifying all dynamical systems with the knowledge of networks’ topology [54].

Similar to the second research area, this dissertation models networked dynami-

cal systems by the frequency response and transfer functions between any two nodes.

However, those responses are obtained by the computation which gradually takes

into account every differential equation describing each node’s dynamics given by the

principles of physics along with the knowledge about networks’ topology. This pro-

cedure can be intricate for general networks, so this dissertation restricts its focus to

self-similar networks which largely reduces the complexity [92]. The knowledge from

modeling is subsequently employed in monitoring networks’ health and controlling

their performance.
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1.2.3 Monitoring Networked Dynamical Systems’ Health

This section reviews two topics that are closely related to this dissertation, namely

anomaly detection in research of graphs [132] and structural health monitoring [47].

Both of them aim at discovering undesired behaviors of large-scale systems where the

former focuses more on systems that can be represented by networks, while the latter

concentrates on engineering structures. However, due to the reason stated in Sec-

tion 1.2.1, networked dynamical systems can be employed to approximate continuum

systems. As a result, both fields of studies are of great interest to this dissertation.

Anomaly detection for dynamic graphs looks for objects, interconnections and

time instances that are special compared to the others inside complex systems. The

examples of applications include detection of wildfires [27] and hurricanes [26], pro-

tecting network systems against intrusion [166], and rooting out abnormal users and

events [128, 159]. According to [132], there are four types of anomalies being handled

in the literature. The first two types are anomalous vertices and anomalous edges

where a subset of vertices and edges with unusual evolution is returned respectively

[73]. The third type includes anomalous subgraphs which mostly deal with irregular

behaviors of communities such as splitting, merging, disappearance, and reappear-

ance. One typical application is to monitor changes and threats in social networks

[61]. The last type includes anomalous events and changes, where anomalous events

indicate the time instants when the network’s behavior is significantly different, and

anomalous changes denote the time instants when the network’s behavior drifts to

a distinct status. Event detection attracts much attention in data mining which,

for instance, can be applied to identifying the moments when molecular dynamics

simulations perform differently [131]. Change detection is widely implemented in hu-

man interactions like, for example, search of scholars’ change in research interest by

tracking their history of co-authorship [80]. Various anomaly detection methods exist

in the literature, most of which can handle multiple types of anomalies [132]. The
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fundamental idea is devising a scoring function mapping from a set of objects (e.g.,

vertices) to a real number, and anomaly occurs where the variation in that scoring

function becomes greater than some threshold [170].

Structural health monitoring is usually implemented on physical systems, like

aerospace, civil and mechanical engineering infrastructure. According to [47], many

researchers view the structural health monitoring problem as one application of statis-

tical pattern recognition which is a classification procedure using statistical decision

theory to draw class boundaries. The steps of statistical pattern recognition usu-

ally include preprocessing, feature extraction, learning and classification [69]. Corre-

spondingly, [47] lists the following four-step paradigm for structural health monitoring

problems.

1. Operational evaluation,

2. Data acquisition, normalization and cleansing,

3. Feature selection and information condensation, and

4. Statistical model development for feature discrimination.

Operational evaluation answers the questions like what will be monitored and how

the measurements will be acquired [147]. The second step preprocesses the data

where operations like separating changes in measurements caused by damage from

those caused by environment are performed [152]. The third step picks out the data

features that are sensitive to the expected damage. Common choices include vibration

amplitude, frequency and modes [153]. Other methods include using simulations or

experimentally validated finite element models to understand the expected damage’s

impact [52], or performing realistic loading tests on degraded structures [88]. The

last step acts on the extracted features from the previous step to quantify the damage

state. According to [138], the damage state of a system comprises the following five

elements in an increasingly demanding order.
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1. Existence. Is there a damage in the system?

2. Location. Where is the damage in the system?

3. Type. What kind of damage is present?

4. Extent. How severe is the damage?

5. Prognosis. How much useful life remains?

Learning algorithms are frequently employed to answer the above questions [165, 48].

Supervised learning, when data from both the undamaged and damaged structure

are available, can often determine the answers to all five questions regarding the

damage state [114]. On the other hand, unsupervised learning which does not contain

examples from the damaged structure concentrates more on the existence and location

problems [44], though attempts on solving the remaining three questions attracts

increasing attention [43]. Recently, semi-supervised learning algorithms also have

appeared in the literature which use both labeled and unlabeled data for classification

where unlabeled data is collected while the structure is in service and labeled data is

obtained during annual visual inspections [24].

In the context of anomaly detection for dynamic graphs, this dissertation searches

for anomalous vertices and edges, at which the damaged components are located.

In the settings of structural health monitoring, this work leverages the mismatch

between the computed frequency response and the measured one as the feature, and

quantifies the damage state in the perspectives of existence, location and extent.

1.2.4 Controlling Networked Dynamical Systems

Multi-agent systems are probably the most studied topics in the area of networked

control. Research concerning multi-agent systems seeks a control strategy for a team

of robots to collaboratively attain a global task. In addition to the consensus problem

mentioned in Section 1.2.1, global tasks also include another similar mission called

leader-follower coordination where all agents are required to converge to a state set
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by the leader, although the leader’s state may be only available to a portion of the

followers [68]. Flocking problems ask all members to maintain equal distances from

their neighbors [117], whereas formation control is a harder task where a group of

agents are asked to establish a predefined configuration [49]. Coverage control re-

quests a team of moving sensors to reach the positions which give rise to the optimal

performance regarding a collective measurement of stochastic events occurring inside

a convex polytope [31]. Incidentally, the idea of multi-agent systems can actually

be applied to some numerical evaluations, such as distributed parameter estimation

[74], distributed regression [58], distributed Kalman filter [116], and distributed op-

timization [106, 130].

The control problems in this dissertation take advantage of one vital observation

from the modeling part that the frequency response of networked dynamical systems

under various operating conditions make up a set of uncertain and neighboring plants.

Therefore, this dissertation leverages robust control concepts to synthesize a unified

controller for networked dynamical systems in different circumstances to guarantee

their stability and performance. In the following section, literature regarding robust

control is reviewed.

1.2.4.1 Robust Control

Two main tasks of robust control are robustness analysis and controller synthesis,

where the former analyzes if a (controlled) system is stable or quantifies its stability

margin under a certain amount of uncertainties, and the latter seeks a suitable con-

troller to achieve stability or even optimal performance under uncertainties [124]. The

uncertainties ∆(s) are categorized into two classes: the unstructured ones and the

structured ones. Unstructured uncertainties allows ∆(s) to be a full matrix but with

an additional constraint, for instance, the bounded real constraint: ‖∆(s)‖∞ ≤ η

with η ∈ R+[171]. Other constraints include norm bounded condition [122], positive
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Figure 1.1. M -∆ structure for robust stability analysis.

real condition [7], and negative imaginary condition [83]. On the other hand, struc-

tured uncertainties normally have particular descriptions. One common description

is that ∆(s) is a block diagonal matrix, that is

∆(s) =



q1Im1 · · · 0

...
. . .

...

0 · · · qlIml

∆1(s) · · · 0

...
. . .

...

0 · · · ∆b(s)


, (1.1)

where qi are real or complex uncertain parameters repeated with the multiplicity

mi and ∆i(s) are full-block stable and proper unknown transfer function matrices.

Other descriptions include time-domain and frequency-domain integral quadratic con-

straints [97], though they are not directly posed on ∆(s).

To analyze the robust stability, the block diagram of a system is often converted

to the M -∆ structure as shown in Figure 1.1, where M(s) is the known plant [171].

Note that the M -∆ structure can also be presented in the state-space formulation.

The most famous proposition about the robust stability regarding unstructured un-

certainties is the small gain theorem, which states that if both M(s) and ∆(s) are
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proper, rational, and analytic in the closed right half plane, then the interconnection

from w∆ to z∆ is well posed and internally stable for all ‖∆(s)‖∞ ≤ η if and only if

‖M(s)‖∞ < 1/η (η > 0). Other stability theorems concerning unstructured uncer-

tainties include those imposed on state-space representations [38, 129], quadratic sta-

bility with norm bounded uncertainty [77], passivity theorem for the M -∆ structure

with negative feedback, and the negative imaginary stability theorem [83]. Analyzing

robust stability with respect to structured uncertainties is often generalized from the

above results to adapt specific descriptions about the uncertainty ∆(s). Perhaps one

of the most well-known generalizations is the structured singular value, which relaxes

the domain of searching for the largest singular value from all possible uncertainties

to a subset of that. Rigorously, if all structured uncertainties ∆(s) form a set D,

then the structured singular value of M(jω) is defined as

µD(M(jω)) =
1

min{σ(∆) : det(I −M(jω)∆) = 0,∆ ∈ D}
. (1.2)

With the above generalization, the aforementioned small gain theorem can be ex-

tended to its counterpart, small µ theory, where the interconnection is well posed and

internally stable for all ∆(s) ∈ D with ‖∆(s)‖ ≤ η if and only if supω∈R+ µD(M(jω)) <

1/η. In other words, the structured singular value of M is a measurement of the

stability margin under structured uncertainties. Incidentally, the concepts of the

structured singular value [40] and its inverse, the multivariate stability margin [139],

were published in the same issue of the same volume of the same journal by two

different people. The computation of the structured singular value in Equation (1.2)

is generally nonconvex, and thus is NP-hard. Therefore, in literature, the struc-

tured singular value’s bounds are frequently evaluated. Specifically, when qi ∈ C,

∆i ∈ Cri,ri in Equation (1.1), and M ∈ Cr,r where r =
∑l

i=1 mi +
∑b

i=1 ri, the set W
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can be formed as

W = {bdiag(D1, . . . , Dl, d1Ir1 , . . . , db−1Irb−1
, Irb)},

whose elements have the block diagonal structure similar to that in Equation (1.1)

where Di � 0, di > 0. Then, the following inequality holds [171].

µD(M) ≤ inf
D∈W

σ(DMD−1). (1.3)

Other robust stability criteria with respect to different structured uncertainties en-

compass those posed on parametric uncertainties based on Hurwitz stability [100, 11],

quadratic stability with structured uncertainty [19], and stability with both time-

domain [126] and frequency-domain integral quadratic constraints [97]. It is worth

noting that the last two criteria can be formulated as linear matrix inequalities (LMI)

which are utilized frequently in controller design problems due to convexity.

Another goal of robust control is to design the compensator that guarantees stabil-

ity and performance given a set of possible uncertainties. The main idea is to search

for a controller so that the system satisfies the aforementioned robust stability crite-

ria, and sometimes offers optimal performance as well. The simplest method maybe

is loop-shaping which is usually applied to single-input single-output systems with

unstructured uncertainties, in which case ‖M(jω)‖∞ is the peak gain that is available

directly in the Bode magnitude plot. Due to the small gain theorem, the main goal

is then to shape |M(jω)| such that its gain is less than 1/η across all frequencies,

while additional performance requirements can also be synthesized, such as tracking,

disturbance rejection and noise attenuation [96]. In more complicated cases, H∞ con-

trol is often employed to make the system satisfy the small gain theorem. One main

approach of solving H∞ control problems is to derive the equivalent algebraic Riccati

equation which then can lead to both state feedback [125] and output feedback H∞
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controllers [39]. However, the disadvantage is that some specific assumptions are

required for the uncontrolled plant G(s). To overcome that drawback, an alternative

way to handle H∞ problems is solving the corresponding linear matrix inequalities

[19, 41]. However, that is more computationally demanding compared to dealing with

algebraic Riccati equation. Other methods to tackle H∞ control problems include

coprime factorization [56] and ploynomial approaches [82].

Performance requirements can also be incorporated with the requisite for robust

stability. One example provided by [123] requires a linear system to be quadratically

stable while an LQR-like (Linear-quadratic regulator) cost function has a guaranteed

upper bound under unstructured, norm bounded uncertainties. The solution to that

problem is a state feedback controller given by an algebraic Riccati equation. A

similar question is also posted with respect to structured uncertainties with stochastic

integral quadratic constraints where an LQG-like (Linear-quadratic-Gaussian) cost

function is used [126].

Another famous method dealing with structured uncertainties called µ synthesis is

often employed especially when the specifications for robustness cannot be expressed

on (complementary) sensitivity functions alone. The concept of µ synthesis is far

from intricate. Recall the upper bound of the structured singular value presented in

Equation (1.3). If the nominal plant is denoted by P , and the controller is denoted

by K, the M in the M -∆ structure (Figure 1.1) can be represented by M(P,K).

Then, the idea of µ synthesis, taking the small µ theory into account, is to search for

the controller K to achieve the minimum of that upper bound, i.e.,

inf
K

inf
D
σ(D(ω)M(P,K)(jω)D−1(ω))

overall all frequencies ω. A two-stage optimization process is often employed to find

that controller, where K and D are found in turn repeatedly, and thus it is called D-K
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iteration [149]. Other methods coping with structured uncertainties include searching

for a state feedback controller guaranteeing a linear system’s quadratic stability under

parametric uncertainties by solving linear matrix inequalities [19]. It is worth noting

that, in recent years, there is also an emergence of employing a stochastic method,

called statistical learning theory, to design controllers for uncertain systems [79, 157].

1.2.5 Fractional Calculus

In the modeling part of this dissertation (Chapter 2), we would observe that non-

integer-order dynamics appear in infinite self-similar networks’ transfer functions. In

fact, finite networks’ transfer functions are always integer-order. However, the highest

order of that would grow as the size of networks increases. Eventually, when a finite

network converges to its infinite counterpart, its transfer function also converges to

another transfer function with fractional order of s or even irrational expressions

of s, where s is the Laplace variable. Therefore, this section reviews the literature

concerning fractional calculus to complete the entire contextual background of this

dissertation.

Fractional calculus is a study regarding real number powers of the integro-differen-

tial operator denoted by D. For instance, D2f means the second-order derivative of

the function f , D−2f means to integrate f twice, and D0f means f itself. That nota-

tion is clearly built upon the intuition that the derivative of the integral of a function

gives back that function itself, which is formally called the second fundamental the-

orem of calculus [4]. Note that the other order, the integral of the derivative of a

function gives back that function itself, is false in general because of the constant of

integration.

Due to that unification of integral and derivative, it is natural to ask what are

those in between D1f and D2f , which leads to the studies of fractional calculus. In

fact, research in fractional calculus dates back to the birth of calculus [90]. It should
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also be noted that the powers of the integro-differential operator D could be further

extended to complex numbers in literature [89, 6], though they are not the focus of

this research work.

The computations of fractional-order derivatives are almost always extended from

those of integer-order ones. Here, three categories of examples are reviewed. First,

generalizations of derivatives of monomials, like t2, to fractional orders are presented.

Second, generalizations based on the second fundamental theorem of calculus, namely

Riemann-Liouville definition and Caputo definition, are reviewed. Third, generaliza-

tions based on the limit definition of derivatives, such as Grünwald-Letnikov def-

inition, are evaluated. More detailed information can be found on any fractional

calculus textbook, e.g., [155].

For a monomial, tλ (t ∈ R+ and λ ∈ Z+), some of its integer-order integrals and

derivatives are

D−2
0 t τλ =

tλ+2

(λ+ 2)(λ+ 1)
=

λ!

(λ+ 2)!
tλ+2,

D−1
0 t τλ =

tλ+1

λ+ 1
=

λ!

(λ+ 1)!
tλ+1,

D0tλ = tλ =
λ!

λ!
tλ,

D1tλ = λtλ−1 =
λ!

(λ− 1)!
tλ−1,

D2tλ = λ(λ− 1)tλ−2 =
λ!

(λ− 2)!
tλ−2.

As a result, in the case of integer-order, a concise conclusion can be drawn that

Dn
0 t t

λ =
λ!

(λ− n)!
tλ−n n ∈ Z. (1.4)

Note that the prescript 0 and the postscript t of the operator D indicate the lower

and upper limit of the integration respectively, which can be ignored for integer-order
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Figure 1.2. The Gamma function.

derivatives. It is straightforward to extend Equation (1.4) to fractional orders where

n ∈ R. One issue is that the factorial is only defined for nonnegative integers, so a

general way to extend that is by using the Gamma function Γ(x) defined as

Γ(x) =


∫ +∞

0

e−yyx−1dy, x ∈ R+,

Γ(x− bxc)∏−bxc−1
k=0 (x+ k)

, x ∈ R−\Z−,

where b·c indicates the floor function. It can be shown that Γ(x+ 1) = x! when x is

a nonnegative integer as illustrated by Figure 1.2. Therefore, one way of generalizing

the derivatives of tλ to fractional orders is

Dα
0 t t

λ =
Γ(λ+ 1)

Γ(λ− α + 1)
tλ−α α ∈ R, λ ∈ R\Z−, λ− α ∈ R\Z−, t ∈ R+. (1.5)

The above result is exemplified by f(t) = t2 in Figure 1.3, from which the fact

that fractional-order derivatives interpolate integer-order derivatives can be observed.

Note that some other special functions’ fractional-order derivatives can also be gen-

eralized by this way, such as eλt, sin(λt), and cos(λt) [155].
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Figure 1.3. The result of Equation (1.5) being applied to f(t) = t2. The
thick curves are integer-order derivatives. The thin curves are

fractional-order derivatives where α = 1.8, 1.6, 1.4, 1.2, 0.8, 0.6, 0.4, 0.2 from
the lowest to the highest at t = 3.

The second category of generalizations is based on the aforementioned second

fundamental theorem of calculus. Since how to compute fractional-order derivatives

is unknown, they are kept as integer-order but with the cost that integrations have

to be fractional, i.e.

Dα = DdαeDα−dαe = Dα−dαeDdαe, α ∈ R+, (1.6)

where Ddαe is an integer-order derivative and Dα−dαe is a fractional-order integral

which can be derived from Cauchy’s formula. The Cauchy’s formula states that

when integrating a function n times (n ∈ N), the result is equivalent to a single
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integration, where

D−nc t f(t) =

∫ t

c

· · ·
∫ t

c

f(τ)dτ · · · dτ︸ ︷︷ ︸
n integrations

=

∫ t

c

(t− τ)n−1

(n− 1)!
f(τ)dτ, t > c,

D−nt c f(t) =

∫ c

t

· · ·
∫ c

t

f(τ)dτ · · · dτ︸ ︷︷ ︸
n integrations

=

∫ c

t

(τ − t)n−1

(n− 1)!
f(τ)dτ, t < c.

Then, using the Gamma function, the above equations can also be generalized for

α ∈ R−, where

Dα
c t f(t) =

∫ t

c

(t− τ)−α−1

Γ(−α)
f(τ)dτ, t > c,

Dα
t c f(t) =

∫ c

t

(τ − t)−α−1

Γ(−α)
f(τ)dτ, t < c.

Incorporating the above equations with the idea present in Equation (1.6), two

fractional-order derivatives can be derived. The first is the Riemann-Liouville defi-

nition.

DRL α
c t f(t) =



∫ t

c

(t− τ)−α−1

Γ(−α)
f(τ)dτ, α ∈ R−,

f(t), α = 0,

ddαe

dtdαe

∫ t

c

(t− τ)dαe−α−1

Γ(dαe − α)
f(τ)dτ, α ∈ R+.

DRL α
t c f(t) =



∫ c

t

(τ − t)−α−1

Γ(−α)
f(τ)dτ, α ∈ R−,

f(t), α = 0,

(−1)dαe
ddαe

dtdαe

∫ c

t

(τ − t)dαe−α−1

Γ(dαe − α)
f(τ)dτ, α ∈ R+.

The second is the Caputo definition, which swaps the sequence of derivative and
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integral.

DC α
c t f(t) =



∫ t

c

(t− τ)−α−1

Γ(−α)
f(τ)dτ, α ∈ R−,

f(t), α = 0,∫ t

c

(t− τ)dαe−α−1

Γ(dαe − α)

ddαe

dτ dαe
f(τ)dτ, α ∈ R+.

DC α
t c f(t) =



∫ c

t

(τ − t)−α−1

Γ(−α)
f(τ)dτ, α ∈ R−,

f(t), α = 0,

(−1)dαe
∫ c

t

(τ − t)dαe−α−1

Γ(dαe − α)

ddαe

dτ dαe
f(τ)dτ, α ∈ R+.

One key feature of fractional-order derivatives as opposed to integer-order ones is that

they are non-local, which can be observed from the above definitions since integrations

are blended with derivatives.

The last category reviewed here is a generalization based on the limit definition

of derivatives, where

D1f(t) =
d

dt
f(t) = lim

h→0

f(x+ h)− f(x)

h
.

Then, the following steps can be induced, which, rigorously speaking, need proof

of the synchronized convergences of different limitations by using the mean value

theorem:

D2f(t) = lim
h→0

f(x+ 2h)− 2f(x+ h) + f(x)

h2
,

D3f(t) = lim
h→0

f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)

h3
.

In conclusion, for n ∈ N,

Dnf(t) = lim
h→0

∑n
k=0(−1)k

(
n
k

)
f(x+ (n− k)h)

hn
,
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where
(
n
k

)
is the binomial coefficient, which is usually defined by

(
n

k

)
=

n!

k!(n− k)!
,

when both n ∈ Z+ and 0 ≤ k ≤ n ∈ N. Note that when k > n ∈ N,
(
n
k

)
= 0 by

definition. The binomial coefficient can also be generalized by the Gamma function,

where

(
α

k

)
=

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)
α ∈ R\Z−, k ∈ R\Z−, α− k ∈ R\Z−.

As a result, the Grünwald-Letnikov fractional derivative is given by

Dαf(t) = lim
h→0

∑∞
k=0(−1)k

(
α
k

)
f(x+ (α− k)h)

hα
α ∈ R+.

Note that the Grünwald-Letnikov definition is also non-local. Moreover, the upper

limit of the summation is ∞ because the generalized binomial coefficients are non-

zero for k > α when α /∈ N as opposed to the classical ones. In implementations,

the Grünwald-Letnikov definition is often employed as a numerical approximation

of fractional-order derivatives, e.g., see [104, 25]. It is also worth noting that the

aforementioned three definitions would not give the same result in general. They can

be understood as different ways to draw a continuous curve passing through lots of

discrete datapoints. So far, there are no conclusions regarding which one of them is

the most useful one in any cases.

Recall that for integer-order derivatives and integrals, it can be proved through
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Laplace transforms that, when n ∈ N,

L
[
dn

dtn
f(t)

]
= snF (s)−

n−1∑
k=0

sn−k−1 d
k

dtk
f(0),

L


∫ t

0

· · ·
∫ t

0

f(τ)dτ · · · dτ︸ ︷︷ ︸
n generations

 = s−nF (s),

where L[f(t)] = F (s). In the case of fractional orders, it can be shown that the

aforementioned Riemann-Liouville and Caputo definitions have the similar results,

where

L
[

DRL α
0 t

]
=



sαF (s), α ∈ R−,

F (s), α = 0,

sαF (s)−
dαe−1∑
k=0

sk Dα−k−1
0 t f(0), α ∈ R+.

L
[
DC α

0 t

]
=



sαF (s), α ∈ R−,

F (s), α = 0,

sαF (s)−
dαe−1∑
k=0

sα−k−1Dkf(0), α ∈ R+.

Note that when α ∈ R+, the Laplace transform of the Riemann-Liouville defini-

tion requires fractional-order initial conditions, while the Caputo definition requires

integer-order initial conditions.

This dissertation demonstrates that fractional orders of s naturally appear in some

infinite self-similar networks’ transfer functions, which means that their dynamics are

inherently fractional. In addition, a more novel observation is that some infinite self-

similar networks’ transfer functions even consist of irrational expressions of s, such

as
√
s+ 1. The time-domain operators corresponding to those irrational frequency-
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domain expressions are still unknown. In the previous work from the author’s research

group, they were called implicit operators [86, 87].

In literature, the applications of fractional-order derivatives can be classified into

two groups. On the one hand, they are used to describe systems’ dynamics. On the

other hand, they are employed to design controllers. When used to model systems,

three characteristics of fractional-order derivatives are often leveraged. First of all,

as mentioned above, fractional-order derivatives are non-local, meaning that when

a fractional-order derivative is computed at time t, the history information before

that instance is also required. The corresponding applications include modeling epi-

demics [1]. A physically based approach to non-local elasticity theory is introduced

in [36]. The fact that fractional-order dynamics exist in non-local heat transfer and

mechanics is shown in [18] and [32]. The second characteristic of a linear fractional-

order system is that its time-domain response can follow a power law decay rate,

which also leads to many applications. Chapter 1 in [91] shows a modeling exam-

ple of the firing rate for premotor neurons in the visual system while an eyeball is

scanning words. A fractal network model to describe a power law behavior in soft

tissue in proposed in [76]. The third characteristic of fractional-order derivative is its

link to the nature of infinite dimensionality, which is also the reason why fractional

calculus emerges in this work. The corresponding applications embrace semi-infinite

lossy transmission lines [160], heat diffusion through a semi-infinite solid [145], and

neutron transport in a nuclear reactor [158].

Applying fractional calculus to controller design is often due to its extra design

freedom given by the system order. The main goal is usually to outperform classical

integer-order controllers. For example, a previous research work in the author’s group

studied fractional-order controllers for dynamic walking [85]. Other researchers use

fractional-order controllers to replace high integer-order controllers for easier realiza-

tions [103]. Other extensions from classical integer-order control include fractional-
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order PID control [168, 127], Kalman filter [144], state-space approaches [34, 118, 133],

root-locus methods [98], and digital control [34, 119].
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CHAPTER 2

FREQUENCY RESPONSE AND TRANSFER FUNCTIONS OF SELF-SIMILAR

NETWORKED DYNAMICAL SYSTEMS

This chapter lists four algorithms for computing the dynamics of a general class

of networked dynamical systems in the following four situations:

1. Frequency response for finite networks,

2. Transfer functions for finite networks,

3. Frequency response for infinite networks,

4. Transfer functions for infinite networks.

Here, a transfer function refers to the analytical expression of G(s) which describes a

system’s behavior through the ratio of the output signal to its input signal in the fre-

quency domain. Its corresponding frequency response is obtained by sampling G(s)

at a sequence of angular frequencies ω, i.e., G(jω). Section 2.1 lists assumptions for

that general class of networks to which the modeling methods in this chapter are

applicable. In addition, it also delineates the preliminaries such as notation used

in this chapter. Section 2.2 discusses recurrence formulas which are the core of all

modeling algorithms. Section 2.3 talks about the two algorithms regarding finite net-

works. Section 2.4 briefly introduces how to evaluate infinite networks’ dynamics in a

special case, which is also a foundation of calculating all infinite networks’ frequency

response and transfer functions in this dissertation as showcased by Section 2.5. The

contents in this chapter have been published in [109, 111, 112].
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2.1 Assumptions and Preliminaries

For a network to be qualified for the approach proposed in this chapter, it must

satisfy the following assumptions.

• (A-1) The network is one-dimensional.

• (A-2) The network is self-similar. That is, its topology is invariant throughout
all generations.

• (A-3) All components within the network are connected either in series or in
parallel.

• (A-4) All components are linear and time-invariant, such as dampers, capaci-
tors, or transfer function blocks.

• (A-5) For infinite networks only: The network has a finite number of damaged
components.

• (A-6) For infinite networks only: The network’s undamaged transfer function
can be obtained.

Note that the first four assumptions from (A-1) to (A-4) are for both finite and infinite

networks, whereas the last two assumptions (A-5) and (A-6) are for infinite networks

only. How to obtain an infinite network’s undamaged transfer function mentioned in

the assumption (A-6) is discussed in Section 2.4.

The definitions of a damaged network and an undamaged network are established

as follows. For instance, there is a network consisting of 5 springs and 5 dampers,

denoted as k1 to k5 and b1 to b5. Each type of component has its undamaged constant,

indicated by the undamaged spring constant k and the undamaged damper constant b.

Then, when that network is undamaged, all components’ constants are same as their

corresponding undamaged ones, i.e., ∀i = 1, . . . , 5, ki = k, and bi = b. Otherwise,

that network is damaged, in which a pair of two lists (l, e) is employed to represent

a specific damage case. The letter l is the list of damaged components, and e is the

corresponding damage amounts. For example,

(l, e) = ([k1, b2], [0.3, 0.4])
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designates the damage case where k1 = 0.3k and b2 = 0.4b, while all the other springs

and dampers have unchanged stiffness and damping constants. Note that, in fact,

(l, e) can also denote the undamaged case. In all modeling algorithms in this chapter,

the undamaged case is indicated by empty lists l and e. In the health monitoring

part of this dissertation (Chapter 4), the undamaged case is sometimes represented

by a special e where all elements in e are one.

The nomenclature of frequency response and transfer function used in this chapter

is listed as follows.

• G(s) is a general transfer function in Laplace variable s. G(jω) is the cor-
responding frequency response sampled at a sequence of angular frequencies
ω.

• Gr(s) is the recurrence formula for a self-similar network introduced in Sec-
tion 2.2.

• Gsi(s) is the transfer function for the i-th subnetwork inside a self-similar net-
work also introduced in Section 2.2.

• G1(s) is the transfer function when a network only has one generation first used
in Section 2.3.1.

• Gg,(l,e)(·) is designated for a specific configuration of a network. The positive
integer g denotes the number of generations inside a network. When that
network is infinitely large, g = ∞. The pair of two lists (l, e) indicates a
particular damage case. When that network is undamaged, (l, e) is simply
replaced by ∅.

Next, the three example networks which are used throughout this chapter are

introduced to showcase that a vast range of networked dynamical systems could

leverage the methods proposed in this dissertation. The first example is the mechan-

ical tree network as shown in Figure 2.1, which has been used to model the relaxation

of the aortic valve [37] and materials’ viscoelastic behaviors [62] in literature. In any

numerical computations in this dissertation, the undamaged constants are assumed

to be k = 2N/m and b = 1Ns/m. The dynamics of interest is the ratio of its length

X1,1 to the force exerted at x1,1, F , in the frequency domain.
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x1,1

k1,1

b1,1

x2,1
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k2,1
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k2,2
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x3,3

x3,4

k3,1

b3,1

x4,1

x4,2

· · ·

· · ·
· · ·

· · ·

· · ·

xlast ≡ 0

Figure 2.1. Mechanical tree network.

r1,1

r1,2 c1vin v1

r2,1

r2,2 c2 v2

· · ·

· · ·

clast vout

iin

Figure 2.2. Electrical ladder network.

The second example is the electrical ladder network as shown in Figure 2.2, which

is used to approximate transmission lines in literature [169, 102, 141, 22]. Its counter-

part constructed by mechanical components is also utilized to approximate structures

like buildings and bridges [75, 53, 57, 64]. The undamaged constants are r1 = 10Ω,

r2 = 1kΩ, and c = 100µF . When undamaged, ∀i ∈ Z+, ri,1 = r1, ri,2 = r2, and

ci = c. The dynamics of interest is the input impedance Vin/Iin in the frequency

domain.

The third example is the mechanical ladder network as shown in Figure 2.3.

The significance of this example is that it includes nonzero masses and proportional-

integral-derivative (PID) controller blocks, which is designed purposefully to exhibit
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f m1 PID1 m2 PID2 · · · mlast

b1

b2

Figure 2.3. Mechanical ladder network.

that the methods proposed in this dissertation have potential to impact physical

systems such as multi-agent structures. In fact, this example can be viewed as a line

of vehicles moving together in the same direction where the separation between every

two neighboring cars is maintained by a PID controller. In addition, every vehicle

follows the speed of the leading vehicle (mlast) through a damper-like controller. All

masses are assumed to be 1kg. Moreover, the undamaged constants are kp = 10N/m,

ki = 0.5N/ms, kd = 2Ns/m, and b = 1Ns/m. The dynamics of interest is the ratio

of the entire line’s length X to the disturbance at the m1, F , in the frequency domain.

It is worth noting that the dynamics of interest are all at the ends in the aforemen-

tioned three examples. In fact, frequency response and transfer functions between

any two nodes inside a dynamic network obeying the assumptions (A-1) to (A-6)

can be obtained by the modeling algorithms illustrated in this chapter. Furthermore,

the methods proposed in this chapter do not depend on the value of those assumed

undamaged constants.

2.2 Recurrence Formula

In this dissertation, a recurrence formula for a self-similar network is defined

as a frequency-domain equation relating its overall dynamics to its subnetworks’

dynamics. As we shall see later, recurrence formulas form the core of all four modeling

algorithms proposed in this chapter. The construction of recurrence formulas is
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f
x1,1

k1,1

b1,1

x2,1

x2,2

Gs1(s)

Gs2(s)

xlast ≡ 0

Figure 2.4. A simplified version of the mechanical tree network in
Figure 2.1 used to derive its recurrence formula.

exemplified through the aforementioned three examples. The key idea is to derive a

network’s transfer function assuming that all of its subnetworks’ transfer functions

are known.

For the mechanical tree network in Figure 2.1, the transfer functions of two sub-

networks are assumed to be available. That is,

Gs1(s) =
X2,1(s)

F1(s)
,

Gs2(s) =
X2,2(s)

F2(s)
,

where F1(s) + F2(s) = F (s). The corresponding illustration is shown in Figure 2.4.

When the first generation is taken into account, the forces F1(s) and F2(s) have their

specific representations, which are

F1(s) = k1,1(X1,1(s)−X2,1(s)),

F2(s) = b1,1s(X1,1(s)−X2,2(s)).
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The above two equations lead to that

X1,1(s)

F1(s)
=

1

k1,1

+Gs1(s),

X1,1(s)

F2(s)
=

1

b1,1s
+Gs2(s).

Then,

X1,1(s)

F (s)
=

X1,1(s)

F1(s) + F2(s)
=

1

1

1

k1,1

+Gs1(s)

+
1

1

b1,1s
+Gs2(s)

.

Note thatX1,1(s)/F (s) represents the dynamics of the entire mechanical tree network.

As a result, the recurrence formula for the mechanical tree network is

Gr(s) =
1

1

1

k1,1

+Gs1(s)

+
1

1

b1,1s
+Gs2(s)

=
k1,1b1,1sGs1(s)Gs2(s) + k1,1Gs1(s) + b1,1sGs2(s) + 1

k1,1b1,1s(Gs1(s) +Gs2(s)) + k1,1 + b1,1s
. (2.1)

Note that Equation (2.1) actually directly follows the series and parallel connecting

rules of idealized mechanical components since no masses are involved.

For the electrical ladder network in Figure 2.2, the input impedance of its sub-

network is assumed to be known, which is indicated by

Gs1(s) =
V1(s)

I1(s)
.

The illustration of that is shown in Figure 2.5. The derivation of its recurrence

formula is similar to that of the mechanical tree network’s. Therefore, that is omitted
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r1,1

r1,2 c1 Gs1(s) i1 v1vin

iin

Figure 2.5. A simplified version of the electrical ladder network in
Figure 2.2 used to derive its recurrence formula.

here. The result is directly led by the series and parallel connection rules of idealized

electrical components (or, by the concept of equivalent impedance), i.e.,

Gr(s) =
Vin(s)

Iin(s)
= r1,1 +

1

1

r1,2

+ c1s+
1

Gs1(s)

=
(r1,1r1,2c1s+ r1,1 + r1,2)Gs1(s) + r1,1r1,2

(r1,2c1s+ 1)Gs1(s) + r1,2

. (2.2)

For the mechanical ladder network in Figure 2.3, the dynamics of the subnetwork

is again assumed to be known, where

Gs1(s) =
Xs(s)

Fs(s)
,

as shown in Figure 2.6. Similar to the mechanical tree network, when the first

generation is taken into account, the force Fs(s) is determined by the controller block
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PID1. Hence,

Gs1(s) =
Xs(s)kp1 +

ki1

s
+ kd1s


︸ ︷︷ ︸

K1(s)

X1(s)

=
Xs(s)

K1(s)X1(s)
.

Next, assume that mlast is always moving at a constant speed. That can be achieved

when the disturbance f(t) has negligible impacts on mlast, e.g., f(t) is small, or

the mechanical ladder network possesses many generations, or mlast has an external

controller to maintain its constant speed. From Newton’s second law of motion, at

m1,

m1s
2(X1(s) +Xs(s)) = F (s)−K1(s)X1(s)− b1s(X1(s) +Xs(s)),

which leads to

(m1s
2 + b1s+K1(s))X1(s) + (m1s

2 + b1s)Xs(s) = F (s).

Because Xs(s) = Gs1(s)K1(s)X1(s), we then have the following two equations

((m1s
2 + b1s)(Gs1(s)K1(s) + 1) +K1(s))X1(s) = F (s)

(m1s
2 + b1s)(Gs1(s)K1(s) + 1) +K1(s)

Gs1(s)K1(s)
Xs(s) = F (s).

Finally, the recurrence formula of the mechanical ladder network is given by

Gr(s) =
X(s)

F (s)
=
X1(s) +Xs(s)

F (s)
=

Gs1(s)K1(s) + 1

(m1s2 + b1s)(Gs1(s)K1(s) + 1) +K1(s)
. (2.3)
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f m1 PID1 m2 · · · mlast

b1

x1 xs

Figure 2.6. A simplified version of the mechanical ladder network in
Figure 2.3 used to derive its recurrence formula.

2.3 Finite Networks

In this section, the two algorithms of computing frequency response and transfer

functions for finite self-similar networked dynamical systems are presented. Then, in

Section 2.3.3, the correctness of the results are verified.

The main idea is simply using a network’s recurrence formula from the first gen-

eration repeatedly until the last one. However, the tricky part is correctly plugging

the corresponding components’ constants into their respective iterations. Therefore,

the algorithms in this chapter leverage a recursive process to assure that aspect of

correctness.

2.3.1 Frequency Response

The algorithm to compute the frequency response of a self-similar finite dynamic

network is listed in Algorithm 1. The algorithm starts with the partition() function

which splits the damage case of the entire network (l,e) into two groups. The first

group is the damage case at the first generation (l1,e1). The other group contains

all damage cases for subnetworks, where the damage case (lS[idx],eS[idx]) is with

respect to the idx-th subnetwork. As a concrete example, for the mechanical tree

network in Figure 2.1, suppose its damage case is

(l,e) = ([k1,1, b2,1, k3,2, b3,3], [0.1, 0.2, 0.3, 0.4]).
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Algorithm 1 Pseudocode of computing finite networks’ frequency response. It com-
putes the frequency response G at the angular frequency w for a finite network with
nG number of generations given its damage case (l,e) and the undamaged constants
undCst.
1: function G = freqFin(l,e,undCst,w,nG)

2: s = 1j*w;

3: [l1,e1,lS,eS] = partition(l,e);

4: g1Cst = getG1Cst(l1,e1,undCst);

5: if nG == 1 then
6: G = G1(g1Cst,s);

7: else
8: nG = nG-1;

9: for idx from 1 to nS do
10: GS[idx] = freqFin(lS[idx],eS[idx],undCst,w,nG);

11: end for
12: G = Gr(g1Cst,GS,s);

13: end if

Then, the partition() function returns the following results.

(l1,e1) = ([k1,1], [0.1]),

(lS[1],eS[1]) = ([b1,1, k2,2], [0.2, 0.3]),

(lS[2],eS[2]) = ([b2,1], [0.4]).

Note that the indices of the components in lS are with respect to their corresponding

subnetworks. That is the reason why b2,1 in l is converted to b1,1 in lS[1]. Then,

the damage case at the first generation (l1,e1) is used to compute the values of

constants at the first generation g1Cst by the getG1Cst() function. For the above

example, g1Cst includes that

k1,1 = 0.1k = 0.2N/m and b1,1 = b = 1Ns/m.

Then, the algorithm breaks into two parts determined by the criterion if the

network has only one generation, i.e., nG = 1. If so, the result is directly returned by
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the G1() function given the constants at the first generation. It is worth noting that

case is also the base case of the entire recursive procedure. The computations in the

G1() function can be easily derived. For the mechanical tree network, it is

G1(s) =
1

k1,1 + b1,1s
. (2.4)

For the electrical ladder network, it is

G1(s) = r1,1 +
1

1

r1,2

+ c1s

=
r1,1r1,2c1s+ r1,1 + r1,2

r1,2c1s+ 1
. (2.5)

For the mechanical ladder network, it is

G1(s) =
1

m1s2 + b1s+K1(s)
. (2.6)

If the network has more than one generation, i.e., nG > 1, the algorithm recur-

sively calls itself for each of its subnetworks to compute their frequency responses.

Those frequency responses are then used to compute the final result, that is the

frequency response of the entire network, through those recurrence formulas imple-

mented in the Gr() function.

Note that Algorithm 1 is less likely to cause mistakes as opposed to manually

inserting the values of components’ constants within a large network at every iteration

of computation. As long as Algorithm 1 is coded correctly, that type of error would

not occur. Another advantage of Algorithm 1 is its adaptability. It can deal with all

finite dynamic networks satisfying the assumptions from (A-1) to (A-4) in Section 2.1.

The frequency response of the three examples under some specific situations ac-

quired by Algorithm 1 are shown in Figures 2.7 to 2.9. Note that Algorithm 1 is also

able to compute frequency response of an undamaged finite network, in which case
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Figure 2.7. Frequency response for two 15-generation mechanical tree
networks. The blue curve is for the undamaged case, G15,∅(jω). The red

dashed curve is for a damage case, G15,(l,e)(jω), where
(l, e) = ([k2,1, k2,2, b3,1], [0.1, 0.2, 0.3]).

the input arguments l and e should be two empty lists.

2.3.2 Transfer Functions

This section proposes an algorithm for computing transfer functions of finite dy-

namic networks that satisfy the assumptions (A-1) to (A-4) in Section 2.1. The recur-

sive structure of the algorithm in this section is the same as that of Algorithm 1. The

difference is that the algorithm in this section does not depend on angular frequencies

w, and it purely operates on the coefficients of transfer functions. That is guaran-

teed by the equivalence between polynomial multiplications and tensor convolutions.

Therefore, in what follows, that equivalence is reviewed first.

2.3.2.1 Equivalence between Polynomial Multiplication and Tensor Convolution

Here, only vector convolutions and matrix convolutions are reviewed, since they

cover all the examples appearing in this dissertation. However, note that the equiv-

alence is actually satisfied for all finite-dimensional tensors.
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Figure 2.8. Input impedance for two 15-generation electrical ladder
networks. The blue curve is for the undamaged case, G15,∅(jω). The red

dashed curve is for a damage case, G15,(l,e)(jω), where (l, e) = ([r2,2], [0.1]).
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Figure 2.9. Frequency response for two 15-generation mechanical ladder
networks. The blue curve is for the undamaged case, G15,∅(jω). The red

dashed curve is for a damage case, G15,(l,e)(jω), where
(l, e) = ([kp2, ki2, kd2], [0.1, 0.1, 0.1]).
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• In the case of vector convolution, C = A ∗B is defined as

C(k) =
∑
p

A(p)B(k − p+ 1),

where p runs over all values that lead to legal subscripts of A(p) and B(k−p+1).
For two univariate polynomials,

a(x) = a1x
nA−1 + a2x

nA−2 + · · ·+ anA
,

b(x) = b1x
nB−1 + b2x

nB−2 + · · ·+ bnB
,

their coefficient vectors are defined as

A =
[
a1 a2 · · · anA

]
,

B =
[
b1 b2 · · · bnB

]
.

It can be shown that the vector convolution of A and B, C = A ∗ B, is the
coefficient vector of the corresponding univariate polynomial multiplication,

c(x) = a(x)b(x).

• In the case of matrix convolution, C = A ∗B, is defined as

C(j, k) =
∑
p

∑
q

A(p, q)B(j − p+ 1, k − q + 1),

where p and q run over all values that lead to legal subscripts of A(p, q) and
B(j − p+ 1, k − q + 1). For two bivariate polynomial,

a(x, y) = a1,1x
nA−1y0 + · · ·+ a1,nA

x0ynA−1 + a2,2x
nA−2y0 + · · ·+ a2,nA

x0ynA−2

+ · · ·+ anA,nA
x0y0,

b(x, y) = b1,1x
nB−1y0 + · · ·+ b1,nB

x0ynB−1 + b2,2x
nB−2y0 + · · ·+ b2,nB

x0ynB−2

+ · · ·+ bnB ,nB
x0y0,
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their coefficient matrices are defined as

A =


a1,1 a1,2 · · · a1,nA−1 a1,nA

0 a2,2 · · · a2,nA−1 a2,nA

0 0 · · · a3,nA−1 a3,nA

...
...

. . .
...

...
0 0 · · · 0 anA,nA

 ,

B =


b1,1 b1,2 · · · b1,nB−1 b1,nB

0 b2,2 · · · b2,nB−1 b2,nB

0 0 · · · b3,nB−1 b3,nB

...
...

. . .
...

...
0 0 · · · 0 bnB ,nB

 .

It can be shown that the matrix convolution of A and B, C = A ∗ B, is the
coefficient matrix of the corresponding bivariate polynomial multiplication,

c(x, y) = a(x, y)b(x, y).

Additionally, a related new operator for additions between two coefficient vectors

and matrices is defined here. The operator ⊕ can be applied between two coefficient

vectors or matrices with different dimensions. The result of that should be consistent

with the addition between two univariate or bivariate polynomials. Two examples

are provided as follows.

• In the case of between two coefficient vectors,[
a1 a2 a3

]
⊕
[
b1 b2

]
=
[
a1 a2 + b1 a3 + b2

]
. (2.7)

• In the case of between two coefficient matrices,

[
a1,1 a1,2

0 a2,2

]
⊕

b1,1 b1,2 b1,3

0 b2,2 b2,3

0 0 b3,3

 =

b1,1 b1,2 b1,3

0 a1,1 + b2,2 a1,2 + b2,3

0 0 a2,2 + b3,3

 . (2.8)

2.3.2.2 Algorithm for Transfer Functions

The computation of finite networks’ transfer functions is based on the observation

as follows. Recall that the computation of a finite network’s frequency response

repeatedly uses its recurrence formula Gr(s) starting with the transfer function when
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it only has one generation, G1(s). Moreover, note that both Gr(s) and G1(s) are

rational expressions where the numerator and denominator of both are polynomials

in the Laplace variable s. Therefore, the result of combining them together, that

is a finite network’s transfer function, is also a rational expression of s. Hence, the

coefficient vectors of both its numerator and denominator can be obtained directly,

which leads to the analytical expression of a finite network’s transfer function.

For the mechanical tree example, its one-generation transfer function G1(s) in

Equation (2.4) can be converted to two coefficient vectors for the numerator and

denominator, cN1 and cD1, where

cN1 =

[
1

]
,

cD1 =

[
b1,1 k1,1

]
.

Define the transfer functions of two subnetworks as

Gs1(s) =
Ns1(s)

Ds1(s)
, and Gs2(s) =

Ns2(s)

Ds2(s)
.

Substituting them into the recurrence formula in Equation (2.1) leads to

Gr(s) =
k1,1b1,1sNs1Ns2 + k1,1Ns1Ds2 + b1,1sNs2Ds1 +Ds1Ds2

k1,1b1,1s(Ns1Ds2 +Ns2Ds1) + (k1,1 + b1,1s)Ds1Ds2

.

Therefore, if the coefficient vectors for the two subnetworks are defined as cNs1, cDs1,

cNs2, and cDs2, its recurrence formula Gr(s) in Equation (2.1) can be converted to
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the following two equations which only operate on the coefficients.

cNr =

[
k1,1b1,1 0

]
∗ cNs1 ∗ cNs2 ⊕

[
k1,1

]
∗ cNs1 ∗ cDs2

⊕
[
b1,1 0

]
∗ cNs2 ∗ cDs1 ⊕ cDs1 ∗ cDs2, (2.9)

cDr =

[
k1,1b1,1 0

]
∗ (cNs1 ∗ cDs2 ⊕ cNs2 ∗ cDs1)⊕

[
b1,1 k1,1

]
∗ cDs1 ∗ cDs2,

(2.10)

where the operator ∗ means vector convolutions, and ⊕ is defined as the addition

between two coefficient vectors according to Equation (2.7).

Similar procedures can be applied to the other two examples. For the electrical

ladder network, its one-generation transfer function G1(s) in Equation (2.5) can be

converted to

cN1 =

[
r1,1r1,2c1 r1,1 + r1,2

]
,

cD1 =

[
r1,2c1 1

]
,

and its recurrence formula Gr(s) in Equation (2.2) can be converted to

cNr =

[
r1,1r1,2c1 r1,1 + r1,2

]
∗ cNs1 ⊕ r1,1r1,2cDs1, (2.11)

cDr =

[
r1,2c1 1

]
∗ cNs1 ⊕ r1,2cDs1. (2.12)

For the mechanical ladder network, its one-generation transfer function G1(s) in

Equation (2.6) can be converted to

cN1 =

[
1 0

]
,

cD1 =

[
m1 b1 + kd1 kp1 ki1

]
.
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and its recurrence formula Gr(s) in Equation (2.3) can be converted to

cNr =

[
kd1 kp1 ki1

]
∗ cNs1 ⊕

[
1 0

]
∗ cDs1,

cDr =

[
m1 b1 0

]
∗
[
kd1 kp1 ki1

]
∗ cNs1 ⊕

[
m1 b1 + kd1 kp1 ki1

]
∗ cDs1.

Finally, the pseudocode of computing finite networks’ transfer functions is listed

in Algorithm 2. The structure is same as its counterpart for frequency response in

Algorithm 2 Pseudocode of computing finite networks’ transfer function. It com-
putes the coefficient vectors cN and cD of an nG-generation network’s transfer function
given its damage case (l,e) and the undamaged constants undCst.

1: function [cN,cD] = tranFin(l,e,undCst,nG)

2: [l1,e1,lS,eS] = partition(l,e);

3: g1Cst = getG1Cst(l1,e1,undCst);

4: if nG == 1 then
5: [cN,cD] = C1(g1Cst);

6: else
7: nG = nG-1;

8: for idx from 1 to nS do
9: [cNS[idx],cDS[idx]] = tranFin(lS[idx],eS[idx],undCst,nG);

10: end for
11: [cN,cD] = Cr(g1Cst,cNS,cDS);

12: [cN,cD] = simplify(cN,cD);

13: end if

Algorithm 1. The main difference is that Algorithm 2 is independent of angular fre-

quencies w, and it returns the coefficient vectors cN and cD of a transfer function G(s).

The G1() function in Algorithm 1 is replaced by the C1() function in Algorithm 2

which returns cN1 and cD1. The Gr() function in Algorithm 1 is replaced by the

Cr() function in Algorithm 2 whose implementation is given by the expressions for

cNr and cDr. In addition, there exists a new function called simplify() in Algo-
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rithm 2, which reduces the resultant coefficient vectors from the Cr() function. For

example, the order of two coefficient vectors can be lowered by the same amount, like

cN =

[
1 2 0

]
and cD =

[
3 4 0 0

]

being simplified to

cN =

[
1 2

]
and cD =

[
3 4 0

]
.

Another possible simplification is that all elements in both cN and cD can be divided

by the same number, such as

cN =

[
2 4

]
and cD =

[
6 8

]

being simplified to

cN =

[
1 2

]
and cD =

[
3 4

]
.

The results for the three examples in some specific situations are presented as

follows. For a two-generation mechanical tree network whose damage case is (l, e) =

([k2,1, k2,2], [0.1, 0.2]), its transfer function is

G2,(l,e)(s) =
2s2 + 4.8s+ 0.88

s3 + 6.6s2 + 2.48s+ 0.16
. (2.13)

For a four-generation electrical ladder network whose damage case is

(l, e) = ([r2,2, r3,2], [0.1, 0.1]),
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the analytical expression of its input impedance is

G4,(l,e)(s) =
s4 + 7220s3 + 1.6× 107s2 + 1.2× 1010s+ 1.6× 1012

0.1s4 + 622s3 + 1.1× 106s2 + 5× 108s+ 2.4× 1010
. (2.14)

For a two-generation mechanical ladder network whose damage case is

(l, e) = ([kp2, ki2, kd2], [0.1, 0.1, 0.1]),

its transfer function is

G2,(l,e)(s) =
s4 + 3.2s3 + 11s2 + 0.55s

s6 + 6.2s5 + 26.6s4 + 26.05s3 + 11.25s2 + s+ 0.025
. (2.15)

Again, it is worth emphasizing that Algorithm 2 is able to compute transfer

function of an undamaged finite network, in which case the input arguments l and e

should be two empty lists.

2.3.3 Correctness Check

The correctness of the results obtained by the two algorithms in Sections 2.3.1

and 2.3.2 is checked here. That confirmation is twofold. First, a frequency response

obtained from Algorithm 1 should be consistent with its transfer function obtained

from Algorithm 2. The comparison is cast between a frequency response G(jω) from

Algorithm 1 and a sampling of its transfer function G(s) from Algorithm 2 at a

sequence of frequencies. That consistency is displayed by Figures 2.10 to 2.12.

The second confirmation is whether the frequency response and transfer functions

obtained by Algorithms 1 and 2 are consistent with their time-domain response. On

the one hand, the time-domain response of a network is obtained by the lsim()

function in MATLAB given its transfer function from Algorithm 2 and an input signal

u(t). On the other hand, that time-domain response can also be obtained by the
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Figure 2.10. The consistency between a finite mechanical tree network’s
transfer function in Equation (2.13) and its corresponding frequency

response from Algorithm 1.
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Figure 2.11. The consistency between a finite electrical ladder network’s
transfer function in Equation (2.14) and its corresponding frequency

response from Algorithm 1.
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Figure 2.12. The consistency between a finite mechanical ladder network’s
transfer function in Equation (2.15) and its corresponding frequency

response from Algorithm 1.

numerical integration of the differential equations describing that network’s dynamics

given the same input signal u(t).

For the mechanical tree network in Figure 2.1 with two generations, the following

equations of force balance can be formulated.

f = k1,1(x1,1 − x2,1) + b1,1(ẋ1,1 − ẋ2,2),

k1,1(x1,1 − x2,1) = k2,1x2,1 + b2,1ẋ2,1,

b1,1(ẋ1,1 − ẋ2,2) = k2,2x2,2 + b2,2ẋ2,2,

which result in a system of equations


b1,1 0 −b1,1

0 b2,1 0

b1,1 0 −b1,1 − b2,2



ẋ1,1

ẋ2,1

ẋ2,2


︸ ︷︷ ︸

ẋ

=


f − k1,1(x1,1 − x2,1)

k1,1(x1,1 − x2,1)− k2,1x2,1

k2,2x2,2

 .

Then, the time-domain response is obtained by using the ode45() function in MATLAB

53



0 0.5 1 1.5 2

Time (s)

0

0.5

1

1.5

S
ig

n
a

l

Input signal f(t)

x
1,1

(t) given by lsim()

x
1,1

(t) given by ode45()

Figure 2.13. Two ways of obtaining a finite mechanical tree network’s
time-domain response x1,1(t) give the same result, which confirms the

correctness of the transfer function in Equation (2.13).

to integrate ẋ solved from the above system of equations. The input signal is a

logistic function f(t) = 1/(1 + e−50(t−0.2)). The consistency between the above result

and the one given by the lsim() with the transfer function in Equation (2.13) for

the same input f(t) is shown in Figure 2.13, which confirms the correctness from the

perspective of time-domain response.

For the electrical ladder network in Figure 2.2 with four generations, the following

system of differential equations is derived from Kirchhoff’s circuit laws.

v̇1 =
1

c1

(
iin −

v1

r1,2

− v1 − v2

r2,1

)
,

v̇2 =
1

c2

(
v1 − v2

r2,1

− v2

r2,2

− v2 − v3

r3,1

)
,

v̇3 =
1

c3

(
v2 − v3

r3,1

− v3

r3,2

− v3 − v4

r4,1

)
,

v̇4 =
1

c4

(
v3 − v4

r4,1

− v4

r4,2

)

The numerical integration of the above system of differential equations is performed

by the ode45() function given the input signal iin(t) = 1/(1 + e−50(t−0.2)). Once
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Figure 2.14. Two ways of obtaining a finite electrical ladder network’s
time-domain response vin(t) give the same result, which confirms the

correctness of the transfer function in Equation (2.14).

v1(t) is obtained from the integration, vin(t) can also be computed from vin(t) =

v1(t) + r1,1iin(t). That is compared with the result given by the lsim() on the

transfer function in Equation (2.14), which is plotted in Figure 2.14.

For the mechanical ladder network in Figure 2.3 with two generations, the follow-

ing equations of motion can be acquired by Newton’s second law.

m1ẍ1 = f − kp1(x1 − x2)− ki1
∫ t

0

(x1 − x2)dτ − kd1(ẋ1 − ẋ2)− b1ẋ1,

m2ẍ2 = kp1(x1 − x2) + ki1

∫ t

0

(x1 − x2)dτ + kd1(ẋ1 − ẋ2)− kp2x2 − ki2
∫ t

0

x2dτ

− kd2ẋ2 − b2ẋ2.

Note that x1 and x2 are the absolute displacements of m1 and m2 which are different

from those in Figure 2.6. The above two equations of motion can be organized into
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a matrix form, where

m1 0

0 m2


︸ ︷︷ ︸

M

ẍ1

ẍ2


︸ ︷︷ ︸

Ẍ

+

kd1 + b1 −kd1

−kd1 kd1 + kd2 + b2


︸ ︷︷ ︸

B

ẋ1

ẋ2


︸ ︷︷ ︸

Ẋ

+

 kp1 −kp1

−kp1 kp1 + kp2


︸ ︷︷ ︸

K

x1

x2


︸ ︷︷ ︸

X

=

 f − ki1
∫ t

0
(x1 − x2)dτ

ki1
∫ t

0
(x1 − x2)dτ − ki2

∫ t
0
x2dτ


︸ ︷︷ ︸

U

.

If define that Q =

[
X> Ẋ>

]>
, the corresponding system of first-order differential

equations is given by

Q̇ =

I 0

0 M


−1  0 I

−K −B

Q +

I 0

0 M


−1  0

U

 ,
which can then be numerically integrated given the input signal f(t) = 1/(1 +

e−50(t−0.2)), where I is the identity matrix. Because U contains the integrations

of state variables, ode45() in not employed this time. Instead, a Riemann sum with

constant time steps is performed. The resultant length of the entire two-generation

mechanical ladder network, x1(t), is compared with the result given by the lsim()

on the transfer function in Equation (2.15), which is plotted in Figure 2.15.

2.4 Undamaged Infinite Networks’ Transfer Functions

For an infinite network that satisfies the assumptions (A-1) to (A-6) in Section 2.1,

its transfer function when undamaged is a crucial part of finding other transfer func-

tions in more general cases. In fact, that plays the same role as those one-generation

transfer functions G1(s) for finite networks in Algorithms 1 and 2. Therefore, how

to compute them is reviewed in this section. Note that the method to evaluate them
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Figure 2.15. Two ways of obtaining a finite mechanical ladder network’s
time-domain response x1(t) give the same result, which confirms the

correctness of the transfer function in Equation (2.15).

is from existing work in literature [55, 84, 94] rather than the author’s own work.

However, it is still repeated here for the purpose of completeness.

One observation is that when a self-similar infinite network is undamaged, its

transfer function is the same as its subnetworks’, i.e., Gsi(s) = G∞,∅(s) for all i.

Specifically, for an infinite mechanical tree network, when undamaged, the following

relation can be established from its recurrence formula in Equation (2.1).

G∞,∅(s) =
kbsG2

∞,∅(s) + (bs+ k)G∞,∅(s) + 1

2kbsG∞,∅(s) + k + bs
.

Note that k1,1 = k and b1,1 = b in the case of no damage. The above equation leads

to

kbsG2
∞,∅(s) = 1,

which results in the undamaged transfer function for an infinite mechanical tree

network being

G∞,∅(s) =
1√
kbs

. (2.16)
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Figure 2.16. Finite mechanical tree networks’ undamaged transfer functions
Gg,∅(s) converge to the infinite mechanical tree network’s undamaged

transfer function G∞,∅(s) in Equation (2.16) as g →∞. The other

candidate −1/
√
kbs is not the limiting point of convergence, so it is not

suitable.

The other candidate result −1/
√
kbs is not suitable because it is actually a non-

minimum-phase system which is physically impossible for a mechanical tree network

in Figure 2.1. That can be observed from the fact that, when undamaged, finite

mechanical trees’ transfer functions converge to 1/
√
kbs instead of the other one as

the number of generations grows. (See Figure 2.16.)

Similar procedures can be applied to the other two examples. For an infinite elec-

trical ladder network, when undamaged, its recurrence formula leads to the following

equation,

G∞,∅(s) =
(r1r2cs+ r1 + r2)G∞,∅(s) + r1r2

(r2cs+ 1)G∞,∅(s) + r2

,

where r1,1 = r1, r1,2 = r2, and c1 = c when undamaged. That further leads to a

quadratic equation in G∞,∅(s),

(r2cs+ 1)G2
∞,∅(s)− (r1r2cs+ r1)G∞,∅(s)− r1r2 = 0.
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Figure 2.17. Finite electrical ladder networks’ undamaged transfer functions
Gg,∅(s) converge to the infinite electrical ladder network’s undamaged

transfer function G∞,∅(s) in Equation (2.17) as g →∞. The other
candidate is not the limiting point of convergence, so it is not suitable.

Therefore, the undamaged transfer function of infinite electrical ladder network is

G∞,∅(s) =

s+
1

r2c
+

√√√√
s2 +

2r1 + 4r2

r1r2c
s+

r1 + 4r2

r1r2
2c

2

2

r1

s+
2

r1r2c

. (2.17)

The other candidate is also eliminated for the same reason, i.e., it is not the limiting

point of convergence. That can be observed in Figure 2.17.

For an infinite mechanical ladder network, when undamaged, its recurrence for-

mula results in

G∞,∅(s) =
G∞,∅(s)K(s) + 1

(ms2 + bs)(G∞,∅(s)K(s) + 1) +K(s)
,

where K(s) = kp + ki/s + kds. The equation leads to another quadratic equation in
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Figure 2.18. Finite mechanical ladder networks’ undamaged transfer
functions Gg,∅(s) converge to the infinite mechanical ladder network’s

undamaged transfer function G∞,∅(s) in Equation (2.18) as g →∞. The
other candidate is not the limiting point of convergence, so it is not

suitable.

G∞,∅(s),

[mkds
3 + (mkp + bkd)s

2 + (mki + bkp)s+ bki]G
2
∞,∅(s) + (ms2 + bs)G∞,∅(s)− 1 = 0.

Therefore, the undamaged transfer function of infinite mechanical ladder network is

G∞,∅(s) =
−ms2 − bs+ A(s)

2[mkds3 + (mkp + bkd)s2 + (mki + bkp)s+ bki]
, (2.18)

where

A(s) = [m2s4 + (2mb+ 4mkd)s
3 + (b2 + 4mkp + 4bkd)s

2 + 4(mki + bkp)s+ 4bki]
1
2 .

Again, the other candidate is eliminated for the same reason, and the convergence of

finite mechanical ladder networks’ undamaged transfer functions to the infinite one

is shown in Figure 2.18.
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The following section shows how those undamaged transfer functions are employed

to compute other transfer functions of infinite networks in more general cases.

2.5 General Infinite Networks

In this section, two algorithms to compute frequency response and transfer func-

tions of infinite self-similar dynamic networks are presented, especially when they are

damaged. The basic idea is similar to its counterpart for finite networks in Section 2.3.

However, some indispensable changes are made to adapt for infinite networks.

2.5.1 Frequency Response

Recall that when evaluating frequency response for a finite network, the entire

procedure starts with its one-generation transfer function G1(s) and employs its re-

currence formula Gr(s) in iterations until its total number of generations is achieved.

That does not fit the case of infinite networks, as the number of iterations would be-

come infinite. To overcome that difficulty, the assumption (A-5) in Section 2.1 is set

which requires that an infinite network has a finite number of damaged components.

For an infinite network fulfilling that assumption, it has to contain a deepest gener-

ation after which all subnetworks are undamaged. Then, that deepest generation is

the starting point of the entire computation, thus undamaged transfer functions for

infinite networks G∞,∅(s) play the same role as one-generation transfer functions for

finite networks G1(s) in the entire modeling procedure. By doing that, the number

of iterations is limited to a finite number for infinite networks.

As a simple example, assume that an infinite mechanical tree network in Figure 2.1

has a damage case (l, e) = ([k1,1], [0.1]). Then, both subnetworks after the second

generation are undamaged. Since the network is infinitely large, both of them have

the same transfer functions as in Equation (2.16). That would be the starting point

of the computation. In fact, the frequency response of that infinite mechanical tree
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network can be evaluated by only using the recurrence formula in Equation (2.1)

once. That is,

G∞,(l,e)(jω) =
k1,1b1,1jωG

2
∞,∅(jω) + (k1,1 + b1,1jω)G∞,∅(jω) + 1

2k1,1b1,1jωG∞,∅(jω) + k1,1 + b1,1jω
,

where k1,1 = 0.1k, b1,1 = b, and G∞,∅(jω) = 1/
√
kbjω.

In general, the pseudocode for computing frequency response of infinite networks

that satisfy the assumptions (A-1) to (A-6) in Section 2.1 is listed in Algorithm 3,

which is the same as Algorithm 1 except for the base case. For finite networks in

Algorithm 3 Pseudocode of computing infinite networks’ frequency response. It
computes the frequency response G at the angular frequency w for an infinite network
given its damage case (l,e) and the undamaged constants undCst.

1: function G = freqInf(l,e,undCst,w)

2: s = i*w;

3: if isEmpty(l) then
4: G = GUnd(undCst,s);

5: else
6: [l1,e1,lS,eS] = partition(l,e);

7: for idx from 1 to nS do
8: GS[idx] = freqInf(lS[idx],eS[idx],undCst,w);

9: end for
10: g1Cst = getG1Cst(l1,e1,undCst);

11: G = Gr(g1Cst,GS,s);

12: end if

Algorithm 1, the base case is determined by the criterion if the network has only one

generation. Here, for infinite networks in Algorithm 3, the base case is determined

by the criterion if the network is undamaged, which is characterized by an empty

list of damaged components l. The computation of the base case is also replaced

by the GUnd() function which implements undamaged transfer functions for infinite
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Figure 2.19. Frequency response for mechanical tree networks in Figure 2.1
when the damage case is (l, e) = ([k2,1, k2,2, b3,1], [0.1, 0.2, 0.3]). Finite

networks’ frequency response are computed by Algorithm 1, whereas the
infinite network’s is computed by Algorithm 3.

networks G∞,∅(s), such as those in Section 2.4. The resultant frequency response

for the three examples networks under some specific damage cases are shown in

Figures 2.19 to 2.21, where the convergence of finite networks’ frequency response to

infinite networks’ under the same damage cases is also plotted to verify the correctness

of the results.

2.5.2 Transfer Functions

Recall that to compute finite networks’ transfer functions, the coefficient vectors

of one-generation transfer functions G1(s) are extracted, and recurrence formulas

Gr(s) are also revised accordingly. Since the role of G1(s) is replaced by undam-

aged transfer functions of infinite networks G∞,∅(s) here, it seems straightforward

to extract coefficient vectors of G∞,∅(s) as well. However, some adaptations have

to be made because G∞,∅(s)’s are no longer rational expressions as shown in Equa-

tions (2.16) to (2.18). Instead of extracting coefficients of s directly, in the case of

infinite networks, those of some expressions in s, denoted by φi(s), are pulled out.
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Figure 2.20. Frequency response for electrical ladder networks in Figure 2.2
when the damage case is (l, e) = ([r2,2], [0.1]). Finite networks’ frequency
response are computed by Algorithm 1, whereas the infinite network’s is

computed by Algorithm 3.
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Figure 2.21. Frequency response for mechanical ladder networks in
Figure 2.3 when the damage case is (l, e) = ([kp2, ki2, kd2], [0.1, 0.1, 0.1]).

Finite networks’ frequency response are computed by Algorithm 1, whereas
the infinite network’s is computed by Algorithm 3.

64



Specifically, for infinite mechanical tree network, the numerator and denominator

of its undamaged transfer function

G∞,∅(s) =
1√
kbs

can be viewed as two polynomials with respect to the variable φ1(s) =
√
s. Then,

the coefficient vectors of its undamaged transfer functions are

cN∞,∅ =

[
1

]
,

cD∞,∅ =

[
√
kb 0

]
.

Moreover, because its recurrence formula Gr(s) is still a rational expression, the

numerator and denominator of damaged transfer functions of infinite mechanical

tree networks, obtained by repeatedly applying Gr(s) starting with G∞,∅(s), are also

polynomials with respect to φ1(s) =
√
s.

The reason for that is the operations in a rational expression are all basic math-

ematical operations. None of them could dissolve that φ1(s) =
√
s into a univariate

polynomial of s unless all exponents are even. Hence, φ1(s) =
√
s must exist in the

numerator and denominator of damaged transfer functions of infinite mechanical tree

networks. Luckily, in this case, the variable s is the square of φ1(s) =
√
s, so the

numerator and denominator can be viewed as univariate polynomials with respect to

√
s. General speaking, as demonstrated in the other two examples later, that relation

is not obeyed. As a result, those transfer functions’ numerator and denominator have

to be regarded as multivariate polynomials with respect to both s and φi(s).

Therefore, in this case, the mechanical tree network’s recurrence formula Gr(s)
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in Equation (2.1) can be revised as

cNr =

[
k1,1b1,1 0 0

]
∗ cNs1 ∗ cNs2 ⊕

[
k1,1

]
∗ cNs1 ∗ cDs2

⊕
[
b1,1 0 0

]
∗ cNs2 ∗ cDs1 ⊕ cDs1 ∗ cDs2, (2.19)

cDr =

[
k1,1b1,1 0 0

]
∗ (cNs1 ∗ cDs2 ⊕ cNs2 ∗ cDs1)

⊕
[
b1,1 0 k1,1

]
∗ cDs1 ∗ cDs2, (2.20)

which only operate on coefficients and are independent of frequency ω. In Equa-

tions (2.19) and (2.20), cNs1, cDs1, cNs2, and cDs2 are the coefficient vectors of

both subnetworks with respect to the variable φ1(s) =
√
s. In addition, ∗ is the

vector convolution operator, and ⊕ is a new vector addition operator defined in Sec-

tion 2.3.2.1. Be careful that Equations (2.19) and (2.20) are different from their

counterparts for finite mechanical tree networks in Equations (2.9) and (2.10) be-

cause the variable of polynomials for finite mechanical tree networks is s, while that

for infinite mechanical tree networks is φ1(s) =
√
s.

For infinite electrical ladder network, its undamaged transfer function is

G∞,∅(s) =

s+
1

r2c
+

√√√√
s2 +

2r1 + 4r2

r1r2c
s+

r1 + 4r2

r1r2
2c

2

2

r1

s+
2

r1r2c

,

which is more complicated compared to the mechanical tree network because it con-

tains an irrational expression of s. In this case, the numerator and denominator are

regarded as two bivariate polynomials whose two variables are

φ1(s) = s and φ2(s) =

√√√√
s2 +

2r1 + 4r2

r1r2c
s+

r1 + 4r2

r1r2
2c

2
.
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According to the definition of coefficient matrices for bivariate polynomials in Sec-

tion 2.3.2.1, the coefficient matrices for infinite electrical ladder network’s undamaged

transfer function are

cN∞,∅ =

1 1

0 1
r2c

 ,
cD∞,∅ =

 2
r1

0

0 2
r1r2c

 .
Correspondingly, its recurrence formula Gr(s) in Equation (2.2) should be revised to

cNr =

r1,1r1,2c1 0

0 r1,1 + r1,2

 ∗ cNs1 ⊕ r1,1r1,2cDs1, (2.21)

cDr =

r1,2c1 0

0 1

 ∗ cNs1 ⊕ r1,2cDs1, (2.22)

where ∗ is the operator of matrix convolution and ⊕ is a new operator of matrix

addition defined in Section 2.3.2.1. Again, note that Equations (2.21) and (2.22)

are different from their counterparts Equations (2.11) and (2.12) for finite electrical

ladder networks because the variables of polynomials are different.

The same situation happens for infinite mechanical ladder networks whose un-

damaged transfer function is

G∞,∅(s) =
−ms2 − bs+ A(s)

2[mkds3 + (mkp + bkd)s2 + (mki + bkp)s+ bki]
,

where A(s) is defined in Equation (2.18). In this case, the numerator and denominator
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of G∞,∅(s) can also be regarded as two bivariate polynomials whose two variables are

φ1(s) = s and φ2(s) = A(s).

Then, the coefficient matrices of G∞,∅(s) are

cN∞,∅ =


−m 0 0

0 −b 1

0 0 0

 ,

cD∞,∅ =



2mkd 0 0 0

0 2(mkp + bkd) 0 0

0 0 2(mki + bkp) 0

0 0 0 2bki


.

The corresponding recurrence formula Gr(s) in Equation (2.3) is revised to

cNr =


kd1 0 0

0 kp1 0

0 0 ki1

 ∗ cNs1 ⊕

1 0

0 0

 ∗ cDs1,

cDr =


m1 0 0

0 b1 0

0 0 0

 ∗

kd1 0 0

0 kp1 0

0 0 ki1

 ∗ cNs1 ⊕



m1 0 0 0

0 b1 + kd1 0 0

0 0 kp1 0

0 0 0 ki1


∗ cDs1.

Once coefficient vectors and matrices are extracted from G∞,∅(s) and the recur-

rence formula Gr(s) is revised to the form of cNr and cDr which directly operate on

the coefficients, Algorithm 4 is ready for computing transfer functions of those infi-

nite networks fulfilling the assumptions (A-1) to (A-6) in Section 2.1. The structure

of Algorithm 4 is the same as that of Algorithm 3 which returns an infinite network’s
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Algorithm 4 Pseudocode of computing infinite networks’ transfer functions. It
computes the coefficient tensors cN and cD of an infinite network’s transfer function
given its damage case (l,e) and the undamaged constants undCst.

1: function [cN,cD] = tranInf(l,e,undCst)

2: if isEmpty(l) then
3: [cN,cD] = CUnd(undCst);

4: else
5: [l1,e1,lS,eS] = partition(l,e);

6: for idx from 1 to nS do
7: [cNS[idx],cDS[idx]] = tranInf(lS[idx],eS[idx],undCst);

8: end for
9: g1Cst = getG1Cst(l1,e1,undCst);

10: [cN,cD] = Cr(g1Cst,cNS,cDS);

11: [cN,cD] = simplify(cN,cD);

12: end if

frequency response. The GUnd() function in Algorithm 3 is replaced by the CUnd()

function in Algorithm 4, which outputs the coefficient tensors for an infinite network’s

undamaged transfer function cN∞,∅ and cD∞,∅. The Gr() function in Algorithm 3 is

replaced by the Cr() function in Algorithm 4, which implements the computations of

revised recurrence formulas cNr and cDr. The simplify() function in Algorithm 4

is similar to that in Algorithm 2.

It is worth noting that the coefficient tensor is not unique for a fractional or

irrational transfer function because transfer functions are always univariate with the

only variable s. They are manufactured to multivariate polynomials with respect to

variables φi(s) to enable that computations can take place only on the coefficients of

those fractional or irrational transfer functions. Take the following irrational function

T (s) as an example, where

T (s) = s+ 1 +
√
s+ 1 =

(√
s+ 1

)2

+
√
s+ 1.

T (s) can be regarded as a bivariate polynomial with the two variables φ1(s) = s and
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φ2(s) =
√
s+ 1. Then, both of the following two coefficient matrices represent T (s).

c1 =

1 1

0 1

 and c2 =


0 0 1

0 0 1

0 0 0

 .

Finally, the transfer functions obtained by Algorithm 4 for the three example

networks in some specific cases are showcased here. For an infinite mechanical tree

network in Figure 2.1 with the damage case (l, e) = ([k2,1, b2,1], [0.1, 0.2]), its transfer

function is

G∞,(l,e)(s) =
0.71s2 + 2.20s

3
2 + 9.62s+ 12.20s

1
2 + 1.41

s
5
2 + 3.11s2 + 13.60s

3
2 + 3.40s+ 2.00s

1
2

. (2.23)

For an infinite electrical ladder network in Figure 2.2 with the damage case (l, e) =

([r2,2, r3,2], [0.1, 0.1]), its transfer function is

G∞,(l,e)(s) =
N∞,(l,e)(s)

D∞,(l,e)(s)
, (2.24)

where

N∞,(l,e)(s) = s4 + s3φ2(s) + 7.2× 103s3 + 5.2× 103s2φ2(s) + 1.5× 107s2

+ 6.7× 106sφ2(s) + 8.1× 109s+ 1.5× 109φ2(s) + 8.0× 1010,

D∞,(l,e)(s) = 0.1s4 + 0.1s3φ2(s) + 622s3 + 421s2φ2(s) + 9.8× 105s2

+ 3.5× 105sφ2(s) + 2.6× 108s+ 2.2× 107φ2(s) + 2.5× 109,

φ2(s) =
√
s2 + 4020s+ 40100.
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For an infinite mechanical ladder network in Figure 2.3 with the damage case

(l, e) = ([kp2, ki2, kd2], [0.1, 0.1, 0.1]),

the coefficient matrices of its transfer function are

cN∞,(l,e) =



1 0 0 0 0 0 0 0

0 9.21 0.05 0 0 0 0 0

0 0 35.6 0.42 0 0 0 0

0 0 0 84.0 1.33 0 0 0

0 0 0 0 62.1 2.70 0 0

0 0 0 0 0 5.66 0.26 0

0 0 0 0 0 0 0.14 0.01

0 0 0 0 0 0 0 0



,

cD∞,(l,e) =



1 0 0 0 0 0 0 0 0 0

0 12.2 0.05 0 0 0 0 0 0 0

0 0 69.2 0.58 0 0 0 0 0 0

0 0 0 219 2.91 0 0 0 0 0

0 0 0 0 311 7.76 0 0 0 0

0 0 0 0 0 217 5.91 0 0 0

0 0 0 0 0 0 74.8 0.54 0 0

0 0 0 0 0 0 0 8.63 0.01 0

0 0 0 0 0 0 0 0 0.40 0

0 0 0 0 0 0 0 0 0 0.01



, (2.25)

with two variables

φ1(s) = s and φ2(s) =
√
s4 + 10s3 + 49s2 + 42s+ 2.
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Figure 2.22. The consistency between an infinite mechanical tree network’s
transfer function in Equation (2.23) and its corresponding frequency

response from Algorithm 3.

2.5.3 Correctness Check

The correctness of the frequency response and transfer functions returned by

Algorithms 3 and 4 for the three example networks when they are infinitely large is

demonstrated here. The verification is threefold. First, for the same damage case,

a finite network’s frequency response should converge to its corresponding infinite

network’s. That has already been proved previously in Figures 2.19 to 2.21. Second,

for the same infinite network, its frequency response from Algorithm 3 should be

consistent with its transfer function from Algorithm 4. That consistency is proved

by Figures 2.22 to 2.24.

Third, the time-domain response of an infinite network’s transfer function re-

turned by Algorithm 4 should be consistent with the numerical integration of the

corresponding differential equations describing that network’s dynamics. Due to the

lack of simulating time-domain response for irrational transfer functions, that consis-

tency is verified only for an infinite mechanical tree network with the transfer function

in Equation (2.23), which is fractional. The time-domain response of that transfer
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Figure 2.23. The consistency between an infinite electrical ladder network’s
transfer function in Equation (2.24) and its corresponding frequency

response from Algorithm 3.
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Figure 2.24. The consistency between an infinite mechanical ladder
network’s transfer function in Equation (2.25) and its corresponding

frequency response from Algorithm 3.
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Figure 2.25. The blue curve is the input signal f(t) = 1/(1 + e−50(t−0.2)).
The thick red curve is the time-domain response of an infinite mechanical
tree network’s transfer function in Equation (2.23) given by the lsim()

function in the TOFT toolbox [25]. The other three time-domain responses
are obtained by using ode45() to integrate the differential equations that

describe a four, six, and eight-generation mechanical tree network’s
dynamics.

function is obtained by using the lsim() function provided by the TOFT toolbox

[25]. The input signal is f(t) = 1/(1 + e−50(t−0.2)). On the other hand, the numerical

integration of differential equations cannot be performed on an infinite mechanical

tree network. Therefore, that numerical integration through ode45() is carried out

on three finite mechanical tree networks, with four, six and eight generations re-

spectively. The differential equations describing those three finite mechanical tree

networks are similar to those in Section 2.3.3. The convergence of those three finite

networks’ time-domain responses to the infinite network’s is shown in Figure 2.25,

which indirectly verifies that consistency.
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2.6 Concluding Remarks

2.6.1 Computation Time

Because all four algorithms are recursive, their running time depends on how

soon the base case is reached. Therefore, for finite networks, the running time of

Algorithms 1 and 2 relies on those networks’ size because the base case is their one-

generation transfer functions. In contrast, for infinite networks, the running time of

Algorithms 3 and 4 depends on the deepest generation where damage resides because

the base case is their undamaged transfer functions. As a result, if the frequency

response of a large but finite network with shallow damages is needed, approximating

that with its infinite variant is possibly a good idea to save the computation time.

For example, the frequency response of a 20-generation mechanical tree network

with a shallow damage case at the first generation, (l, e) = ([k1,1, b1,1], [0.1, 0.2]),

is required. The computation time of using Algorithm 1 to exactly evaluate that

frequency response takes 7.2 seconds. In contrast, using Algorithm 3 to approxi-

mate that only entails 0.005 seconds. Both computations are implemented in MATLAB

R2020b on Intel i7-10510u. The comparison between the exact frequency response

and the approximated one is shown in Figure 2.26, from which we can confirm that

the approximation is accurate within the frequency range from 0.2 rad/sec to 100

rad/sec.

2.6.2 Fractional or Irrational Nature of Infinite Networks’ Dynamics

For an infinite self-similar dynamic network, it is very likely that its transfer func-

tion is of non-integer order as illustrated by the three examples in this chapter. Some

of those transfer functions are fractional, like an infinite mechanical tree network.

Others are irrational, like an infinite electrical or mechanical ladder network. How-

ever, finite self-similar networks’ dynamics are always of integer order as long as they
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Figure 2.26. The blue curve is the exact frequency response of a
20-generation mechanical tree network with the damage case

(l, e) = ([k1,1, b1,1], [0.1, 0.2]) obtained by Algorithm 1. The red curve is the
approximated one using its infinite variant through Algorithm 3.

satisfy the assumptions (A-1) to (A-4) in Section 2.1. That can be understood as a

convergent behavior that while the size of a finite network grows, its transfer func-

tion’s order is also increasing. Eventually, when its size grows to infinity, its high-order

transfer function converges to a non-integer-order one. As a concrete example, con-

sider a mechanical tree network with the damage case (l, e) = ([k1,1, b1,1], [0.1, 0.2]).

Its transfer function as the number of generations grows is listed below. The finite

transfer functions are given by Algorithm 2, and the infinite one is given by Algo-
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rithm 4.

G1,(l,e) =
1

0.2s+ 0.2
,

G2,(l,e) =
6s2 + 23.2s+ 22

s3 + 5.4s2 + 8.8s+ 4
,

G3,(l,e) =
7s6 + 132.8s5 + 886s4 + 2550.4s3 + 3368s2 + 1916.8s+ 384

s7 + 21.8s6 + 172s5 + 615.2s4 + 1094.4s3 + 976s2 + 409.6s+ 64
,

...

G∞,(l,e) =
0.7071s+ 5.1s

1
2 + 0.7071

s
3
2 + 0.2828s+ s

1
2

.

That convergent behavior can be leveraged to find rational approximations of frac-

tional and some irrational functions as discussed in Chapter 6.

2.6.3 Effects of Varying a Network’s Status on Its Dynamics

One crucial discovery after writing down a network’s transfer function is that

the effect of varying its status on its dynamics can be isolated. That isolation is

described as a multiplicative disturbance here. Specifically, a self-similar network’s

transfer function is always a ratio between two functions of s. Therefore, if at two

different statuses a and b, a network’s respective transfer functions are

Ga(s) =
Na(s)

Da(s)
and Gb(s) =

Nb(s)

Db(s)
,

then the effect of changing that network’s status from a to b on its transfer function

can be expressed in terms of a multiplicative disturbance ∆(s) where

∆(s) =
Gb(s)

Ga(s)
=
Nb(s)Da(s)

Na(s)Db(s)
.

There exist at least two meaningful perspectives that can be explored in the

context of large networks. The first one is quantifying the approximation error of
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estimating a finite network’s transfer function using the corresponding infinite one’s.

As an example, for an undamaged mechanical tree network, its transfer functions

when it is infinitely large and when it has three generations are

G∞,∅(s) =
1

1.4142
√
s
,

G3,∅(s) =
3s6 + 62s5 + 428s4 + 1272s3 + 1712s2 + 992s+ 192

s7 + 30s6 + 300s5 + 1288s4 + 2576s3 + 2400s2 + 960s+ 128
.

Then, the error of approximating the three-generation network using the infinite

network is

∆(s) =
G3,∅(s)

G∞,∅(s)

=
4.243s

13
2 + 87.68s

11
2 + 605.3s

9
2 + 1799s

7
2 + 2421s

5
2 + 1403s

3
2 + 271.5s

1
2

s7 + 30s6 + 300s5 + 1288s4 + 2576s3 + 2400s2 + 960s+ 128
.

The second perspective is to study the effect brought by a network’s damages on its

dynamics. For an infinite mechanical tree network whose damage case is (l, e) =

([k2,1, b2,1], [0.1, 0.2]), its transfer function is

G∞,(l,e)(s) =
0.7071s2 + 2.2s

3
2 + 9.6167s+ 12.2s

1
2 + 1.4142

s
5
2 + 3.1113s2 + 13.6s

3
2 + 3.3941s+ 2s

1
2

.

As a result, the effect brought by that damage case is

∆(s) =
G∞,(l,e)(s)

G∞,∅(s)
=
s2 + 3.1113s

3
2 + 13.6s+ 17.2534s

1
2 + 2

s2 + 3.1113s
3
2 + 13.6s+ 3.3941s

1
2 + 2

.

Therefore, while a network’s status is varying within some extents, its frequency

response is very likely to also change within some range. That variation can form a

set of neighboring plants to which a unified controller can be obtained through robust

control methods so that stability and performance are guaranteed for all plants in

that set.
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In the following Chapters 3 to 6, we can see how the above knowledge concern-

ing frequency response and transfer functions of self-similar networks is applied to

meaningful purposes.
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CHAPTER 3

SIMULATING UNEVENLY DISTRIBUTED TRANSMISSION LINES WITH

APPLICATION TO RAILWAY SAFETY MONITORING

In this chapter, an application example of the modeling methods developed in

Chapter 2 to simulating dynamic networks is presented. Specifically, those methods

are leveraged to efficiently approximate voltage and current along a transmission

line whose electrical properties are unevenly distributed, that is, in the language of

modeling methods in Chapter 2, that transmission line is damaged. Transmission line

models are widely used in the studies concerning railway track circuits which detect

if a certain sector of track is occupied [22, 141, 169]. Thanks to those modeling

methods’ capabilities of computing damaged frequency response, they can simulate

how voltage and current would vary along a track circuit when degradations occur

and while a train is passing through that track. The contents in this chapter appear

in [113].

3.1 Transmission Line Theory

In this section, transmission line theory, credited to Oliver Heaviside, is briefly

reviewed, which determines the voltage and current along a wire with respect to both

spatial and temporal parameters. The transmission line model is shown in Figure 3.1

whose four electrical properties are listed in Table 3.1. The goal of the transmission

line theory is to evaluate spatial and temporal distribution of voltage and current,

i.e., v(x, t) and i(x, t), given the boundary conditions at x = 0 and the constant

values of the electrical properties listed in Table 3.1.
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Figure 3.1. Model for transmission line theory. The left hand side is the
input/transmitter end. The right hand side is the output/receiver end,

where x = 0.

TABLE 3.1

ELECTRICAL PROPERTIES USED IN THE TRANSMISSION LINE

MODEL. ALL CONSTANT VALUES OF THOSE PROPERTIES ARE

POSITIVE REAL NUMBERS.

R Series resistance Ω/m

L Series inductance H/m

G Shunt conductance S/m

C Shunt capacitance F/m
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For an evenly distributed transmission line, the following two equations within an

infinitesimal distance ∆x are given by Kirchhoff’s circuit laws.

v(x+ ∆x, t)−R∆xi(x+ ∆x, t)− L∆x
∂i(x+ ∆x, t)

∂t
− v(x, t) = 0,

and

i(x+ ∆x, t)−G∆xv(x, t)− C∆x
∂v(x, t)

∂t
− i(x, t) = 0.

Dividing by ∆x gives

v(x+ ∆x, t)− v(x, t)

∆x
−Ri(x+ ∆x, t)− L∂i(x+ ∆x, t)

∂t
= 0,

and

i(x+ ∆x, t)− i(x, t)
∆x

−Gv(x, t)− C∂v(x, t)

∂t
= 0.

Taking the limit ∆x → 0 results in the following system of two partial differential

equations which are frequently called the telegrapher’s equations in literature.

∂v(x, t)

∂x
= Ri(x, t) + L

∂i(x, t)

∂t
, (3.1)

∂i(x, t)

∂x
= Gv(x, t) + C

∂v(x, t)

∂t
. (3.2)

The solutions to telegrapher’s equations can be found by using separation of variables

and assuming the following forms, where

v(x, t) = Re{v(x)ej(ωt+φ)}, (3.3)

i(x, t) = Re{i(x)ej(ωt+φ)}. (3.4)

It is worth emphasizing that v(x) and i(x) are complex numbers instead of real num-

bers, so v(x)ej(ωt+φ) and i(x)ej(ωt+φ) should not be confused with phasor representa-
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tions. Before going to the next step, the following theorem needs to be established.

Theorem 1. For all α(x) ∈ C,

∂

∂x
Re{α(x)ej(ωt+φ)} = Re

{
d

dx
α(x)ej(ωt+φ)

}
,

∂

∂t
Re{α(x)ej(ωt+φ)} = Re{jωα(x)ej(ωt+φ)}.

Proof. Assume that α(x) = A(x) + jB(x), where A(x), B(x) ∈ R. Then, we have

the following results:

Re{α(x)ej(ωt+φ)} = A(x) cos(ωt+ φ)−B(x) sin(ωt+ φ),

∂

∂x
Re{α(x)ej(ωt+φ)} =

dA(x)

dx
cos(ωt+ φ)− dB(x)

dx
sin(ωt+ φ),

∂

∂t
Re{α(x)ej(ωt+φ)} = −ωA(x) sin(ωt+ φ)− ωB(x) cos(ωt+ φ).

On the other side of the equations, we have

d

dx
α(x)ej(ωt+φ) =

(
dA(x)

dx
+ j

dB(x)

dx

)
(cos(ωt+ φ) + j sin(ωt+ φ)),

jωα(x)ej(ωt+φ) = (−ωB(x) + jωA(x))(cos(ωt+ φ) + j sin(ωt+ φ)).

Therefore, both equations are satisfied.

Due to Theorem 1, the telegrapher’s equations in Equations (3.1) and (3.2) under

the assumed solutions’ form in Equations (3.3) and (3.4) become

Re

{
d

dx
v(x)ej(ωt+φ)

}
= Re{(R + jωL)i(x)ej(ωt+φ)},

Re

{
d

dx
i(x)ej(ωt+φ)

}
= Re{(G+ jωC)v(x)ej(ωt+φ)}.

The operator of taking real parts, Re{·}, can be discarded from the above equations,

which leads to a sufficient condition of the original telegrapher’s equations under the
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assumed solutions’ form in Equations (3.3) and (3.4). Therefore, any solutions to

the ordinary differential equations without the operators Re{·} would also satisfy the

original telegrapher equations. Hence, now, the goal is to solve the following two

ordinary differential equations:

d

dx
v(x) = (R + jωL)i(x),

d

dx
i(x) = (G+ jωC)v(x),

which can be decoupled as

d2

dx2
v(x) = γ2v(x) and

d2

dx2
i(x) = γ2i(x),

where γ =
√

(R + jωL)(G+ jωC). Using the boundary conditions at x = 0,

v(0, t) = Re{v(0)ej(ωt+φ)} and i(0, t) = Re{i(0)ej(ωt+φ)}

the final results are

v(x, t) = Re{v(x)ej(ωt+φ)}, (3.5)

i(x, t) = Re{i(x)ej(ωt+φ)}, (3.6)
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where

v(x) =
v(0)

1 + µ
(eγx + µe−γx),

i(x) =
i(0)

1− µ
(eγx − µe−γx),

µ =
Z0 − Zc
Z0 + Zc

,

Zc =

√
R + jωL

G+ jωC
.

Note that for an unevenly distributed transmission line, those electrical properties in

Table 3.1 may vary with the distance x and time t, which makes such simple solutions

difficult or impossible to obtain.

3.2 Circuit Network Model

This section uses a modeling algorithm from Chapter 2 to approximate voltage

and current along a transmission line. Most importantly, that approximation is not

restricted to the case where all electrical properties are constant. The method starts

with a circuit network model in Figure 3.2 which divides a long transmission line in

Figure 3.1 into n subsections with equal length where electrical properties are lumped

into each subsection. The goal is to compute the voltage and current at every node

connecting two adjacent subsections, i.e., vg and ig in Figure 3.2. Those would be

discrete approximations of the continuous results, v(x, t) and i(x, t) in Equations (3.5)

and (3.6), given by transmission line theory. The undamaged case is defined as ∀i,

ri,1 = ri,2 = r, li,1 = li,2 = l, rbi = rb, and ci = c. Again, a damage case is denoted

by a pair of two lists (l, e).

The algorithm computing frequency response of finite networks in Section 2.3.1 is

revised for the specific application in this chapter, as listed in Algorithm 5. The first

returned value Z is the impedance of the entire finite network, i.e., Z = Vin/Iin. The
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Figure 3.2. Circuit network model with n subsections to approximate a
transmission line in Figure 3.1.

Algorithm 5 Computing the impedance Z and voltage gain H at the angular fre-
quency w for a circuit network in Figure 3.2 with nG number of generations given
its damage case (l,e), the undamaged constants undCst, and the impedance at the
output end zOut.

1: function[Z,H]=freqResp(l,e,undCst,zOut,w,nG)

2: s = j*w;

3: [l1,e1,lS,eS] = partition(l,e);

4: g1Cst = getG1Cst(l1,e1,undCst);

5: if nG == 0 then
6: [Z,H] = G0(zOut,s);

7: else
8: nG = nG-1;

9: [ZS,HS]=freqResp(lS,eS,undCst,zOut,w,nG);

10: Z = Zr(g1Cst,ZS,s);

11: H = Hr(g1Cst,Z,HS,s);

12: save(Z,H);

13: end if
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Figure 3.3. The illustration for deriving recurrence formulas Zr(s) and
Hr(s) used in the Zr() and Hr() functions. The impedance

Zs(s) = V1(s)/I1(s) and the voltage gain Hs(s) = Vout(s)/V1(s) of the
subnetwork after the first generation are assumed to be known (Hs(s) is

not shown in this figure).

other returned value H is the voltage gain of the entire network, i.e., H = Vout/Vin.

Note that the function save(Z,H) externally stores intermediate impedances Zg =

Vg/Ig and voltage gains Hg = Vout/Vg at every node g. Then, because the states

at the output end in Figure 3.2 are assumed to be known, which are equivalent to

the boundary conditions at x = 0 for the transmission line model in Figure 3.1, the

intermediate voltages Vg and currents Ig at every node g, including Vin and Iin, can

be obtained after just one run of Algorithm 5.

The base case in Algorithm 5 is when the network in Figure 3.2 has no generations,

in which case the returned impedance Z = Vin/Iin = Vout/Iout = zOut, and the

returned voltage gain H = Vout/Vin = Vout/Vout = 1. The recurrence formulas used

in the Zr() and Hr() functions are derived as follows. The derivation uses the

illustration in Figure 3.3. The recurrence formula for impedance Zr(s) is obtained

directly per the rules of computing equivalent impedance for electrical circuits, where

Zr(s) = r1,1 + r1,2 + l1,1s+ l1,2s+
1

1

rb1

+ c1s+
1

Zs(s)

.

The recurrence formula for voltage gain Hr(s) is acquired by the rule that in series

circuits, the voltage across a part of that circuit is proportional to the impedance of
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that part. Therefore,

V1(s)

Vin(s)
=

1

1

rb1

+ c1s+
1

Zs(s)

r1,1 + r1,2 + l1,1s+ l1,2s+
1

1

rb1

+ c1s+
1

Zs(s)

= 1− r1,1 + r1,2 + l1,1s+ l1,2s

Zr(s)

As a result, the recurrence formula for voltage gain is

Hr(s) =
Vout(s)

Vin(s)
= Hs(s)

1−
r1,1 + r1,2 + l1,1s+ l1,2s

Zr(s)

 .

3.2.1 Results Verification

This section verifies the correctness of the results from Algorithm 5 by comparing

the approximated voltage and current along an evenly distributed transmission line

to the actual ones given by transmission line theory in Equations (3.5) and (3.6).

The boundary conditions at the receiver end are assumed to be

v(0, t) = Re{Vout} = Re{110ej4600πt}V, (3.7)

Z0 = Zout = 500Ω,

i(0, t) = Re{Iout} = Re{0.22ej4600πt}A,

which are taken from [162]. The length of the entire transmission line is set to be

1170m, which is from [169]. The constants for electrical poperties in Table 3.1 are
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from [63] at the frequency 2300Hz, where

R = 2.5mΩ/m,

L = 1.8µH/m,

G = 20µS/m,

C = 0.2nF/m.

By knowing the above quantities, the actual voltage v(x, t) and current i(x, t) given

by transmission line theory can be computed according to Equations (3.5) and (3.6).

For the circuit network model in Figure 3.2 with n subsections, the distance of

each one is ∆x = 1170/n meters. Therefore, the undamaged constants are

r = 2.5∆x/2 mΩ,

l = 1.8∆x/2 µH,

rb = 1/(20× 10−6∆x) Ω, (3.8)

c = 0.2∆x nF,

which are grouped into the undCst to call Algorithm 5. In addition, both l and

e are empty lists indicating the intact case, zOut = 500, w = 4600π, and nG = n.

Then, Algorithm 5 saves the impedance Zg = Vg/Ig and voltage gain Hg = Vout/Vg

at each node g between any two adjacent subsections, which are shown in Figures 3.4

and 3.5 for the undamaged network with fifty generations. After that, given the same

boundary condition v(0, t) in Equation (3.7), i.e., Vout here, the resultant Vg ∈ C and

Ig ∈ C at those nodes g can be derived. The real parts of those complex numbers

become the approximated voltage and current along the same transmission line given

by the circuit network model.

The comparison between the transmission line theory’s result and the circuit net-
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Figure 3.4. Impedance Zg = Vg/Ig (when ω = 4600π rad/sec) at each node
g connecting two adjacent subsections in the undamaged 50-generation

circuit network model obtained by Algorithm 5.
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Figure 3.5. Voltage gain Hg = Vout/Vg (when ω = 4600π rad/sec) at each
node g connecting two adjacent subsections in the undamaged
50-generation circuit network model obtained by Algorithm 5.
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blue curve is given by transmission line theory. The dots are from the

circuit network model given by Algorithm 5.

work’s result are shown in Figures 3.6 and 3.7, where maxt(|v(x, t)|) and maxt(|i(x, t)|)

are plotted versus the distance x. For the circuit network model in Figure 3.2, three

networks with five, ten, and fifty generations are tested. From Figure 3.6, we see that

the Vmax given by the circuit network model converges to the one obtained by using

transmission line theory as the number of generations increases. From Figure 3.7,

we observe that the Imax given by both methods almost overlap each other. In addi-

tion, to prove that both magnitudes and phases are correct, Figure 3.8 compares two

v(1170, t) at the transmitter end evaluated by both models. In conclusion, we can

confirm that the circuit network model as well as Algorithm 5 provide a reasonable

approximation of a transmission line model when the electrical properties are evenly

distributed.

3.3 Application to Railway Track Circuits

From previous discussions, it is understood that traditional transmission line the-

ory could hardly handle the situation where the electrical properties are unevenly
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distributed. This section showcases that the circuit network model along with Algo-

rithm 5 offer an alternative to overcome that difficulty. Specifically, that method is

applied to railway track circuits to illustrate that capability through real examples.

It is worth emphasizing that railway track circuits are more likely to have unevenly

distributed electrical properties as opposed to power wires or antennas. For instance,

humidity in both soil and ballast bed can impact those properties as indicated by

[63]. In addition, some sudden external influences, like lightning, can cause damage

to a track circuit system which may lead to a catastrophic safety monitoring failures

where two trains are present within the same track segment. In this section, two

types of situations are considered. First, it illustrates how voltage and current would

change along a degraded sector of railway track circuit. Second, it demonstrates how

voltage would vary when a train is passing through a sector of that circuit.

All constants used in this section are the same as those in Section 3.2.1. Besides,

the number of subsections is fixed at 117 here, so each subsection takes 10 meters.

In addition, at the transmitter end, Vmax is fixed at the one in Figure 3.6, i.e.,

Vmax = 115V at x = 1170m. That means the boundary conditions are given at the

transmitter end instead of the receiver end in this section.

The first example of unevenly distribution exhibited here is ballast degradation,

which means unusual current leakage between the rails through the ballast [35]. In

this damage case, some shunt resistance rbg become lower and shunt capacitance

cg become higher. Suppose a ballast degradation happens between x = 100m and

x = 1000m, that is between subsection 18 and subsection 107. Note that the order of

subsections is opposite to the direction of x. Hence, the list of damaged components

is

l =

[
rb18 · · · rb107 c18 · · · c107

]
.

The assumed list of damage amounts e is plotted in Figure 3.9. When the above

damage case (l, e) is used in Algorithm 5, the resultant voltage and current distri-
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Figure 3.9. The list of damage amounts e is plotted versus generations
where the blue dots are for the shunt resistance from rb18 to rb107, and the

red dots are for the shunt capacitance from c18 to c107.

bution along the track for this type of ballast degradation are shown in Figures 3.10

and 3.11. Note that the other two damage cases mentioned in [35], insulation im-

perfections and rail conductance impairments, can also be simulated by the circuit

network model.

The second example of application to railway track circuits is simulating the

current at the receiver end while a train is passing through a sector of an intact

track. Although the track itself is undamaged, a train’s progression through it can

be regarded as a sequence of damage cases.

Assume that a 190-meter train is moving from the receiver end to the transmitter

end at a constant speed 100m/s, i.e., it passes one subsection every 0.1 seconds.

Besides, that train has one wheel base every 10 meters, so there are 20 wheel bases

in total. Each wheel base acts as an additional shunt resistor across two rails with

resistance rw = 102Ω. In the layout of the circuit network model used in this sec-

tion where each subsection takes ∆x = 10 meters, according to Equation (3.8), the
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Figure 3.10. The distribution of maxt(|v(x, t)|) at each node between two
adjacent subsections obtained by the circuit network model when the

ballast degradation occurs. The undamaged curve is obtained by
transmission line theory which is the same as that in Figure 3.6.
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transmission line theory which is the same as that in Figure 3.7.
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Figure 3.12. The variation in the current at the receiver end, maxt |i(0, t)|,
as the train passing through an intact track obtained by the circuit network

model.

undamaged value of the shunt resistance is

rb = 1/(20× 10−6 × 10) = 5000Ω.

When the shunt resistance rb is connected to the resistance rw of one wheel base in

parallel, the equivalent resistance is 100Ω. In other words, when one wheel base is

within one subsection, we can consider that as if that corresponding shunt resistance is

damaged by a factor of 0.02. Therefore, this example of a train moving along an intact

track can be regarded as a time series of damage cases, where the correspondence

between the time instance and the damage case is listed in Table 3.2. At each time

instance in Table 3.2, the corresponding damage case in the second column is used to

call Algorithm 5. Then, the current at the receiver end, maxt |i(0, t)| as the train is

passing through this sector of track can be evaluated, which is plotted in Figure 3.12.

Note that Figure 3.12 shares similar characteristics with real measurements presented

in [35].

It is worth pointing out that every damage case takes less than one second to com-
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TABLE 3.2

THE EQUIVALENT DAMAGE CASE AT EACH TIME INSTANCE FOR

THE TRAIN PASSING EXAMPLE.

Time (sec) Damage case (l, e)

0.1 ([rb117], [0.02])

0.2 ([rb117, rb116], [0.02, 0.02])

...
...

2 ([rb117, · · · , rb98], [0.02, · · · , 0.02])

2.1 ([rb116, · · · , rb97], [0.02, · · · , 0.02])

...
...

11.7 ([rb20, · · · , rb1], [0.02, · · · , 0.02])

11.8 ([rb19, · · · , rb1], [0.02, · · · , 0.02])

...
...

13.6 ([rb1], [0.02])
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pute with the setup of the 117-generation network in this section. The computation

is run on MATLAB R2020b with a single CPU of Intel Core i7-10510U Processor.

3.4 Concluding Remarks

This chapter presented the application of the modeling methods in Chapter 2 to

simulating a realistic system, a railway track circuit. Two scenarios are considered,

one of which concerns a damage situation when a ballast degradation occurs, while

the other quantifies the current’s variation as a train is passing through. From a

general point of view, they are examples of approximating voltage and current along

a transmission line when its electrical properties are unevenly distributed. In the next

two chapters, we are going to see other two applications of the modeling methods in

Chapter 2, that is monitoring and controlling networked dynamical systems.
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CHAPTER 4

HEALTH MONITORING OF NETWORKED DYNAMICAL SYSTEMS

Dynamic networks are often large-scale and consist of numerous components.

Thus, they are far easier to encounter damages compared to simple systems. As a re-

sult, it is essential to track their health and locate deleterious components. This chap-

ter illustrates health monitoring methods for networked dynamical systems through

their frequency response given by the modeling algorithms from Chapter 2. The

method leverages the mismatch between the measured frequency response and the

computed one as the feature and identifies the existence, location and extent of dam-

age.

This chapter starts with a basic damage detection procedure where the list of

the most likely damaged components along with their identified damage amounts are

returned. Built upon that, a modified process leverages agglomerative hierarchical

clustering to provide a set of possible damage cases instead of only giving the most

likely one. The idea is that the actual damage case has more probability to be

covered by that narrowed shortlist so that it can be discovered more efficiently as

opposed to a thorough inspection of the entire network. Finally, this chapter ends

with exhibiting how the damage detection method could cooperate with hardware

inspections in order to save the time of examining large networks’ health. Although

the networks used in this chapter are all infinitely large, the methods proposed here

are applicable to all networks fulfilling the assumptions (A-1) to (A-6) in Section 2.1.

The contents of this chapter appear in [110, 111]
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4.1 Basic Damage Detection Procedure

This section gives a basic damage detection procedure which returns the damage

case (l, e) whose frequency response G∞,(l,e)(jωs) best matches the measurements

G(jωs). That straightforward idea leads to the following minimization problem.

min
(l,e)

J(l, e) =
∑
ωs

‖G∞,(l,e)(jωs)−G(jωs)‖
‖G(jωs)‖

, (4.1)

subject to

∀ε ∈ e, ε > 0,

where G∞,(l,e)(jωs) is computed by a modeling algorithm from Chapter 2 at the

sampling frequencies ωs, G(jωs) is a damaged network’s frequency response mea-

surement, and the operator ‖ · ‖ indicates the Euclidean norm of complex numbers.

However, because the list of damaged components l is a discrete variable and the

list of damage amounts e is a continuous variable, the optimization problem, Equa-

tion (4.1), is a mixed-integer nonlinear programming problem. To avoid that, there

exist two bypasses. First, the list l could include all components, which does not

yield correct result in most of the intricate cases. Therefore, the methods in this

chapter go through the other way where a set of all candidate l, L, is selected by

users in advance. Then, the basic damage detection procedure forms the following

three-step paradigm.

• Step 1: A set of candidate lists of damaged components l is chosen, denoted by
L.

• Step 2: For all l ∈ L, the following nonlinear optimization problem is solved.

min
e
J(e) =

∑
ωs

‖G∞,(l,e)(jωs)−G(jωs)‖
‖G(jωs)‖

, (4.2)

subject to
∀ε ∈ e, ε > 0.
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Figure 4.1. Mechanical tree network from Chapter 2.

For every l ∈ L, its minimizer e∗ and the corresponding minimal J∗ are stored,
where J∗ is called the mismatch of the candidate damage case (l, e∗).

• Step 3: Among all l ∈ L, the one with the globally smallest mismatch is
returned, and its corresponding damage case (l, e∗) is regarded as the most
likely one among all candidates.

The above three-step procedure is tested on an infinitely large mechanical tree

network as shown in Figure 4.1, which is same as that in Chapter 2. From the

modeling results in Chapter 2, we know that for all damage cases, its transfer function

can always be represented by

G∞,(l,e)(s) = G∞,∅(s)∆∞,(l,e)(s),

where the undamaged transfer function is always

G∞,∅(s) =
1√
kbs

.

Therefore, the ∆∞,(l,e)(s) part is the focus in this section for the damage detection

purpose.

As a concrete example of the aforementioned three-step procedure, consider a
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Figure 4.2. A noisy frequency response measurement ∆(jωs) for a damaged
mechanical tree whose damage case (l, e) = ([b1,1, k3,1], [0.45, 0.65]). (50%

noise added).

noisy frequency response measurement ∆(jωs) as shown in Figure 4.2 whose actual

damage case is

(l, e) = ([b1,1, k3,1], [0.45, 0.65]),

with an additional 50% noise. The level of additional noise is quantified as follows.

A noise with the level of n% means that if for the actual damage case (l, e), the

modeling algorithms from Chapter 2 return its frequency response at the sampling

frequency ωs is ∆∞,(l,e)(jωs), what the damage detection procedure can see is its

corresponding noisy value of ∆(jωs) that

‖∆(jωs)‖ = r1‖∆∞,(l,e)(jωs)‖,

∠∆(jωs) = r2∠∆∞,(l,e)(jωs),

where r1 and r2 are uniformly distributed random numbers in the range (1−n%, 1 +

n%).

At the first step, the set containing all candidate l is defined as any combination
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TABLE 4.1

STORED RESULTS FOR EACH ELEMENT l ∈ L IN EQUATION (4.3)

AFTER SOLVING THE MINIMIZATION PROBLEM IN

EQUATION (4.2).

Candidate damage cases

Candidate l Locally best e∗ Locally smallest mismatch J∗

[k1,1, b1,1] [0.814, 0.517] 26.2

[k1,1, k2,1] [0.481, 1.000] 37.0

...
...

...

[b1,1, k3,1] [0.437, 0.665] 23.8

...
...

...

[k4,8, b4,8] [0.001, 0.686] 73.0

of two components in the first four generations. That is,

L = {[k1,1, b1,1], [k1,1, k2,1], · · · , [k4,8, b4,8]}. (4.3)

At the second step, the optimization problem, Equation (4.2), is solved iteratively

for each candidate l ∈ L. For the first element l = [k1,1, b1,1], the optimization

solver returns that e∗ = [0.814, 0.517] gives the locally smallest mismatch J∗, where

J∗ = 26.2. That result as well as the results for all the other l ∈ L are given in

Table 4.1. Finally, at the third step, it is determined that J∗ = 23.8 is the globally

smallest mismatch. Therefore, its corresponding damage case

(l, e∗) = ([b1,1, k3,1], [0.437, 0.665])
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Figure 4.3. The noisy measurement from Figure 4.2 is plotted along with
its identified ∆∞,(l,e∗)(jωs).

is returned as the final result and is regarded as the most likely damage case. The

identified frequency response ∆∞,(l,e∗)(jωs) is plotted in Figure 4.3 along with the

same noisy measurement from Figure 4.2. Note that in this example, the damage

detection method correctly identifies the damage because the identified damaged

components in l are correct, and the identified damage amounts in e∗ are close to

their actual values.

4.1.1 Performance Test

The performance of the proposed three-step damage detection method is tested

for all damage cases where at most two components are damaged within the first

three generations of an infinitely large mechanical tree network in Figure 4.1. The

optimization problem, Equation (4.2), is solved by the fmincon() function in MATLAB.

For each actual damaged component, ten different damage amounts from 0.05 to 0.95

with an increment of 0.1 are tested. From Figure 4.1, we can conclude that there

are 2 + 22 + 23 = 14 components in the first three generations for a mechanical tree
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network. Therefore, the number of actual damage cases is

(
14

1

)
× 10 +

(
14

2

)
× 102 = 9, 240.

To imitate real measurements, 21 different levels of noise from 0% to 100% with a

increment of 5% are also added to the frequency response measurements ∆(jωs).

Therefore, the proposed damage detection procedure goes through 21 × 9, 240 =

194, 040 tests in total.

Since the damages are limited to the first three generations, at the first step of

each test, the set L is selected to cover all combinations of at most two components

in the first four generations. That is,

L = {k1,1, b1,1, · · · , b4,8, [k1,1, b1,1], [k1,1, k2,1], · · · , [k4,8, b4,8]}.

The results of the above tests are concluded as follows. When no noise present-

ing in the frequency response measurement ∆(jωs), the proposed damage detection

method does very well. Out of 9240 damage cases, the method only misidentifies the

following two damage cases:

1. It misidentifies ([k3,2, k3,3], [0.95, 0.85]) as ([b3,2, k3,3], [0.9622, 0.8395]);

2. It misidentifies ([b3,2, b3,3], [0.85, 0.95]) as ([b3,2, k3,3], [0.8395, 0.9622]).

The above two misidentified cases reveal the nature of how difficult it is to identify

damages within large networks given only their overall response. Ideally, when the

measurements are perfect, our algorithm should identify all damages exactly, since it

uses the knowledge from computing a damage case’s frequency response. However,

that is not the case as indicated by the existence of the aforementioned two misidenti-

fied cases even when all actual damage cases are limited to the first three generations.

The main reason is that the mapping from a damage case to its frequency response
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Figure 4.4. The frequency response G∞,(l,e)(jω) of two different damage
cases almost overlap each other, which reveals the fact that the mapping

from a damage case to its frequency response is not completely one-to-one.

is not completely one-to-one. Therefore, not all inverse problems can be solved ex-

actly. For instance, Figure 4.4 shows the Bode plot for those two different damage

cases in the first misidentified case above, from which we can confirm that their fre-

quency responses G∞,(l,e)(jω) are almost the same. Except for the aforementioned

two misidentified cases, all the other damage cases are correctly identified, with the

maximum absolute error for the list of damage amounts e being 1.26× 10−4, which

happens at the actual damage case ([b2,2, k3,4], [0.05, 0.45]).

When noise presents in the frequency response measurements, the number of

misidentified cases increases with the level of additional noise in the frequency re-

sponse measurements. However, the performance of the proposed damage detection

method is still reasonably good. Figure 4.5 plots the percentage of misidentified cases

out of 9240 total damage cases versus the level of additional noise in the frequency

response measurements. From Figure 4.5, we can observe that, for example, even

when 50% noise is added to the frequency response measurements, which should

be as noisy as that shown in Figure 4.2, only 35% of total 9240 damage cases are
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Figure 4.5. Percentage of misidentified cases during the test versus the
level of noise added to the measurement.

misidentified.

Based on the test results, there also exist the following two observations when

measurement noise presents:

1. The possibility of misidentification increases as the damage goes deeper.

2. At the same generation, damages happening on the inner components are more
likely to be misidentified compared to those occurring on the outer components.

Both of the above observations are intuitive. The first observation can be seen from

Figure 4.6, which compares the percentage of misidentified cases for those damage

cases happening purely on the second and the third generation. From Figure 4.6,

we notice that throughout all levels of additional noise, the damages purely hap-

pening on the second generation always have less possibility of misidentification as

opposed to those on the third generation. The reason for that trend is the fact that

the discrepancy between two frequency responses becomes less distinguishable when

damages reside deeper in a network.

The second observation can be spotted from the damage cases occurring on the

third generation, where k3,1, b3,1, k3,4, b3,4 are called outer components, and k3,2, b3,2,
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Figure 4.6. Percentage of misidentified cases versus level of additional noise
for those damage cases which are purely on the second and the third

generation.

k3,3, b3,3 are called inner components. During the test, among all damage cases within

the above four outer components, 19% are misidentified. However, among all damage

cases within the above four inner components, 42% are misidentified, which is more

than twice larger than the previous one.

4.2 Determining A Set of Possible Damage Cases

For the basic damage detection procedure in Section 4.1, only the candidate with

the globally smallest mismatch is returned. However, that returned result may not

coincide with the actual damaged components as proved by the performance tests in

Section 4.1.1. In addition, the information regarding all the other candidates is wasted

since the user would have no idea about them after the damage detection is done. To

overcome the above two disadvantages of the basic damage detection procedure, in

this section and the next one, Section 4.3, two revised procedures are provided to make

that damage detection method more useful in real health monitoring applications. In

this section, a modified procedure leverages the agglomerative hierarchical clustering
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method to group all candidates into two sets. One set contains all components that

are possibly damaged, and the other set includes all the other components that are

unlikely to be damaged. That two-set result offers more information to the user

as opposed to only providing the component that is most likely to be damaged.

Moreover, that result acts to narrow down the shortlist of candidates for the locations

where damages reside, so it has a potential to save the time required for hardware

inspections. Before presenting the details of that modification on the basic damage

detection method, agglomerative hierarchical clustering is briefly reviewed in the

following Section 4.2.1.

4.2.1 Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering is a method to classify unlabeled data based

on their mutual similarities. The basic idea is to construct a tree-shaped dendrogram

according to the distances, or dissimilarities, among the datapoints which displays a

multilevel hierarchical relation. Then, the user could decide the level of clustering

that is most appropriate [101].

As a concrete example, suppose the following five datapoints on the two-dimen-

sional space need to be classified.

• Object 1 at O1 = (1, 2);

• Object 2 at O2 = (2, 2);

• Object 3 at O3 = (4, 1);

• Object 4 at O4 = (4, 3);

• Object 5 at O5 = (3, 6).

The above five points are plotted in Figure 4.7. Before constructing the dendrogram,

two quantities need to be defined. The first one is the metric of distances, where the

Euclidean distance is used in this example. The second one is the distance between
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Figure 4.7. Five datapoints that need to be classified.

two clusters. Here, the shortest distance is used, i.e., for two clusters A and B, the

distance between them d(A,B) is defined as

d(A,B) = min
a∈A,b∈B

d(a, b),

where d(a, b) is the distance metric defined previously (i.e., Euclidean distance).

The construction of dendrogram starts by considering each object as one cluster

and is built up iteratively. In each iteration, the two closest clusters, or two most

similar clusters, are combined into one. That iteration terminates when there is only

one cluster left. Specifically, for this example, at the first iteration, there are five

initial clusters where Ci = Oi for all i = 1, 2, . . . , 5. Therefore, there are
(

5
2

)
= 10

pairwise distances as listed in Table 4.2, from which we can see that the closest

clusters are C1 and C2. Therefore, they are combined into a new cluster C6, i.e.,

C6 = C1∪C2, and the rows in Table 4.2 regarding C1 or C2 are revised accordingly in

the second iteration, which results in Table 4.3. Note that the dissimilarity between

two clusters is defined by the aforementioned shortest distance. For example, the

distance between C6 and C3 equals the Euclidean distance between O2 and O3.
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TABLE 4.2

PAIRWISE DISTANCES AT THE FIRST ITERATION OF BUILDING

THE DENDROGRAM.

Clusters Distance

C1 C2 1

C1 C3

√
10

C1 C4

√
10

C1 C5

√
20

...
...

...

C4 C5

√
10

TABLE 4.3

PAIRWISE DISTANCES AT THE SECOND ITERATION OF BUILDING

THE DENDROGRAM.

Clusters Distance

C6 C3

√
5

C6 C4

√
5

C6 C5

√
17

C3 C4 2

C3 C5

√
26

C4 C5

√
10
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TABLE 4.4

PAIRWISE DISTANCES AT THE THIRD ITERATION OF BUILDING

THE DENDROGRAM.

Clusters Distance

C6 C7

√
5

C6 C5

√
17

C7 C5

√
10

From Table 4.3, we see that the distance between C3 and C4 is the smallest, so

they are combined to form a new cluster again, i.e., C7 = C3 ∪ C4. Then, the rows

regarding C3 or C4 in Table 4.3 are revised appropriately, which gives Table 4.4.

Again Table 4.4 shows that C6 and C7 should be merged to a new cluster C8, and the

one last remaining pairwise distance is between C8 and C5, which is equal to
√

10.

Finally, the iteration terminates with merging C8 with C5 to form a new and only

cluster C9. The dendrogram built from the above iterations is plotted in Figure 4.8

where the x-axis indicates the objects and the y-axis is the distance when two clusters

are merged together. The resultant clusters are also shown in Figure 4.9.

Given a dendrogram in Figure 4.8, the user can decide where to cut it. For

instance, if a user needs two clusters, the dendrogram in Figure 4.8 provides C8 =

{O1, O2, O3, O4} and O5. Instead, if that user wants three clusters, the dendrogram

in Figure 4.8 provides C6 = {O1, O2}, C7 = {O3, O4} and O5. There also exist

algorithms which aim at finding natural divisions in data given their dendrogram

instead of the aforementioned user-specified divisions.
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Figure 4.8. Dendrogram for the agglomerative hierarchical clustering
example.
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Figure 4.9. Resultant clusters of the agglomerative hierarchical clustering
example.
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Figure 4.10. Infinite mechanical ladder network.

4.2.2 A Revised Damage Detection Procedure

This section provides a revised damage detection procedure from the basic one

discussed in Section 4.1. Specifically, the first two steps in the original three-step

procedure in Section 4.1 are not modified, while the last step is revised as follows.

• Step 3: Use agglomerative hierarchical clustering to partition all l ∈ L into
two sets based on their mismatch after solving the optimization problem in
Equation (4.2). All l that belong to the same set as the one with the globally
smallest mismatch are considered as possible damaged components. All l in
the other set are regarded as components that are unlikely to be damaged.

By doing that, the information conveyed by the mismatch of all candidate l is not

wasted. Instead, it guides the revised damage detection method to narrow down the

shortlist of candidates.

Here, an infinitely large mechanical ladder network plotted in Figure 4.10 is em-

ployed as a concrete example. The undamaged constants are the same as the me-

chanical tree network in Chapter 2 where k = 2N/m and b = 1Ns/m. The frequency

response measurement G(jωs) used in this example is shown in Figure 4.11, where

the actual damage case is (l, e) = ([k1, b1], [0.15, 0.25]) whose frequency response is

then perturbed by additional noise at the level of 30%.

The first step is the same as the original damage detection method where a set of

potential damaged components, denoted by L, is chosen. For the concrete example
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Figure 4.11. Frequency response measurements for the damage case
(l, e) = ([k1, b1], [0.15, 0.25]) with additional 30% noises.

here, L is selected to cover any combination of two components in the first five

generations. There are ten components in total in the first five generations. Hence,

the cardinality |L| =
(

10
2

)
= 45 with

L = {[k1, b1], [k1, k2], . . . , [k1, b5], . . . , [k5, b5]}. (4.4)

The second step is also the same as the original method, where the optimization

problem in Equation (4.2) is solved for all l ∈ L, and every resultant minimizer e∗ and

minimal J∗ are stored. For the concrete example, the results are listed in Table 4.5.

In the modified third step, those mismatch J∗ listed in Table 4.5 are regarded

as the feature to classify all those candidate damage cases into two groups through

agglomerative hierarchical clustering. The resultant dendrogram for the example is

plotted in Figure 4.12. By cutting the dendrogram in Figure 4.12 into two clusters,

we can observe that the candidates with the first nine smallest mismatches belong to

the same cluster. Therefore, they are considered as possible damage cases, while all
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TABLE 4.5

STORED RESULTS FOR EACH ELEMENT l ∈ L IN EQUATION (4.4)

AFTER SOLVING THE MINIMIZATION PROBLEM IN EQUATION

(4.2).

Candidate damage cases

Damaged components l Identified damage amounts e∗ Mismatch J∗

[k1, b1] [0.1901, 0.2698] 32.0424

[k1, k2] [0.1649, 1.0000] 58.8518

[k1, b2] [0.1924, 0.0185] 58.8599

[k1, k3] [0.1649, 1.0000] 58.8518

...
...

...

other 36 candidates are regarded as unlikely. The corresponding decision boundary

between those two clusters is shown in Figure 4.13. From Figure 4.13, we can confirm

that the leftmost blue dot is the only result returned by the original damage detection

method. However, for this revised method, the information of all other candidates’

mismatches is utilized to guide the inspections to determine which components require

more efforts in the hardware examination.

The final result returned by the revised damage detection method for the example

is listed in Table 4.6. As indicated by Table 4.6, the most likely damage case with

the globally smallest mismatch is ([k1, b1], [0.1901, 0.2698]) which are the same as

the actual damaged components with the averaged absolute error in the damaged

amounts

1

2
(|0.1901− 0.15|+ |0.2698− 0.25|) = 0.0299.

The performance test result of the original damage detection method in Section 4.1.1
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Figure 4.12. Dendrogram for all candidate damage cases listed in Table 4.5
by using their corresponding mismatch J∗ as the feature.
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Figure 4.13. Decision boundary when the dendrogram in Figure 4.12 is cut
into two clusters. The blue dots represent mismatches of the candidates

that are considered as possible damage cases, while the red dots are for the
candidates that are unlikely to be damaged. The leftmost blue dot is for
the candidate with the globally smallest mismatch (Y -axis is meaningless

in this plot).
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TABLE 4.6

THE FINAL RESULT RETURNED BY THE REVISED DAMAGE

DETECTION METHOD GIVEN THE MEASURED FREQUENCY

RESPONSE IN FIGURE 4.11 AND THE SELECTED SET OF

CANDIDATE DAMAGED COMPONENTS IN EQUATION (4.4).

Damage cases Mismatch

Possible

([k1, b1], [0.1901, 0.2698]) 32.0424

([b1, b2], [0.2658, 0.0001]) 38.2606

([b1, k2], [0.2675, 0.1924]) 39.1040

...
...

([b1, b5], [0.2699, 0.0001]) 41.9176

Unlikely

([k1, k2], [0.1649, 1.0000]) 58.8518

...
...

([k4, b5], [0.2688, 0.0011]) 63.1487
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has proved that the damaged components with the globally smallest mismatch are

not always correct. However, they have a much larger probability to be included

in the set of possible damage cases given by the revised method here. That way of

determining whether a candidate damage case is possible or unlikely narrows down

the shortlist of damaged components and thus has potential to save the maintenance

time as opposed to inspecting every component inside a large network.

4.2.3 Performance Test

Similar to the original damage detection method in Section 4.1, the revised one’s

performance is also tested here with respect to that infinitely large mechanical ladder

network in Figure 4.10. In total, 94,770 different actual damage cases are trialed.

Each actual damage case is constituted by three aspects. The first one is the damaged

components which are assumed to be any combination of two components in the first

five generations. As a result, there are a total of
(

10
2

)
= 45 different combinations

of damaged components. The second aspect is the damage amounts where each

component’s damage amount ranges from 0.05 to 0.85 with an increment of 0.1.

Therefore, there are a total of 92 = 81 different combinations of damage amounts for

each combination of damaged components. The third aspect is the additional noise

where 26 different noise levels are tested extending from 0% to 70%. Hence, those

three aspects result in

45× 81× 26 = 94, 770

tests in total.

The result for each test case can be ranked by three levels as follows from the

best to the worst.

• Rank One: The damaged components with the globally smallest mismatch are
the same as the actual ones.

• Rank Two: The actual damaged components are different from the ones with
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the globally smallest mismatch, while they still belong to the set of possible
damage cases.

• Rank Three: The actual damaged components are in the set of unlikely damage
cases.

For instance, the result of the example in Section 4.2.2 belongs to the best case. For

the figures presented in this section, blue, red and yellow are used to indicate rank

one, two and three results, respectively.

There exist the following three observations from the performance test results,

which also follow intuitions.

1. Test cases with actual damaged components at shallow generations have better
identification results.

2. Test cases with severe damages (small e) have better identification results.

3. Test cases with less measurement noise have better identification results.

The above three observations can be spotted from Figures 4.14 to 4.16. Overall, the

revised damage detection method works reasonably well because in the worst case,

rank three results only take less than 10% of the total test cases.

4.3 Cooperation with Hardware Inspections

Both the original damage detection method in Section 4.1 and the revised one in

Section 4.2.2 are separated from hardware inspections in the sense that they could

provide identification results once a frequency response measurement is provided.

Built upon those two methods, this section showcases a damage detection procedure

which discovers damaged components iteratively and interacts with hardware inspec-

tions. The basic idea is that at every iteration, the damage detection procedure

suggests the most suspicious components. Then, an inspection is conduct at those

components, whose result is then fed to the damage detection procedure at the next
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Figure 4.14. Percentage of test cases versus the generations where the
actual damaged components locate. For example, k2 and b4 belong to the
second and the fourth generation respectively. Hence, the list of damaged
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Figure 4.15. Percentage of test cases versus actual damage amounts where
[e1, e2] = e. Blue: Rank one results. Red: Rank two results. Yellow: Rank

three results.
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Figure 4.16. Percentage of test cases versus additional measurement noise.
Blue: Rank one results. Red: Rank two results. Yellow: Rank three results.

iteration. That iterative process takes advantage of the fact that the set of candi-

date damaged components L is adaptive and subject to user’s selection. The main

motivation of that iterative method is to deal with more intricate damage cases and

efficiently guide hardware inspections so that examinations can be performed more

purposefully instead of testing all the components inside a large network.

Here, another specific example is given, where four damaged components are

assumed in the first five generations of the infinite mechanical ladder network in

Figure 4.10. Precisely, the actual damage case is

(l, e) = ([b1, b2, k3, k4], [0.05, 0.1, 0.15, 0.2]). (4.5)

The corresponding noisy frequency response measurements are illustrated in Fig-

ure 4.17.

At the first iteration, the set L1 is picked to contain all single components in the

first five generations, i.e.

L1 = {[k1], [b1], [k2], . . . , [b5]}.
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Figure 4.17. Frequency response measurements for the actual damage case
in Equation (4.5) with additional 30% noise.

The original damage detection method in Section 4.1, provided the above set L1,

returns that the damage case with the globally smallest mismatch is ([b1], [0.0567]).

That damaged component is the most suspicious one at this iteration, so the user

would inspect it on the hardware and obtain that its actual damage amount is 0.05.

Then, after this iteration, the knowledge concerning the first discovered damaged

component ([b1], [0.05]) is going to be supplied to the next iteration.

At the second iteration, the known component b1 is excluded from the set of

candidate damaged components. As a result,

L2 = {[k1], [k2], [b2], . . . , [b5]}.

Each element in L2 would be grouped with the known component b1 to form a

candidate when solving the optimization problem in Equation (4.2). After going

through all members in L2, the health monitoring process advises that the most
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suspicious damage case at this iteration is

([b1, k2], [0.05, 0.1397]).

However, the new component k2 is actually undamaged. Therefore, after the second

inspection, the user would obtain the knowledge that the actual damage case is

([b1, k2], [0.05, 1]) where the damage amount 1 indicates that k2 is in fact undamaged.

At the third iteration, similarly, the set L3 is same as L2 except for the additional

known component k2, i.e.,

L3 = {[k1], [b2], [k3] . . . , [b5]}.

This time, each element in L3 is combined with both known components b1 and k2

to form a candidate for identification. The result for this iteration and all the rest is

concluded in Table 4.7.

After six iterations, we can observe that all actually damaged components are

successfully discovered. That fact can be perceived from two perspectives. First, if

we proceed to the seventh iteration and input the corresponding

L7 = {[k1], [b3], [b4], [b5]}

to the damage detection procedure, the returned damage amounts for them are in

fact all 1.0000. That is to say, the optimization solver can no longer suggest any

suspicious components at this iteration. The second observation can be made from

how the globally smallest mismatch of each iteration varies, which is plotted in Fig-

ure 4.18. In Figure 4.18, we see that the globally smallest mismatch reaches a plateau

after four iterations, which is another indication that either all damages have been

discovered or the remaining undiscovered damages have little contribution to the
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TABLE 4.7

THE RESULTS AFTER EACH ITERATION FOR THE EXAMPLE

WHOSE ACTUAL DAMAGE CASE IS IN EQUATION (4.5) GIVEN ITS

FREQUENCY RESPONSE MEASUREMENT IN FIGURE 4.17.

Iter. Suspicious Inspection

Component Result

1 b1 ([b1], [0.05])

2 k2 ([b1, k2], [0.05, 1])

3 k3 ([b1, k2, k3], [0.05, 1, 0.15])

4 b2 ([b1, k2, b2, k3], [0.05, 1, 0.1, 0.15])

5 k5 ([b1, k2, b2, k3, k5], [0.05, 1, 0.1, 0.15, 1])

6 k4 ([b1, k2, b2, k3, k4, k5], [0.05, 1, 0.1, 0.15, 0.2, 1])
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Figure 4.18. The globally smallest mismatch of each iteration for the
example whose actual damage case is Equation (4.5).

overall frequency response and thus are hard to locate by only providing the fre-

quency response measurements in Figure 4.17. In the latter case, more frequency

response measurements within some smaller portion of the entire network should be

provided. The aforementioned two evidences can be set as the stopping criterion for

the iterative procedure discussed in this section.

Finally, the identified frequency response after each iteration is graphed in Fig-

ure 4.19. In conclusion, with the help of interaction between the proposed damage

detection method and hardware inspections, only six investigations are necessary to

discover all four damaged components instead of examining all ten elements, which

has potentials to save the maintenance time.

4.4 Concluding Remarks

This chapter presents using the knowledge of frequency response of self-similar

networks provided by Chapter 2 to monitor their health. The proposed damage

detection method tries to identify existence, location and extent of damage. The input

to that damage detection method is a measurement of a dynamic network’s frequency
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Figure 4.19. The resultant identified frequency response after each iteration
for the specific example discussed in this section. The measurements are

the same as those in Figure 4.17.

response G(jωs). That method includes three steps. First, users pick a set L of

candidate locations where damages could happen. Second, for each candidate location

l ∈ L, an optimization solver finds the damage amount which best matches that

frequency response measurement of the damaged network. Third, the one candidate

which has the globally smallest mismatch among all l ∈ L is returned. However, by

doing that, the identification results of all the other l ∈ L are wasted, and the returned

result is not always consistent with the components which are actually damaged.

Therefore, to overcome those two disadvantages, the third step is further modified

to classifying all candidate l into two groups based on their mismatches obtained in

the second step by using agglomerative hierarchical clustering. The cluster including

the candidate with the globally smallest mismatch is considered as a collection of

components where damages probably occur, while the other cluster is regarded as a

collection of components which are unlikely to be damaged. In addition, this chapter

also showcases how the proposed damage detection method could guide the hardware

inspections in order to save the overall time of examination. In the next chapter, we
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are going to see how that knowledge regarding dynamic networks’ frequency response

could also be leveraged to control their behavior.
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CHAPTER 5

DEVELOPING UNIFIED CONTROLLERS FOR DYNAMIC NETWORKS WITH

AN EXAMPLE OF VIBRATION CONTROL

Dynamic networks are more prone to different operating conditions due to their

large numbers of components. In the previous chapter, that is the motivation of

monitoring their health. The viewpoint of this chapter is more active, where it strives

for a unified compensator to control their behavior even though their statuses are

varying. From the knowledge of dynamic networks’ frequency response and transfer

functions brought by Chapter 2, it can be shown that their frequency response often

form a set of neighboring plants under various conditions, which offers possibilities

of designing a unified controller for that set of uncertain systems by using robust

control methods.

In the literature of network control problems, especially for multi-agent systems,

control strategies often render them to achieve a global task in all situations. However,

the idea provided by this chapter tries to relax that requirement where a controller

is required to give a desired performance to a dynamic network undergoing only

certain extents of variations. Before designing controllers, the expected variations

on a dynamic network’s frequency response could be computed. Then, a unified

controller can be designed specifically for those variations. That controller should be

easier to obtain as it is not asked to work in any case, which may offer more design

freedom when handling more intricate problems.

That idea is exemplified by an active vibration control problem of a multi-story

building [42], where a unified controller is acquired by using loop shaping techniques
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for a various number of floors. In an abstract point of view, that can be regarded

as an example of dynamic networks whose nodes and edges disappear and reappear

during service. A similar idea may also be applicable to the cases where the weights

or transfer function blocks of edges inside a dynamic network keep varying.

5.1 Frequency Response and Transfer Function of A Multi-Story Building

This chapter models a multi-story building as a shear-frame structure with a

lumped-mass planar network, as shown in Figure 5.1, where u(t) is the force exerted

by an external actuator (not included in Figure 5.1) installed on the top level, and

w(t) is the absolute displacement of the ground pointing to the right. Similar models

are also utilized in other vibration control papers, e.g., [53, 75, 64]. For a building

with n floors, its top level’s response is thus represented by

Xn(s) = Gn,u(s)U(s) +Gn,w(s)W (s),

where Xn is the absolute displacement pointing to the right. The frequency response

and transfer functions of Gn,u and Gn,w are obtained by the two algorithms for finite

networks from Chapter 2, which are adapted to the specific application here in Al-

gorithms 6 and 7. Note that the save() function is the same as that in Chapter 3

which stores the intermediate results externally, so that the frequency response and

transfer functions of Gi,u and Gi,w can be obtained for all i from 1 to nG in one run.

The derivation of the one-generation transfer functions are straightforward. When

the building only has one floor, it can be easily shown that

G1,u(s) =
1

m1s2 + b1s+ k1

,

G1,w(s) =
b1s+ k1

m1s2 + b1s+ k1

, (5.1)
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Figure 5.1. A multi-story building model.

Algorithm 6 Pseudocode of computing the frequency response Gu and Gw at the
angular frequency omega for a building with nG floors given three lists of constants
at each floor m, b and k.

1: function [Gu,Gw] = freq(m,b,k,omega,nG)

2: s = j*omega;

3: [mn,bn,kn,mS,bS,kS] = partition(m,b,k);

4: if nG == 1 then
5: [Gu,Gw] = G1(mn,bn,kn,s);

6: save(Gu,Gw,nG);

7: else
8: [GuS,GwS] = freq(mS,bS,kS,omega,nG-1);

9: [Gu,Gw] = Gr(mn,bn,kn,GuS,GwS,s);

10: save(Gu,Gw,nG);

11: end if
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Algorithm 7 Pseudocode of computing the coefficient vectors cNu, cDu of Gn,u(s)

and cNw, cDw of Gn,w(s) for a building with nG floors given three lists of constants at
each floor m, b and k.

1: function [cNu,cDu,cNw,cDw] = tran(m,b,k,nG)

2: [mn,bn,kn,mS,bS,kS] = partition(m,b,k);

3: if nG == 1 then
4: [cNu,cDu,cNw,cDw] = C1(mn,bn,kn);

5: save(cNu,cDu,cNw,cDw,nG);

6: else
7: [cNuS,cDuS,cNwS,cDwS] = tran(m,b,k,nG-1);

8: [cNu,cDu,cNw,cDw] = Cr(mn,bn,kn,cNuS,cDuS,cNwS,cDwS);

9: [cNu,cDu] = simplify(cNu,cDu);

10: [cNw,cDw] = simplify(cNw,cDw);

11: save(cNu,cDu,cNw,cDw,nG);

12: end if

where m1, b1 and k1 correspond to mn, bn and kn in the G1() and C1() functions’

input arguments, respectively. Therefore, for the coefficient vectors in the base case,

the C1() function returns that

cNu =

[
1

]
,

cDu =

[
m1 b1 k1

]
,

cNw =

[
b1 k1

]
,

cDw =

[
m1 b1 k1

]
.

To derive the recurrence formulas, assume the response of the subnetwork is

known,

Xn−1(s) = Gn−1,u(s)U(s) +Gn−1,w(s)W (s). (5.2)

When a new floor is added on the top of that, the previously external force U(s) is

now determined by the internal relation

U(s) = (kn + bns)(Xn(s)−Xn−1(s)). (5.3)
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Substituting Equation (5.3) into Equation (5.2) leads to

Xn−1(s) =
Gn−1,u(s)(kn + bns)

1 +Gn−1,u(s)(kn + bns)
Xn(s) +

Gn−1,w(s)

1 +Gn−1,u(s)(kn + bns)
W (s). (5.4)

In addition, at level n, Newton’s second law results in

(mns
2 + bns+ kn)Xn(s) = U(s) + (bns+ kn)Xn−1(s). (5.5)

Substituting Equation (5.4) into Equation (5.5) gives

[mns
2 + bns+ kn +Gn−1,u(s)mns

2(bns+ kn)]Xn(s)

= [1 +Gn−1,u(s)(bns+ kn)]U(s) +Gn−1,w(s)(bns+ kn)W (s).

As a result, the following two recurrence formulas can be concluded,

Gr,u(s) = Gn,u(s) =
1 +Gn−1,u(s)(bns+ kn)

mns2 + bns+ kn +Gn−1,u(s)mns2(bns+ kn)
,

Gr,w(s) = Gn,w(s) =
Gn−1,w(s)(bns+ kn)

mns2 + bns+ kn +Gn−1,u(s)mns2(bns+ kn)
, (5.6)

which are implemented in the Gr() function in Algorithm 6. To obtain the compu-

tations on coefficient vectors in the Cr() function in Algorithm 7, assume that

Gn−1,u(s) =
Nn−1,u(s)

Dn−1,u(s)
and Gn−1,w(s) =

Nn−1,w(s)

Dn−1,w(s)
.
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The aforementioned recurrence formulas in Equation (5.6) become

Gr,u(s) = Gn,u(s)

=
Dn−1,u(s)Dn−1,w(s) +Nn−1,u(s)Dn−1,w(s)(bns+ kn)

(mns2 + bns+ kn)Dn−1,u(s)Dn−1,w(s) +Nn−1,u(s)Dn−1,w(s)mns2(bns+ kn)
,

Gr,w(s) = Gn,w(s)

=
Nn−1,w(s)Dn−1,u(s)(bns+ kn)

(mns2 + bns+ kn)Dn−1,u(s)Dn−1,w(s) +Nn−1,u(s)Dn−1,w(s)mns2(bns+ kn)
.

Therefore, the computations in the Cr() function are

cNu = cDuS ∗ cDwS⊕ cNuS ∗ cDwS ∗
[
bn kn

]
,

cDu =

[
mn bn kn

]
∗ cDuS ∗ cDwS⊕ cNuS ∗ cDwS ∗

[
mn× bn mn× kn 0 0

]
,

cNw = cNwS ∗ cDuS ∗
[
bn kn

]
,

cDw =

[
mn bn kn

]
∗ cDuS ∗ cDwS⊕ cNuS ∗ cDwS ∗

[
mn× bn mn× kn 0 0

]
,

where ∗ is vector convolution and ⊕ is an operator for adding two coefficient vectors

as defined in Section 2.3.2.1.

The undamaged constants in this chapter are assumed to be m = 11.34× 103kg,

k = 560.4× 106N/m with a damping ratio of 5%, i.e.,

b = 0.05× 2
√
km = 252.1× 103Ns/m.

The above constants are from [53]. Note that the buildings in this chapter are all

undamaged despite that their numbers of floors may vary.

134



10
1

10
2

10
3

10
4

10
5

-300

-200

-100

M
a

g
n

it
u

d
e

 (
d

B
)

G
4,u

(s)

G
4,u

(j )

10
1

10
2

10
3

10
4

10
5

Frequency (rad/sec)

-200

-100

0
P

h
a

s
e

 (
d

e
g

re
e

)

Figure 5.2. The consistency between the frequency response G4,u(jω) from
Algorithm 6 and the transfer function G4,u(s) from Algorithm 7.

5.1.1 Correctness Verification

The verification is the same as that for finite networks in Section 2.3.3, whose

goal is twofold. First, the transfer functions obtained from Algorithm 7 should be

consistent with their corresponding frequency response given by Algorithm 6. That

is confirmed in Figures 5.2 and 5.3 for a four-story building.

The second goal is to show the consistency between the time-domain response

given by the transfer function from Algorithm 7 and that given by numerical inte-

gration. The time-domain response from the transfer function is obtained by using

the lsim() function in MATLAB, while numerical integrations are performed by the

ode45() function. The system of differential equations describing an n-story build-

ing’s dynamics is

MẌ +BẊ +KX = T

u
w

 , (5.7)

where

X =

[
x1 x2 . . . xn

]>
,
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Figure 5.3. The consistency between the frequency response G4,w(jω) from
Algorithm 6 and the transfer function G4,w(s) from Algorithm 7.

M =



m1 0 0 0

0 m2 0 0

0 0
. . . 0

0 0 0 mn


,

B =



b1 + b2 −b2 0 0 0

−b2 b2 + b3 −b3
. . . 0

0 −b3
. . . . . . 0

0
. . . . . . bn−1 + bn −bn

0 0 0 −bn bn


,

K =



k1 + k2 −k2 0 0 0

−k2 k2 + k3 −k3
. . . 0

0 −k3
. . . . . . 0

0
. . . . . . kn−1 + kn −kn

0 0 0 −kn kn


,
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T =


0 k1

0(n−1)×1 0(n−1)×1

1 0

 .
That consistency is showcased by a four-story building here, with two groups of

input signals:


u(t) =

106

1 + e−50(t−0.2)
,

w(t) = 0,

and


u(t) = 0,

w(t) =
1

1 + e−50(t−0.2)
.

Those nonzero input signals are logistic functions which are leveraged to avoid the

sudden jump from 0 to 1 at time t = 0 of the classical unit-step input, so that the

verification is mathematically valid. In addition, the input signal u(t) is augmented

by a factor of 106 because the magnitude of the transfer function Gn,u(s) is quite

small, which can be observed from Figure 5.2. Finally, the consistency between the

results from lsim() and ode45() functions is verified by Figures 5.4 and 5.5, which

infers that frequency response and transfer functions from Algorithms 6 and 7 are

correct.

5.2 A Robust Control Problem

This section puts forward and then solves a robust control problem regarding that

multi-story building model in order to demonstrate that it is possible to find a unified

controller for a dynamic network undergoing some extent of variations through its

frequency response.

The block diagram of the controlled system is shown in Figure 5.6, where a unified

controller K is the design target for all n in a predefined set N . Here, two closed-loop

transfer functions are focused on. One transfer function is from the input w of ground

movement to the output xn of the displacement at the top floor,
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Figure 5.4. Step-like response of x4(t) for a four-story building when the
inputs are u(t) = 106/(1 + e−50(t−0.2)) and w(t) = 0.
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Figure 5.5. Step-like response of x4(t) for a four-story building when the
inputs are u(t) = 0 and w(t) = 1/(1 + e−50(t−0.2)).
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Figure 5.6. The block diagram of the controlled system.

Xn(s) =
Gn,w(s) +Gn,u(s)K(s)

1 +Gn,u(s)K(s)
W (s).

The other is the transfer function from the input w to the error signal v,

V (s) = W (s)−Xn(s) =
1−Gn,w(s)

1 +Gn,u(s)K(s)
W (s).

5.2.1 Problem Definition

A unified controller is required for that multi-story building model up to 10

stories. The Bode magnitude plots in Figure 5.7 confirm that for all n ∈ N =[
1 2 · · · 10

]
, frequency response Gn,u(jω) and Gn,w(jω) form two sets of neigh-

boring plants. Therefore, robust control methods can be applied here. Two require-

ments for that unified controller K are established as follows.

1. Robust stability: For all n ∈ N =
[
1 2 · · · 10

]
, the closed-loop transfer

function from the input w to the output xn,

Xn(s)

W (s)
=
Gn,w(s) +Gn,u(s)K(s)

1 +Gn,u(s)K(s)
, (5.8)

is always stable.

2. Robust performance: For all n ∈ N =
[
1 2 · · · 10

]
and ω ∈ R+, the gain of

the closed-loop transfer function from the input w to the error v always satisfies∣∣∣∣ V (s)

W (s)

∣∣∣∣ =

∣∣∣∣ 1−Gn,w(s)

1 +Gn,u(s)K(s)

∣∣∣∣ < 1.

Since this is an easy single-input single-output control problem with stable open-
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Figure 5.7. For all n ∈ N =
[
1 2 · · · 10

]
, frequency response Gn,u(jω)

and Gn,w(jω) form two sets of neighboring plants. Upper: Gn,u(jω). Lower:
Gn,w(jω).

loop plants, loop shaping techniques are going to be employed to achieve the goal.

For the convenience of loop shaping, the above two requirements are recast more

directly concerning the controller K.

First, for the robust stability requirement, the transfer functions Gn,u(s), Gn,w(s)

and K(s) can be rewritten as rational expressions where

Gn,u(s) =
Nn,u(s)

Dn,u(s)
, Gn,w(s) =

Nn,w(s)

Dn,w(s)
, and K(s) =

NK(s)

DK(s)
. (5.9)

Substituting Equation (5.9) into Equation (5.8) leads to

Xn(s)

W (s)
=
Nn,w(s)Dn,u(s)DK(s) +Nn,u(s)NK(s)Dn,w(s)

Dn,w(s)(Dn,u(s)DK(s) +Nn,u(s)NK(s))
.

The above equation leads to the following equivalence.

Robust Stability

⇔ ∀ n ∈ N, ∀ Re[s] > 0, Dn,w(s)(Dn,u(s)DK(s) +Nn,u(s)NK(s)) 6= 0.
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+

−

Figure 5.8. The block diagram of unity negative feedback where the
open-loop transfer function is Gn,u(s)K(s).

Moreover, note that the open-loop transfer function Gn,w(s) = Nn,w(s)/Dn,w(s) is

always stable for all n ∈ N , that is ∀ n ∈ N , ∀ Re[s] > 0, Dn,w(s) 6= 0. Then, the

above equivalence can be further simplified as

Robust Stability⇔ ∀ n ∈ N, ∀ Re[s] > 0, Dn,u(s)DK(s) +Nn,u(s)NK(s) 6= 0.

Note that the right-hand side is equivalent to requiring the transfer function

T (s) =
Gn,u(s)K(s)

1 +Gn,u(s)K(s)

is always stable because Dn,u(s)DK(s)+Nn,u(s)NK(s) = 0 is the characteristic equa-

tion of T (s). Furthermore, because that transfer function T (s) is the complementary

sensitivity function for the open-loop transfer function Gn,u(s)K(s) under unity neg-

ative feedback as shown in Figure 5.8, it can be concluded that

Robust Stability⇔ ∀ n ∈ N, Gn,u(s)K(s) has sufficient gain and phase margins.

For the robust performance requirement, the Cauchy-Schwarz inequality yields

that ∣∣∣∣ 1−Gn,w(s)

1 +Gn,u(s)K(s)

∣∣∣∣ ≤ |1−Gn,w(s)|
|1 +Gn,u(s)K(s)|

.

Therefore, the robust performance requirement can be enforced by one of its sufficient
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conditions, where

|1 +Gn,u(s)K(s)| > |1−Gn,w(s)|.

In conclusion, that controller K should satisfy the following three requirements.

1. Robust stability: For all n ∈ N , Gn,u(s)K(s) has sufficient phase and gain
margins.

2. Robust performance: For all n ∈ N and ω ∈ R+,

|1 +Gn,u(jω)K(jω)| > |1−Gn,w(jω)|. (5.10)

3. Because U(s) = K(s)V (s), the magnitude of K(s) should not be unnecessarily
large in order to avoid large control inputs.

5.2.2 Loop Shaping

By comparing the magnitude of Gn,u(jω) in Figure 5.9 to that of 1 − Gn,w(jω)

in Figure 5.10, we see that a quite large gain needs to be added in order to fulfill

the robust performance requirement in Equation (5.10). To make the loop shaping

procedure convenient, an upper bound H(jω) of |1 − Gn,w(jω)| for all n ∈ N and

ω ∈ R+ can be set, where

H(jω) =
(jω + 1)2(jω/2000 + 1)2

(jω/10 + 1)2(jω/200 + 1)2
,

as illustrated by the red curve in Figure 5.10. As a result, the first candidate controller

is selected as

K1(s) = 1011.5.

The corresponding Bode magnitude plot for 1 − Gn,u(jω)K1(jω) is shown in Fig-

ure 5.11, where a drop exists around 5×103rad/sec violating the robust performance

requirement in Equation (5.10). That can be repaired by adding a zero in that region.

Another benefit brought by adding a zero in the high-frequency region can be seen

from the Bode plot of Gn,u(jω) in Figure 5.9. A high-gain controller like K1 would
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Figure 5.9. Bode plot of Gn,u(jω) for all n ∈ N .
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Figure 5.10. Bode magnitude plot of 1−Gn,w(jω) for all n ∈ N . The red
curve for H(jω) is their upper bound.
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Figure 5.11. Bode magnitude plot of 1 +Gn,u(jω)K1(jω) for all n ∈ N .
The red curve for H(jω) is same as the one in Figure 5.10.

push the gain crossover frequency to the high-frequency region where the phase of

Gn,u is about −180o. Therefore, a zero in that region could bring a much larger phase

margin to satisfy the robust stability requirement. Hence, a zero at 2000rad/sec is

added, so the next candidate controller is

K(s) = 1011.5(s/2000 + 1), (5.11)

which turns out to be the final design fulfilling all three requirements.

First, the robust stability criterion is illustrated in Figure 5.12, where all Gn,uK

have a phase margin about 80o. In addition, the phase of Gn,uK never goes be-

low −180o, so the gain margin is always ∞. Second, for the robust performance

requirement, Equation (5.10) is also fulfilled by the controller K(s) as illustrated

in Figure 5.13. Third, the small-control-input requirement is also satisfied since

|1 + Gn,u(s)K(s)| is tightly above |H(s)| around the frequency where |1 − Gn,w(s)|

is just below |H(s)|. Any other controller whose magnitude is smaller than |K(s)| is

very likely to violate the robust performance requirement in Equation (5.10).
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Figure 5.12. Bode plot of Gn,u(jω)K(jω) for all n ∈ N .
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Figure 5.13. Bode magnitude plot of 1 +Gn,u(jω)K(jω) for all n ∈ N . The
red curve for H(jω) is same as the one in Figure 5.10.
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5.3 Time-Domain Responses of The Controlled System

This section checks the time-domain responses given by that unified controller

K(s) in Equation (5.11). The confirmations of all n ∈ N were conducted offline,

whereas only the case of the 10-story building is displayed here. All time-domain

responses in this section are obtained from the ode45()’s integrations of the equations

of motion in Equation (5.7) (adapted to the 10-story case) with the control input u(t)

resulting from Equation (5.11),

u(t) =
1011.5

2000
(ẇ(t)− ẋn(t)) + 1011.5(w(t)− xn(t)).

The first time-domain response is again excited by a logistic function w(t) to form

a continuous step response where

w(t) =
1

1 + e−50(t−0.2)
. (5.12)

A better performance given by the controlled system is shown in Figure 5.14, where

the displacement of the top floor x10(t) follows the input ground movement w(t)

tightly, which leads to a much smaller overall vibration of the entire building as

opposed to the uncontrolled system.

The second time-domain input imitates seismic waves, where the ground acceler-

ation, as illustrated in Figure 5.15, is

ẅ(t) =

(
1− t

50

)
r, (5.13)

in which r is a normally distributed random number. A similar better performance

can be observed in the response shown in Figure 5.16, where the controlled system

has a smaller overall vibration compared to the uncontrolled one.
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Figure 5.14. Step-like response to w(t) in Equation (5.12) where the thick
red curve is for the top floor x10(t) and all the other thin blue curves are for
intermediate floors x1(t) to x9(t). Upper: Controlled. Lower: Uncontrolled.
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Figure 5.15. Simulated seismic wave ẅ(t) in Equation (5.13).
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Figure 5.16. Seismic response to ẅ(t) in Equation (5.13) where the thick
red curve is for the top floor x10(t) and all the other thin blue curves are for
intermediate floors x1(t) to x9(t). Upper: Controlled. Lower: Uncontrolled.

5.4 Concluding Remarks

This chapter promotes the idea that dynamic networks may be viewed as a set of

neighboring plants to which robust control methods can be applied. That neighboring

effect is illustrated by their frequency responses which are obtained by Algorithm 6.

Indeed, from an abstract viewpoint, the example presented in this chapter, a building

with different numbers of floor, is an instance where a dynamic network’s nodes

and edge disappear and reappear during operation. That is one of main differences

between dynamic networks and static ones. Another way that a network becomes

dynamic could happen on the weights or the dynamics along the edges. In the context

of buildings, that means the parametric variations occurring on masses, dampers and

springs. As a concrete example, for the network model in Figure 5.1 with 4 floors,

the spring’s degradation on the second floor (k2) happens while the building is in

service, where its constant is multiplied by an uncertain factor ranging from 0.1 to

10. The effects of that parametric drift on the frequency response G4,u(jω) and

G4,w(jω) are shown in Figure 5.17, from which we can observe that they also form a
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Figure 5.17. Effects of k2’s parametric drifting from 0.1× 560.4× 106N/m
to 10× 560.4× 106N/m on the frequency response. Upper: G4,u(jω).

Lower: G4,w(jω).

set of neighboring plants.

That idea proposed in this chapter essentially relaxes the requirements imposed

on dynamic network controllers from global stability to a stability only with respect

to bounded variations. It is hoped that such relaxations can be leveraged to tackle

more intricate dynamic networks’ control problems in the future.
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CHAPTER 6

RATIONAL APPROXIMATION

This chapter illustrates the application of the knowledge regarding transfer func-

tions of dynamic networks to rational approximations, where some irrational func-

tions are approximated by rational expressions. The idea is based on the fact that

finite network transfer functions are always rational, while infinite network trans-

fer functions are very likely to be fractional or irrational. Because a finite network’s

dynamics converge to its infinite variant’s, that finite network’s rational transfer func-

tion can be considered as an approximation of that infinite network’s fractional or

irrational transfer function.

The rational approximation results in this chapter are compared to those given

by the Padé approximation, which is briefly reviewed in Section 6.1. Note that the

rational approximation in this chapter has much greater restrictions as opposed to

the Padé approximation. The main limitation is that the irrational expression that

needs to be approximated must be a part of an infinite network’s transfer function.

It is also worth emphasizing that there exist algorithms for rational interpolation,

which return a rational function interpolating a sequence of discrete datapoints.

6.1 Padé Approximation

For a function f(x), if its Taylor series exists at x = x0, it can be approximated by

a finite power series whose highest order is assumed to be L+M , where L, M ∈ N.
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That is,

f(x) ≈ A(x) =
L+M∑
i=0

aix
i.

Then, the Padé approximation with order L/M of f(x) at x = x0 is defined as

RL/M(x) =

∑L
i=0 pix

i

1 +
∑M

i=1 qix
i

= A(x) =
L+M∑
i=0

aix
i, (6.1)

where pi and qi are found by equating coefficients, which leads to a system of L+M+1

linear equations with L+M+1 unknowns. Therefore, all pi and qi should be obtained

uniquely unless there exist some linearly dependent equations.

For example, f(x) =
√
x+ 1 needs to be estimated by Padé approximation with

order 2/2 at x = 0. First, f(x) is approximated by a Taylor series up to the fourth

order at x = 0 where

f(x) ≈ 1 +
1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4.

By equating coefficients, when L = M = 2, Equation (6.1) leads to a system of five

linear equations

p0 = a0,

p1 = a1 + a0q1,

p2 = a2 + a1q1 + a0q2,

0 = a3 + a2q1 + a1q2,

0 = a4 + a3q1 + a2q2.
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Specifically for the example f(x) =
√
x+ 1,

p0 = 1,

p1 =
1

2
+ q1,

p2 = −1

8
+

1

2
q1 + q2,

0 =
1

16
− 1

8
q1 +

1

2
q2,

0 = − 5

128
+

1

16
q1 −

1

8
q2.

The solution to above system of equations is

p0 = 1, p1 =
5

4
, p2 =

5

16
, q1 =

3

4
, q2 =

1

16
.

Therefore, the Padé approximation with the order 2/2 of f(x) =
√
x+ 1 at x = 0 is

R2/2(x) =
1 +

5

4
x+

5

16
x2

1 +
3

4
x+

1

16
x2

=
16 + 20x+ 5x2

16 + 12x+ x2
.

The comparison of f(x) =
√
x+ 1 and R2/2(x) is shown in Figure 6.1. In addition,

the comparison when x is an imaginary number, i.e., x = jω is plotted in Figure 6.2.

6.2 Rational Approximations through Dynamic Networks

This section illustrates how to use dynamic network transfer functions to obtain

rational approximations for some irrational expressions. Recall that Chapter 2 shows

that the transfer function of an infinite undamaged electrical ladder network, as
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Figure 6.1. The comparison of an irrational function f(x) =
√
x+ 1 to its

2/2-order Padé approximation result at x = 0, R2,2(x).
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Figure 6.2. The comparison of an irrational function f(jω) =
√
jω + 1 to

its 2/2-order Padé approximation result at jω = 0, R2,2(jω), where jω is an
imaginary number.
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Figure 6.3. Electrical ladder network from Chapter 2.

shown in Figure 6.3, is

G∞,∅(s) =

s+
1

r2c
+

√√√√
s2 +

2r1 + 4r2

r1r2c
s+

r1 + 4r2

r1r2
2c

2

2

r1

s+
2

r1r2c

.

Suppose now the irrational function f(s) =
√
s2 + 100s+ 100 needs to be estimated

by rational functions, which is a part of the above G∞,∅(s) when

2r1 + 4r2

r1r2c
= 100, and

r1 + 4r2

r1r2
2c

2
= 100.

To satisfy the above two equations, those three undamaged constants can be chosen

as

r1 = 1, r2 = 5
√

6 + 12, and c =
5 + 2

√
6

120 + 50
√

6
.

If the above undamaged constants are used to call the algorithm for finite network

transfer functions in Section 2.3.2, the following convergence of finite undamaged
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Figure 6.4. Convergence of finite undamaged electrical ladder networks’
frequency response G1,∅(jω), . . . , G5,∅(jω) to its infinite variant’s G∞,∅(jω).

electrical ladder networks’ transfer functions can be obtained.

G1,∅(s) =
0.9899s+ 25.247

0.9899s+ 1
,

G2,∅(s) =
s2 + 75.505s+ 675.26

s2 + 51.010s+ 50.510
,

G3,∅(s) =
s3 + 125.51s2 + 3.9× 103s+ 1.8× 104

s3 + 101.01s2 + 2.0× 103s+ 1.9× 103
,

G4,∅(s) =
s4 + 175.51s3 + 9.5× 103s2 + 1.7× 105s+ 5.2× 105

s4 + 151.01s3 + 6.5× 103s2 + 7.1× 104s+ 6.6× 104
,

G5,∅(s) =
s5 + 225.51s4 + 1.8× 104s3 + 5.7× 105s2 + 6.5× 106s+ 1.5× 107

s5 + 201.01s4 + 1.3× 104s3 + 3.3× 105s2 + 2.4× 106s+ 2.1× 106
,

...

G∞,∅(s) =
s+ 1.0102 +

√
s2 + 100s+ 100

2s+ 2.0204
.

The convergence of the above transfer functions can be seen in Figure 6.4. As a

result, an approximation of f(s) =
√
s2 + 100s+ 100 can be obtained from the above

transfer functions,

Hg(s) = (2s+ 2.0204)Gg,∅(s)− (s+ 1.0102),
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where g is a finite positive integer indicating the number of generations in the finite

electrical ladder network that is used for approximation. Therefore, the following are

the results of rational approximations of the irrational function f(s) =
√
s2 + s+ 100

given by undamaged electrical ladder networks’ transfer functions.

H1(s) =
0.9899s2 + 50.495s+ 50

0.9899s+ 1
,

H2(s) =
s3 + 101.01s2 + 1.4× 103s+ 1.3× 103

s2 + 51.010s+ 50.510
,

H3(s) =
s4 + 151.01s3 + 5.9× 103s2 + 4.1× 104s+ 3.5× 104

s3 + 101.01s2 + 2.0× 103s+ 1.9× 103
,

H4(s) =
s5 + 201.01s4 + 1.3× 103s3 + 2.7× 105s2 + 1.2× 106s+ 9.8× 105

s4 + 151.01s3 + 6.5× 103s2 + 7.1× 104s+ 6.6× 104
,

...

f(s) =
√
s2 + 100s+ 100.

The convergence of the above rational expressions Hg(s) to the irrational expression

f(s) is plotted in Figure 6.5. In addition, that convergence when the independent

variable s = x is a real number is shown in Figure 6.6.

As a comparison, the following are the Padé approximations from 2/1-order to

6/5-order at s = 0 of the irrational expression f(s) =
√
s2 + 100s+ 100.

R2/1(s) =
13s2 + 100s+ 100

5s+ 10
,

R3/2(s) =
35s3 + 570s2 + 1500s+ 1000

19s2 + 100s+ 100
,

R4/3(s) =
97s4 + 2600s3 + 12600s2 + 2× 104s+ 104

65s3 + 630s2 + 1500s+ 103
,

R5/4(s) =
275s5 + 1.1× 1064s4 + 8× 104s3 + 2.2× 105s2 + 2.5× 105s+ 105

211s4 + 3200s3 + 13200s2 + 2× 104s+ 104
,

...

f(s) =
√
s2 + 100s+ 100.
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Figure 6.5. Rational approximations of f(s) =
√
s2 + 100s+ 100 given by

undamaged electrical ladder networks’ transfer functions when s = jω is an
imaginary number.
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Figure 6.6. Rational approximations of f(s) =
√
s2 + 100s+ 100 given by

undamaged electrical ladder networks’ transfer functions when s = x is a
real number.
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Figure 6.7. Padé approximations of f(s) =
√
s2 + 100s+ 100 at s = 0 when

s = jω is an imaginary number.

The convergence of the above Padé approximations RL/M(s) to the irrational expres-

sion f(s) is plotted in Figure 6.7. In addition, that convergence when the independent

variable s = x is a real number is shown in Figure 6.8.

6.3 Concluding Remarks

This chapter explains how to use the knowledge regarding transfer functions of

dynamic networks that satisfy assumptions (A-1) to (A-6) in Section 2.1 to obtain

rational approximations of some irrational expressions. The idea leverages the fact

that finite network transfer functions are always rational expressions, while infinite

networks have a high possibility of being fractional or irrational. Then, because a

finite network’s dynamics converge to its infinite variant’s, that finite network transfer

function can be employed to estimate some fractional or irrational expressions that

appear in the infinite network transfer function.

The idea is demonstrated by a concrete example, where the undamaged electrical

ladder networks are utilized to find rational approximations of the irrational function

f(s) =
√
s2 + 100s+ 100. In addition, the results are compared to those given by
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Figure 6.8. Padé approximations of f(s) =
√
s2 + 100s+ 100 at s = 0 when

s = x is a real number.

Padé approximations at s = 0 with the same orders. Both results are proved to be

reasonable estimations of that irrational f(s). However, there exist at least three

drawbacks of the method using dynamic networks when compared to Padé approxi-

mations. First, the irrational expressions that can be approximated by the proposed

method must appear in some infinite network transfer functions. That is a very de-

manding requirement because it eliminates lots of irrational functions. For example,

currently, the author has no idea which infinite network transfer function could in-

clude exponential or trigonometric functions, while its finite version is still a rational

expression. Second, the region where rational approximations converge to irrational

functions is determined by the networks in use, and it cannot be directly specified by

users. Third, the theoretical value of rate of convergence is also determined by the

networks in use and seems hard to be derived rigorously through some mathematical

methods. Nevertheless, that idea of using dynamic network transfer functions to find

rational approximations is still mentioned here because that is a viable route and,

to the author’s knowledge, there are no similar methods in literature. Therefore,

this method may have potential when studies regarding dynamic network frequency
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response and transfer functions grow in the future.
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CHAPTER 7

CONCLUSIONS AND SUGGESTED FUTURE WORK

Knowledge about networked dynamical systems’ frequency response can be a new

breakthrough in research about understanding and simulating complex systems’ be-

havior, monitoring their health and controlling their functioning thanks to plentiful

frequency-domain tools available. Chapter 2 lays the foundation of this disserta-

tion and proposes recursive algorithms of exactly computing frequency response and

transfer functions for a general class of self-similar dynamic networks, which leads to

the four applications described by the following chapters. Chapter 3 illustrates the

utility of that knowledge to simulating voltage and current along a transmission line

whose electrical properties are unevenly distributed. That is then applied to railway

track circuits to assess how voltage and current would vary when degradations occur

and when a train is passing by. Chapter 4 presents health monitoring methods for dy-

namic networks through their frequency response, which aims at identifying existence,

location and extent of the damage state. That method could return the components

which are the most likely to be damaged, or it could classify all components into two

groups where one group includes all candidates that are likely to be damaged, and

the other contains components that are more likely to be intact. Chapter 5 leverages

robust control methods to design a unified controller for a dynamic network undergo-

ing some degree of variations, which is based on the observation from Chapter 2 that

a dynamic network’s frequency response often forms a set of neighboring plants under

various conditions. That is exemplified by devising a state-feedback control strategy

for a multi-story building to alleviate its vibration in the face of ground movements.
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Chapter 6 offers a new rational approximation method of some irrational expressions

through dynamic networks’ transfer functions.

The main contribution of this dissertation is to introduce the idea of simulating,

monitoring and controlling networked dynamical systems through their frequency

response. In literature, there exists little work which exactly computes frequency

response and transfer functions for a general class of dynamic networks, mostly due

to their complexity. As a result, there is a gap between abundant frequency-domain

tools available and the fact that those frequency-domain methods are infrequently

applied to dynamic networks. However, by taking advantage of self-similarity, this

dissertation exhibits that problem indeed becomes tractable. That assumption re-

garding self-similarity is far from restrictive, because it only requires the structure of

a network being invariant across all generations, while the dynamics of its individual

components are still allowed to vary. In fact, many real networks are self-similar,

especially those built with the purpose of imitating complex systems. For any self-

similar dynamic networks that satisfy the assumptions (A-1) to (A-6) in Section 2.1,

their frequency response and transfer functions can be evaluated by the algorithms

proposed in this dissertation whether their sizes are finite or not and whether their

components are identical or not. As a result, those dynamic networks can be further

simulated, monitored and controlled by using some frequency-domain tools.

Another contribution of this dissertation is that it offers a bridge between com-

plex systems and fractional or irrational transfer functions. This dissertation shows

that infinite dynamic networks’ transfer functions are very likely to be fractional or

irrational, which is consistent with the existing literature regarding infinite dimen-

sional systems. That might explain why complex system behavior is often difficult

to be modeled by linear integer-order dynamics, because complex systems usually

have a great number of internal nodes interacting with each other, which are equiv-

alent to nearly infinite networks. In addition, this dissertation enables the potential
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to physically realize fractional-order compensators by some finite electrical networks

whose transfer functions converge to those fractional-order compensators’ as their

sizes grow. Finally, this dissertation may also help researchers to understand the

physical meaning of non-integer-order transfer functions, especially the meaning of

irrational transfer functions such as G(s) =
√
s+ 1/

√
s.

The rest of this chapter offers prospective future work following this dissertation.

The ultimate goal is to make this work more applicable to real implementations. First,

the modeling algorithms in this dissertation should be extended to higher-dimensional

networks, which could lead to applications of simulating, monitoring and controlling

an increasing number of real networks, like structures and materials, and multi-agent

systems. Second, the simulation results and the performance of health monitoring

procedures should be verified by experiments on hardware. In addition, the proposed

health monitoring procedures could be incorporated with existing methods to improve

the quality of their damage detection results. Third, the computation of networks’

frequency response can collaborate with existing control strategy design routines to

devise controllers for multi-agent systems through their frequency response.

7.1 Extending to 2D Networks

One crucial limitation of the algorithms computing frequency response and trans-

fer functions in Chapter 2 is that they can only be applied to one-dimensional net-

works. For mechanical networks, that means all nodes can only move back and forth

along one direction. For electrical networks, that means the current leaving the input

end would eventually come back to the input end. That is, no currents could leak to

the exterior through other ports except for the input end. That assumption is restric-

tive and inhibits the idea of promoting frequency-domain methods to more real-life

networks. Hence, extending the modeling methods introduced in this dissertation to

high-dimensional networks is important.

163



When those methods are extended to high-dimensional networks, one challenge is

that those systems inevitably become multi-input multi-output, which results in that

the number of outputs could grow with the size of those networks. Therefore, a proper

definition of system outputs should be carefully determined so that the number of

outputs is invariant with respect to a network’s size. For a constant multi-output

network, the route of deriving one-dimensional networks’ frequency response and

transfer functions used in this work is still valuable. The main concept is leveraging

recursive algorithms, assuming all required results of subnetworks are available, and

focusing on how those results would vary if an extra generation is added to those

subnetworks. That way of thinking should to a great extent alleviate the burden of

coding for high-dimensional networks’ frequency response and transfer functions.

In the author’s opinion, extending the modeling methods in this dissertation to

merely two-dimensional networks would have already included a great number of

real applications. For example, that could be employed to simulate the universal di-

electric response of composite materials and to reproduce viscoelastic or aeroelastic

behavior as mentioned in Section 1.2.1. As another example, recall that in Chap-

ter 3, a one-dimensional electrical network is utilized to estimate voltage and current

along a transmission line with unevenly distributed properties. The accurate values

of that voltage and current are given by a partial differential equation where its spa-

tial variable x is one dimensional. Once the proposed modeling method is extend

to two-dimensional, it should be applicable to approximating solutions to a partial

differential equation where its spatial variable x is two dimensional, for instance, a

two-dimensional heat equation,

∂u

∂t
= α

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
.

Then, that can be used to simulate how heat diffuses across a plane where thermal
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conductivity is unevenly distributed.

Once the modeling methods in this dissertation are extended to two-dimensional

cases, they can also be employed in controlling some multi-agent systems, such as a

group of automated guided vehicles moving on the ground. For each topology that

this group of agents exhibits, it should have a corresponding frequency response.

Then, the next question is whether those frequency responses also form a set of

neighboring plants. If that is the case, robust control methods can be applied as well

to design control strategies for those agents when their formation is varying. From a

high-level viewpoint, that could be a concrete example of incorporating multi-agent

system control strategy with their topology, which is one of current research focuses

regarding multi-agent systems.

7.2 Hardware Experiments

All results and examples in this dissertation are based on simulations, so hardware

experiments are another necessary direction for future work. The directions of hard-

ware experiments could be at least fourfold. From the most basic aspect, frequency

response measurements from hardware should be consistent with those obtained by

the algorithms from this dissertation. Perhaps the simplest way is using electrical net-

works whose frequency response can be measured by spectrum analyzers. It is worth

pointing out that the correctness of frequency response and transfer functions given

by the algorithms in this dissertation has already been verified. For instance, finite

networks’ frequency response converge to infinite networks’, time-domain response

given by those frequency response agree with the results from numerical integrations,

and the discrete approximations of voltage and current along a transmission line are

compatible with the continuous results derived from telegrapher’s equations.

The second goal is more related to mechanical networks, which verifies if a me-

chanical network’s frequency response given by the algorithms in this dissertation is
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consonant with its experimental modal analysis. For instance, a structure can be ap-

proximated by a mechanical network as illustrated by Chapter 5, where G(jω) is the

frequency response of that network obtained by the algorithms in this dissertation.

On the other hand, a modal analysis experiment can be conducted on that structure

where the input can be excited by impact hammers or electrodynamic shakers and the

output can be measured by accelerometers, lasers and string pots. That modal anal-

ysis experiment would provide quantities like resonances, damping and mode shapes

regarding that structure’s response. Those measurements should be consistent with

the prediction given by that mechanical network’s frequency response G(jω).

The third purpose is to test the health monitoring procedure proposed in this

dissertation on hardware. Recall that in Chapter 4, the measurement noise is added

to the actual frequency response by a random level of relative differences where that

randomness is uniformly distributed. That may not coincide with how actual mea-

surement noise would present. In literature, real frequency response measurements

often have less noise around the peaks of the large magnitude, while they are ex-

tremely noisy when the magnitude is small. Additionally, each spectrum analyzer

has the smallest signal level that can be measured. Therefore, whether the proposed

health monitoring still works with real measurements is of great interest.

The last motivation is to cooperate with existing health monitoring methods.

As discussed in Section 1.2.3, from an abstract viewpoint, most health monitoring

methods select features from data and use them to identify the damage state. Each

type of hardware systems have their own features that are frequently used in their

research domain. For example, the aforementioned resonances, damping and mode

shapes are often extracted as features when monitoring structural health. For detect-

ing anomalies in dynamic graphs, some time series of measurements like nodes and

edge statuses or community groups are often employed. In this dissertation, a new

feature is leveraged for the health monitoring purpose, that is the mismatch between
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the measured frequency response and the computed one of a network. Therefore,

it is possible that including that feature with other domain features used by exist-

ing health monitoring methods could improve the quality of their damage detection

results.

7.3 Combine Controller Analysis with Controller Synthesis

Section 1.2.1 states that the computation of frequency response in this dissertation

is equivalent to a controller analysis problem where the control strategy has already

been defined as opposed to a controller synthesis problem. However, that does not

necessarily mean the study of this work cannot contribute to controller synthesis.

One idea which offers that possibility is similar to the D-K iteration where a robust

control problem is solved by switching between controller synthesis and controller

analysis iteratively. The eventual goal of D-K iteration is to minimize a value called

µ, which is a quantification of an uncertain plant’s robust stability. In the K iteration,

a controller synthesis problem is solved, which provides a candidate controller K.

Then, that K is supplied to a controller analysis problem which offers a weighting

matrix D so that the µ keeps decreasing for that given K.

That organic blend of controller synthesis and analysis can also be adopted here.

For instance, some frequency-domain controller synthesis method could present a can-

didate controller. Then, the modeling methods proposed in this dissertation could

analyze that controller’s performance and suggest how that could be improved. The

research regarding this topic could start with simple systems, such as single-input

single-output systems, in which case, empirical or heuristic tuning is possible. Built

upon that experience, the next task is probably quantification of a controller’s per-

formance and the rule of improving that. The aim of this stage is to achieve auto-

tuning. Then, that would lead to further implementations on complex networks,

such as multi-input multi-output systems. Those discoveries in whole have potentials
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to introduce a new controller design strategy to multi-agent systems by using their

frequency response.

7.4 Concluding Remarks

This dissertation has advocated concepts about simulating, monitoring and con-

trolling networked dynamical systems through their frequency response and transfer

functions. One mathematical novelty of this work is it provides specific examples,

that is infinite dynamic networks, where fractional and irrational transfer functions

naturally come to light. That offers possibilities for understanding the physical mean-

ing of fractional-order derivatives and implicit operators in the future.

The other advantages come from all of three perspectives in simulation, moni-

toring and control. First, the proposed method is similar to finite element analysis,

which could efficiently simulate some quantities spreading over complex systems that

are typically described by partial differential equations. In addition to that efficiency,

this method could also handle the situation where the physical properties of those

complex systems are not distributed evenly.

For health monitoring, this dissertation suggests a new feature for candidate dam-

age cases, that is the mismatch between their computed frequency response and a

measured one. That new feature can identify the existence, location and extent of the

damage state, and save the inspection team from examining all components inside a

large network. Moreover, that feature has potentials to be included with other exist-

ing features in the health monitoring research field to improve the quality of damage

detection results.

For controlling dynamic networks, this work creates a bridge between them and

available frequency-domain tools. That connection is unclear before this dissertation

due to the complexity of computing dynamic networks’ frequency response, which

is shown to be manageable when self-similarities are leveraged in this dissertation.
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Moreover, when networks grow into higher dimensions, their frequency response in-

evitably depend on their topology. Hence, this study also has potentials to link

multi-agent systems’ formation with their controller design.

Perhaps some unexpected benefits could also result from this work because it is

one of few initial studies touching the area of frequency response for a general class of

dynamic networks. Hopefully, this study could help advance the intellectual frontier

of humankind.
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Sequential design of multioverlapping controllers for structural vibration con-
trol of tall buildings under seismic excitation. Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and Control Engineer-
ing, 227(2):176–183, 2013. doi: 10.1177/0959651812464026. URL https:

//doi.org/10.1177/0959651812464026.

76. J. F. Kelly and R. J. McGough. Fractal ladder models and power law wave
equations. The Journal of the Acoustical Society of America, 126(4):2072–2081,
2009. doi: 10.1121/1.3204304. URL https://asa.scitation.org/doi/abs/

10.1121/1.3204304.

77. P. P. Khargonekar, I. R. Petersen, and K. Zhou. Robust stabilization of un-
certain linear systems: quadratic stabilizability and H∞ control theory. IEEE
Transactions on Automatic Control, 35(3):356–361, 1990. doi: 10.1109/9.50357.

78. D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

79. V. Koltchinskii, C. T. Abdallah, M. Ariola, P. Dorato, and D. Panchenko. Im-
proved sample complexity estimates for statistical learning control of uncertain
systems. IEEE Transactions on Automatic Control, 45(12):2383–2388, 2000.
doi: 10.1109/9.895579.

80. D. Koutra, E. E. Papalexakis, and C. Faloutsos. Tensorsplat: Spotting latent
anomalies in time. In 2012 16th Panhellenic Conference on Informatics, pages
144–149, 2012. doi: 10.1109/PCi.2012.60.

81. F. Kuhn and R. Oshman. Dynamic networks: models and algorithms. ACM
SIGACT News, 42(1):82–96, 2011.

82. H. Kwakernaak. Robust control and H∞-optimization—tutorial paper. Auto-
matica, 29(2):255–273, 1993.

83. A. Lanzon and I. R. Petersen. Stability robustness of a feedback interconnection
of systems with negative imaginary frequency response. IEEE Transactions on
Automatic Control, 53(4):1042–1046, 2008. doi: 10.1109/TAC.2008.919567.

84. K. Leyden and B. Goodwine. Using fractional-order differential equations for
health monitoring of a system of cooperating robots. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 366–371, 2016. doi:
10.1109/ICRA.2016.7487154.

177

https://doi.org/10.1177/0959651812464026
https://doi.org/10.1177/0959651812464026
https://asa.scitation.org/doi/abs/10.1121/1.3204304
https://asa.scitation.org/doi/abs/10.1121/1.3204304


85. K. Leyden and B. Goodwine. Fractional-order trajectory-following control for
two-legged dynamic walking. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 699–704, 2018. doi: 10.1109/
IROS.2018.8593749.

86. K. Leyden, M. Sen, and B. Goodwine. Models from an implicit opera-
tor describing a large mass-spring-damper network. IFAC-PapersOnLine, 51
(2):831 – 836, 2018. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.
2018.04.017. URL http://www.sciencedirect.com/science/article/pii/

S2405896318301459. 9th Vienna International Conference on Mathematical
Modelling.

87. K. Leyden, M. Sen, and B. Goodwine. Large and infinite mass–spring–damper
networks. Journal of Dynamic Systems, Measurement, and Control, 141(6), Feb
2019. ISSN 0022-0434. doi: 10.1115/1.4042466. URL https://doi.org/10.

1115/1.4042466. 061005.

88. C.-H. Loh, C. H. Mao, S.-H. Chao, and J.-H. Weng. Feature extraction and sys-
tem identification of reinforced concrete structures considering degrading hys-
teresis. Structural Control and Health Monitoring, 17(7):712–729, 2010. doi:
https://doi.org/10.1002/stc.405. URL https://onlinelibrary.wiley.com/

doi/abs/10.1002/stc.405.

89. E. R. Love. Fractional derivatives of imaginary order. Journal of the Lon-
don Mathematical Society, s2-3(2):241–259, 1971. doi: https://doi.org/10.
1112/jlms/s2-3.2.241. URL https://londmathsoc.onlinelibrary.wiley.

com/doi/abs/10.1112/jlms/s2-3.2.241.

90. J. T. Machado, V. Kiryakova, and F. Mainardi. Recent history of fractional
calculus. Communications in Nonlinear Science and Numerical Simulation, 16
(3):1140 – 1153, 2011. ISSN 1007-5704. doi: https://doi.org/10.1016/j.cnsns.
2010.05.027. URL http://www.sciencedirect.com/science/article/pii/

S1007570410003205.

91. R. L. Magin. Fractional calculus in bioengineering, volume 2. Begell House
Redding, 2006.

92. B. B. Mandelbrot. The fractal geometry of nature, volume 480. WH freeman
New York, 1982.

93. C. A. Marin and M. R. Errera. A comparison between random and deterministic
tree networks for river drainage basins. In 2009 3rd Southern Conference on
Computational Modeling, pages 18–23, Nov 2009. doi: 10.1109/MCSUL.2009.11.

94. J. Mayes. Reduction and approximation in large and infinite potential-driven
flow networks. PhD thesis, University of Notre Dame, 2012.

178

http://www.sciencedirect.com/science/article/pii/S2405896318301459
http://www.sciencedirect.com/science/article/pii/S2405896318301459
https://doi.org/10.1115/1.4042466
https://doi.org/10.1115/1.4042466
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.405
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.405
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s2-3.2.241
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s2-3.2.241
http://www.sciencedirect.com/science/article/pii/S1007570410003205
http://www.sciencedirect.com/science/article/pii/S1007570410003205


95. N. J. McCullen, D. P. Almond, C. J. Budd, and G. W. Hunt. The robust-
ness of the emergent scaling property of random rc network models of com-
plex materials. Journal of Physics D: Applied Physics, 42(6):064001, mar
2009. doi: 10.1088/0022-3727/42/6/064001. URL https://doi.org/10.1088%

2F0022-3727%2F42%2F6%2F064001.

96. D. McFarlane and K. Glover. A loop-shaping design procedure using h/sub
infinity / synthesis. IEEE Transactions on Automatic Control, 37(6):759–769,
1992. doi: 10.1109/9.256330.

97. A. Megretski and A. Rantzer. System analysis via integral quadratic constraints.
IEEE Transactions on Automatic Control, 42(6):819–830, 1997. doi: 10.1109/
9.587335.

98. F. Merrikh-Bayat and M. Afshar. Extending the root-locus method to fractional-
order systems. Journal of Applied Mathematics, 2008:528934, Jun 2008. ISSN
1110-757X. doi: 10.1155/2008/528934. URL https://doi.org/10.1155/

2008/528934.

99. S. Milgram. The small world problem. Psychology today, 2(1):60–67, 1967.

100. R. J. Minnichelli, J. J. Anagnost, and C. A. Desoer. An elementary proof of
kharitonov’s stability theorem with extensions. IEEE Transactions on Auto-
matic Control, 34(9):995–998, 1989. doi: 10.1109/9.35816.

101. B. Mirkin. Clustering: a data recovery approach. CRC Press, 2012.

102. P. Mlynek, J. Misurec, M. Koutny, and P. Silhavy. Two-port network transfer
function for power line topology modeling. Radioengineering, 21(1), 2012.

103. C. A. Monje, B. M. Vinagre, V. Feliu, and Y. Chen. Tuning and auto-
tuning of fractional order controllers for industry applications. Control En-
gineering Practice, 16(7):798 – 812, 2008. ISSN 0967-0661. doi: https://
doi.org/10.1016/j.conengprac.2007.08.006. URL http://www.sciencedirect.

com/science/article/pii/S0967066107001566.

104. D. A. Murio. Stable numerical evaluation of grünwald–letnikov fractional
derivatives applied to a fractional ihcp. Inverse Problems in Science and
Engineering, 17(2):229–243, 2009. doi: 10.1080/17415970802082872. URL
https://doi.org/10.1080/17415970802082872.

105. K. D. Murphy, G. W. Hunt, and D. P. Almond. Evidence of emergent
scaling in mechanical systems. Philosophical Magazine, 86(21-22):3325–3338,
2006. doi: 10.1080/14786430500197934. URL https://doi.org/10.1080/

14786430500197934.

106. A. Nedic, A. Ozdaglar, and P. A. Parrilo. Constrained consensus and optimiza-
tion in multi-agent networks. IEEE Transactions on Automatic Control, 55(4):
922–938, 2010. doi: 10.1109/TAC.2010.2041686.

179

https://doi.org/10.1088%2F0022-3727%2F42%2F6%2F064001
https://doi.org/10.1088%2F0022-3727%2F42%2F6%2F064001
https://doi.org/10.1155/2008/528934
https://doi.org/10.1155/2008/528934
http://www.sciencedirect.com/science/article/pii/S0967066107001566
http://www.sciencedirect.com/science/article/pii/S0967066107001566
https://doi.org/10.1080/17415970802082872
https://doi.org/10.1080/14786430500197934
https://doi.org/10.1080/14786430500197934


107. M. E. J. Newman. The structure and function of complex networks. SIAM
Review, 45(2):167–256, 2003. doi: 10.1137/S003614450342480. URL https:

//doi.org/10.1137/S003614450342480.

108. M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with
arbitrary degree distributions and their applications. Phys. Rev. E, 64:026118,
Jul 2001. doi: 10.1103/PhysRevE.64.026118. URL https://link.aps.org/

doi/10.1103/PhysRevE.64.026118.

109. X. Ni and B. Goodwine. Damage modeling for the tree-like network with
fractional-order calculus, 2020, arXiv preprint, 2012.09212 (Accepted by MTNS
2020 ).

110. X. Ni and B. Goodwine. Damage identification for the tree-like network through
frequency-domain modeling, 2020, arXiv preprint, 2012.09234 (Accepted by
IFAC World Congress 2020 ).

111. X. Ni and B. Goodwine. Damage modeling and detection for a tree network
using fractional-order calculus. Nonlinear Dynamics, 101(2):875–891, Jul 2020.
ISSN 1573-269X. doi: 10.1007/s11071-020-05847-5. URL https://doi.org/

10.1007/s11071-020-05847-5.

112. X. Ni and B. Goodwine. Frequency response and transfer functions of large
self-similar networks, 2020, arXiv preprint, 2010.11015.

113. X. Ni and B. Goodwine. Frequency response of transmission lines with unevenly
distributed properties with application to railway safety monitoring, 2020, arXiv
preprint, 2012.09247 (Accepted by ECC 2021 ).

114. W. Nick, J. Shelton, K. Asamene, and A. C. Esterline. A study of supervised
machine learning techniques for structural health monitoring. MAICS, 1353:36,
2015.

115. A. Noordergraaf. Circulatory system dynamics. Biophysics and bioengineering
series ; v. 1. Academic Press, New York, 1978. ISBN 0125209509.

116. R. Olfati-Saber. Distributed kalman filter with embedded consensus filters. In
Proceedings of the 44th IEEE Conference on Decision and Control, pages 8179–
8184, 2005. doi: 10.1109/CDC.2005.1583486.

117. R. Olfati-Saber. Flocking for multi-agent dynamic systems: algorithms and
theory. IEEE Transactions on Automatic Control, 51(3):401–420, 2006. doi:
10.1109/TAC.2005.864190.

118. M. D. Ortigueira. Introduction to fractional linear systems. part 1: Continuous-
time case. IEE Proceedings - Vision, Image and Signal Processing, 147:62–70(8),
February 2000. ISSN 1350-245X. URL https://digital-library.theiet.

org/content/journals/10.1049/ip-vis_20000272.

180

https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://link.aps.org/doi/10.1103/PhysRevE.64.026118
https://link.aps.org/doi/10.1103/PhysRevE.64.026118
https://doi.org/10.1007/s11071-020-05847-5
https://doi.org/10.1007/s11071-020-05847-5
https://digital-library.theiet.org/content/journals/10.1049/ip-vis_20000272
https://digital-library.theiet.org/content/journals/10.1049/ip-vis_20000272


119. M. D. Ortigueira. Introduction to fractional linear systems. part 2: Discrete-
time case. IEE Proceedings - Vision, Image and Signal Processing, 147:71–78(7),
February 2000. ISSN 1350-245X. URL https://digital-library.theiet.

org/content/journals/10.1049/ip-vis_20000273.

120. R. Pastor-Satorras and A. Vespignani. Immunization of complex networks.
Phys. Rev. E, 65:036104, Feb 2002. doi: 10.1103/PhysRevE.65.036104. URL
https://link.aps.org/doi/10.1103/PhysRevE.65.036104.

121. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani. Epi-
demic processes in complex networks. Rev. Mod. Phys., 87:925–979, Aug
2015. doi: 10.1103/RevModPhys.87.925. URL https://link.aps.org/doi/

10.1103/RevModPhys.87.925.

122. I. R. Petersen. A stabilization algorithm for a class of uncertain linear systems.
Systems & Control Letters, 8(4):351 – 357, 1987. ISSN 0167-6911. doi: https:
//doi.org/10.1016/0167-6911(87)90102-2. URL http://www.sciencedirect.

com/science/article/pii/0167691187901022.

123. I. R. Petersen and D. C. McFarlane. Optimal guaranteed cost control and
filtering for uncertain linear systems. IEEE Transactions on Automatic Control,
39(9):1971–1977, 1994. doi: 10.1109/9.317138.

124. I. R. Petersen and R. Tempo. Robust control of uncertain systems: Classical
results and recent developments. Automatica, 50(5):1315 – 1335, 2014. ISSN
0005-1098. doi: https://doi.org/10.1016/j.automatica.2014.02.042. URL http:

//www.sciencedirect.com/science/article/pii/S0005109814000806.

125. I. R. Petersen, B. D. O. Anderson, and E. A. Jonckheere. A first princi-
ples solution to the non-singular H∞ control problem. International Journal
of Robust and Nonlinear Control, 1(3):171–185, 1991. doi: https://doi.org/
10.1002/rnc.4590010304. URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/rnc.4590010304.

126. I. R. Petersen, V. A. Ugrinovskii, and A. V. Savkin. Robust Control Design
Using H∞ Methods. Springer Science & Business Media, 2012.

127. I. Podlubny. Fractional-order systems and PIλDµ-controllers. IEEE Transac-
tions on Automatic Control, 44(1):208–214, 1999. doi: 10.1109/9.739144.

128. C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park. Scan statistics
on enron graphs. Computational & Mathematical Organization Theory, 11(3):
229–247, 2005.

129. L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davison, and J. C. Doyle. A formula
for computation of the real stability radius. Institute for Mathematics and Its
Applications Preprint Series # 1160, 1993.

181

https://digital-library.theiet.org/content/journals/10.1049/ip-vis_20000273
https://digital-library.theiet.org/content/journals/10.1049/ip-vis_20000273
https://link.aps.org/doi/10.1103/PhysRevE.65.036104
https://link.aps.org/doi/10.1103/RevModPhys.87.925
https://link.aps.org/doi/10.1103/RevModPhys.87.925
http://www.sciencedirect.com/science/article/pii/0167691187901022
http://www.sciencedirect.com/science/article/pii/0167691187901022
http://www.sciencedirect.com/science/article/pii/S0005109814000806
http://www.sciencedirect.com/science/article/pii/S0005109814000806
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.4590010304
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.4590010304


130. S. Rahili and W. Ren. Distributed continuous-time convex optimization with
time-varying cost functions. IEEE Transactions on Automatic Control, 62(4):
1590–1605, 2017. doi: 10.1109/TAC.2016.2593899.

131. A. Ramanathan, P. K. Agarwal, M. Kurnikova, and C. J. Langmead. An online
approach for mining collective behaviors from molecular dynamics simulations.
Journal of Computational Biology, 17(3):309–324, 2010. doi: 10.1089/cmb.2009.
0167. URL https://doi.org/10.1089/cmb.2009.0167.

132. S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F. Sama-
tova. Anomaly detection in dynamic networks: a survey. WIREs Computational
Statistics, 7(3):223–247, 2015. doi: https://doi.org/10.1002/wics.1347. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1347.

133. H. F. Raynaud and A. Zergäınoh. State-space representation for fractional order
controllers. Automatica, 36(7):1017 – 1021, 2000. ISSN 0005-1098. doi: https://
doi.org/10.1016/S0005-1098(00)00011-X. URL http://www.sciencedirect.

com/science/article/pii/S000510980000011X.

134. A. H. Reis. Constructal view of scaling laws of river basins. Geomorphology, 78
(3):201 – 206, 2006. ISSN 0169-555X. doi: https://doi.org/10.1016/j.geomorph.
2006.01.015. URL http://www.sciencedirect.com/science/article/pii/

S0169555X06000225.

135. W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus problems in
multi-agent coordination. In Proceedings of the 2005, American Control Con-
ference, 2005., pages 1859–1864 vol. 3, 2005. doi: 10.1109/ACC.2005.1470239.

136. G. Rossetti and R. Cazabet. Community discovery in dynamic networks: A
survey. ACM Comput. Surv., 51(2), Feb. 2018. ISSN 0360-0300. doi: 10.1145/
3172867. URL https://doi.org/10.1145/3172867.

137. M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi, J. McLurkin, and R. Nagpal.
Collective transport of complex objects by simple robots: theory and exper-
iments. In Proceedings of the 2013 international conference on Autonomous
agents and multi-agent systems, pages 47–54, 2013.

138. A. Rytter. Vibrational Based Inspection of Civil Engineering Structures. PhD
thesis, Aalborg University, Denmark, 1993.

139. M. G. Safonov. Stability margins of diagonally perturbed multivariable feedback
systems. IEE Proceedings D - Control Theory and Applications, 129(6):251–256,
1982.

140. B. M. Sanandaji, T. L. Vincent, and M. B. Wakin. A review of sufficient condi-
tions for structure identification in interconnected systems*. IFAC Proceedings
Volumes, 45(16):1623 – 1628, 2012. ISSN 1474-6670. doi: https://doi.org/
10.3182/20120711-3-BE-2027.00254. URL http://www.sciencedirect.com/

182

https://doi.org/10.1089/cmb.2009.0167
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1347
http://www.sciencedirect.com/science/article/pii/S000510980000011X
http://www.sciencedirect.com/science/article/pii/S000510980000011X
http://www.sciencedirect.com/science/article/pii/S0169555X06000225
http://www.sciencedirect.com/science/article/pii/S0169555X06000225
https://doi.org/10.1145/3172867
http://www.sciencedirect.com/science/article/pii/S147466701538188X
http://www.sciencedirect.com/science/article/pii/S147466701538188X


science/article/pii/S147466701538188X. 16th IFAC Symposium on Sys-
tem Identification.

141. M. A. Sandidzadeh and M. Dehghani. Intelligent condition monitoring of railway
signaling in train detection subsystems. Journal of Intelligent & Fuzzy Systems,
24:859–869, 2013. doi: 10.3233/IFS-2012-0604. URL https://doi.org/10.

3233/IFS-2012-0604. 4.

142. L. Schenato and F. Fiorentin. Average timesynch: A consensus-based proto-
col for clock synchronization in wireless sensor networks. Automatica, 47(9):
1878 – 1886, 2011. ISSN 0005-1098. doi: https://doi.org/10.1016/j.automatica.
2011.06.012. URL http://www.sciencedirect.com/science/article/pii/

S0005109811003116.

143. P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and S. S.
Manna. Small-world properties of the indian railway network. Phys. Rev. E,
67:036106, Mar 2003. doi: 10.1103/PhysRevE.67.036106. URL https://link.

aps.org/doi/10.1103/PhysRevE.67.036106.
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